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Abstract. In this paper we discuss the implementation of the state-of-the-
art end-to-end response-time and delay analysis as two individual plug-ins
for the existing industrial tool suite Rubus-ICE. The tool suite is used for
the development of software for vehicular embedded systems by several
international companies. We describe and solve the problems encoun-
tered and highlight the experiences gained during the process of imple-
mentation, integration and evaluation of the analysis plug-ins. Finally, we
provide a proof of concept by modeling the automotive-application case
study with the existing industrial model (the Rubus Component Model),
and analyzing it with the implemented analysis plug-ins.
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1. Introduction

Often, an embedded system needs to interact and communicate with its envi-
ronment in a timely manner, i.e., the embedded system is a real-time system.
For such a system, the desired and correct output is one which is logically
correct as well as delivered within a specified time. The safety-critical nature
of many real-time systems requires evidence that the actions by them will be
provided in a timely manner, i.e., each action will be taken at a time that is ap-
propriate to the environment of the system. Therefore, it is important to make
accurate predictions of the timing behavior of these systems.

In order to provide evidence that each action in the system will meet its
deadline, a priori analysis techniques such as schedulability analysis have been
developed by the research community. Response Time Analysis (RTA) [17, 45]
is one of the methods to check the schedulability of a system. It calculates
upper bounds on the response times of tasks or messages in a real-time system
or a network respectively. Holistic Response-Time Analysis (HRTA) [48, 47, 42]
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is an academic well established schedulability analysis technique to calculate
upper bounds on the response times of task chains that may be distributed over
several nodes in a Distributed Real-time Embedded (DRE) system.

A task chain is a sequence of more than one task in which every task (except
first) receives a trigger, data or both from its predecessor. One way to classify
these chains is as trigger and data. In trigger chains, there is only one triggering
source (e.g, event, clock or interrupt) that activates the first task. The rest of the
tasks are activated by their predecessors. In data chains, tasks are activated
independent of each other, often with distinct periods. Each task (except the
first) in these chains receives data from its predecessor. The first task in a data
chain may receive data from the peripheral devices and interfaces, e.g., signals
from the sensors or messages from the network interfaces. The end-to-end
timing requirements on trigger chains are different from those on data chains.
If a system is modeled with trigger chains only, it is called a single-rate system.
On the other hand, if the system contains at least one data chain with different
clocks then the system is said to be multi-rate.

The end-to-end delays should also be computed along with the holistic re-
sponse times to predict complete timing behavior of multi-rate real-time systems
[21]. For this purpose, the research community has developed the End-to-End3

Delay Analysis (E2EDA). In [21], the authors have a view that almost all auto-
motive embedded systems are multi-rate systems. The industrial tools used for
the development of these systems should be equipped with the state-of-the-art
timing analysis.

A tool chain for the industrial development of component-based DRE sys-
tems consists of a number of tools such as designer, compiler, builder, debug-
ger, simulator, etc. Often, a tool chain may comprise of tools that are developed
by different tool vendors. The implementation of state-of-the-art complex real-
time analysis techniques such as RTA, HRTA and E2EDA in such a tool chain
is non-trivial because there are several challenges that are encountered apart
from merely coding and testing the analysis algorithms. These challenges and
corresponding solutions that we propose are central to this paper.
Goals and Contributions. In this paper4, we discuss the implementation of
HRTA and E2EDA as two individual plug-ins in the existing industrial tool suite
Rubus-ICE (Integrated Component development Environment) [1]. Our goal is
to transfer the state-of-the-art real-time analysis results, i.e., HRTA and E2EDA
to the existing tools for the industrial use. We discuss and solve the problems
encountered, solutions proposed and experiences gained during the implemen-
tation, integration and evaluation of the plug-ins. We also provide a proof of con-
cept by conducting the automotive-application case study. These new plug-ins
support complete end-to-end timing analysis of DRE systems. Thus, the scope
and usability of Rubus tools has widened with the addition of these plug-ins.

3 The terms “holistic” and “end-to-end” mean the same thing. In order to be consistent
with the previous work and naming conventions used in the existing industrial tools,
we will use “holistic” with response-times and “end-to-end” with delays.

4 This work is the extension of our previous work [37].
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Paper Layout. Section 2 presents the background and related work. Section 3
discusses the end-to-end timing requirements and the implemented analysis.
Section 4 describes the challenges encountered, solutions proposed and ex-
periences gained during the implementation and integration of the plug-ins. In
Section 5, we present a case study by modeling and analyzing the automotive
DRE application. Section 6 concludes the paper and presents the future work.

2. Background and Related Work

2.1. The Rubus Concept

Rubus is a collection of methods and tools for model- and component-based de-
velopment of dependable embedded real-time systems. Rubus is developed by
Arcticus Systems [1] in close collaboration with several academic and industrial
partners. Rubus is today mainly used for development of control functionality
in vehicles by several international companies [2, 13, 7, 5]. The Rubus concept
is based around the Rubus Component Model (RCM) [27] and its development
environment Rubus-ICE, which includes modeling tools, code generators, anal-
ysis tools and run-time infrastructure. The overall goal of Rubus is to be ag-
gressively resource efficient and to provide means for developing predictable
and analyzable control functions in resource-constrained embedded systems.

RCM expresses the infrastructure for software functions, i.e., the interaction
between them in terms of data and control flow separately. The control flow
is expressed by triggering objects such as internal periodic clocks, interrupts
and events. In RCM, the basic component is called Software Circuit (SWC). Its
execution semantics are: upon triggering, read data on data in-ports; execute
the function; write data on data out-ports; and activate the output trigger.

RCM separates the control flow from the data flow among SWCs within a
node. Thus, explicit synchronization and data access are visible at the modeling
level. One important principle in RCM is to separate functional code and infras-
tructure implementing the execution model. RCM facilitates analysis and reuse
of components in different contexts (SWC has no knowledge how it connects
to other components). The component model has the possibility to encapsulate
SWCs into software assemblies enabling the designer to construct the system
at different hierarchical levels. Recently, we extended RCM for the development
of DRE systems by introducing new components [30, 39, 33]. A detailed com-
parison of RCM with several component models is presented in [39].

Fig. 1(a) depicts the sequence of main steps followed in Rubus-ICE from
modeling of an application to the generation of code. An application is modeled
in the Rubus Designer tool. Then the compiler compiles the design model into
the Intermediate Compiled Component Model (ICCM). After that the builder tool
sequentially runs a set of plug-ins. Finally, the coder tool generates the code.

2.2. The Rubus Analysis Framework

The Rubus model allows expressing real-time requirements and properties at
the architectural level. For example, it is possible to declare real-time require-
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ments from a generated event and an arbitrary output trigger along the trig-
ger chain. For this purpose, the designer has to express real-time properties
of SWCs, such as worst-case execution times and stack usage. The scheduler
will take these real-time constraints into consideration when producing a sched-
ule. For event-triggered tasks, response-time calculations are performed and
compared to the requirements. The analysis supported by the model includes
response time analysis and shared stack analysis.

2.3. Plug-in Framework in Rubus-ICE

The plug-in framework in Rubus-ICE [26] facilitates the implementation of re-
search results in isolation (without needing Rubus tools) and their integration
as add-on plug-ins (binaries or source code) with the Rubus-ICE. A plug-in is
interfaced with the builder tool as shown in Fig. 1(a). The plug-ins are exe-
cuted sequentially which means that the next plug-in can execute only when
the previous plug-in has run to completion. Hence, each plug-in reads required
attributes as inputs, runs to completion and finally writes the results to the ICCM
file. The Application Programming Interface (API) defines the services required
and provided by a plug-in. Each plug-in specifies the supported system model,
required inputs, provided outputs, error handling mechanisms and a user inter-
face. Fig. 1(b) shows the conceptual organization of a plug-in in the Rubus-ICE.
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Fig. 1. Sequence of steps from design to code generation in Rubus-ICE

2.4. Response-Time Analysis

RTA of Tasks in a Node. Liu and Layland [28] provided theoretical foundation
for analysis of fixed-priority scheduled systems. Joseph and Pandya published
the first RTA [25] for the simple task model presented in [28]. Subsequently, it
has been applied and extended in a number of ways by the research community.
RTA applies to systems where tasks are scheduled with respect to their priori-
ties and which is the predominant scheduling technique used in real-time oper-
ating systems [40]. Tindell [47] developed the schedulability analysis for tasks
with offsets for fixed-priority systems. It was extended by Palencia and Gon-
zalez Harbour [42]. Later, Mäki-Turja and Nolin [29] reduced pessimism from
RTA developed in [47, 42] and presented a tighter RTA for tasks with offsets by
accurately modeling inter-task interference. We implemented tighter version of
RTA of tasks with offsets [29] as part of the HRTA and E2EDA.
RTA of Messages in a Network. To stay focussed on the automotive or ve-
hicular domain, we will consider only Controller Area Network (CAN) and its
high-level protocols. Tindell et al. [49] developed the schedulability analysis of
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CAN which has served as a basis for many research projects. Later on, this
analysis was revisited and revised by Davis et al. [19]. The analysis in [49, 19]
assumes that all CAN device drivers implement priority-based queues. In [20]
Davis et al. pointed out that this assumption may become invalid when some
nodes in a CAN network implement FIFO queues. Hence, they extended the
analysis of CAN with FIFO queues as well. In this work, the message deadlines
are assumed to be smaller than or equal to the corresponding periods. In [18],
Davis et al. lifted this assumption by supporting the analysis of CAN messages
with arbitrary deadlines. Furthermore, they extended their work to support RTA
of CAN for FIFO and work-conserving queues.

However, the existing analysis does not support mixed messages which are
implemented by several high-level protocols for CAN. In [32, 36, 31], Mubeen
et al. extended the existing analysis to support RTA of mixed messages in the
CAN network where some nodes use FIFO queues while others use priority
queues. Later on, Mubeen et al. [38] extended the existing analysis for CAN to
support mixed messages that are scheduled with offsets in the controllers that
implement priority-ordered queues. In this work we will consider all of the above
analyses as part of the end-to-end response-time and delay analysis.
Holistic RTA. The holistic response-time analysis calculates the response
times of event chains that are distributed over several nodes (also called dis-
tributed transactions) in a DRE system. It combines the analysis of nodes (uni-
processors) and networks. In this paper, we consider the end-to-end timing
model that corresponds to the holistic schedulability analysis for DRE systems
[48]. In [34], we discussed our preliminary findings about implementation issues
that are encountered when HRTA is transferred to the industrial tools.
End-to-end Delay Analysis. Stappert et al. [46] formally described end-to-
end timing constrains for multi-rate systems in the automotive domain. In [21],
Feiertag et al. presented a framework (developed in TIMMO project [16]) for the
computation of end-to-end delays for multi-rate automotive embedded systems.
Furthermore, they emphasized on the importance of two end-to-end latency se-
mantics, i.e., “maximum age of data” and “first reaction” in control systems and
body electronics domains respectively. A scalable technique, based on model
checking, for the computation of end-to-end latencies is described in [43]. In
this work, we will implement the end-to-end delay analysis of [21].

2.5. Tools for End-to-end Timing Analysis of DRE Systems

The MAST tool suite [6] implements a number of state-of-the-art analysis al-
gorithms for DRE systems. Among them is the offset-based analysis algorithm
[47, 42] whose tighter version [29] is implemented as part of the HRTA and
E2EDA plug-ins. It also allows visual modeling and analysis of real-time sys-
tems in a Unified Modeling Language (UML) design environment. The Volcano
Family [10] is a bunch of tools for designing, analyzing, testing and validating
automotive embedded software systems. Volcano Network Architect (VNA) [12]
is a communication design tool that supports the analysis of Local Interconnect
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Network (LIN) and CAN. It also supports end-to-end timing analysis of a system
with more than one network. It implements RTA of CAN presented in [49].

SymTA/S [23] is a tool for model-based timing analysis and optimization. It
implements several real-time analysis techniques for single-node, multiproces-
sor and distributed systems. It supports RTA of software functions, RTA of bus
messages and end-to-end timing analysis of both single-rate and multi-rate sys-
tems. It is also integrated with the UML development environment to provide a
timing analysis support for the applications modeled with UML [22].

Vector [11] is a tools provider for the development of networked electronic
systems in the automotive and related domains. In the Vector tool family, CANoe
[3] is a tool for the development, testing and analysis of ECU (Electronic Control
Units) networks and individual ECUs. It supports various protocols for network
communication including CAN, LIN, MOST, Flexray, Ethernet and J1708. Net-
work Designer CAN is another tool by Vector that is used to design the architec-
ture and perform timing analysis of CAN network. RAPID RMA [8] implements
several scheduling schemes and supports end-to-end analysis for single- and
multiple-node real-time systems. It also allows real-time analysis support for the
systems modeled with Real-Time CORBA [44].

The Rubus-ICE tool suite allows a developer to specify timing information
and perform the HRTA and E2EDA at the modeling phase during component-
based development of DRE systems. To the best of our knowledge, Rubus-ICE
is the first and only tool suite that implements RTA of mixed messages in CAN
[32], RTA of mixed messages with offsets [38] and a tighter version of offset-
based RTA algorithm [29] as part of the HRTA and E2EDA .

3. End-to-end Timing Requirements and Implemented
Analysis in Rubus-ICE

3.1. End-to-end timing requirements in trigger chains

A real-time system (single-node or distributed) can be modeled with trigger
chains (see Fig.2(a)), data chains (see Fig.2(b)) or a combination of both. The
end-to-end timing requirements on trigger chains are different from those on
data chains. If the system is modeled with trigger chains then the end-to-end
deadline requirements are placed on the holistic response times.

An example of a trigger chain that consists of three components is shown
in Fig. 2(a). Assume that each component corresponds to a task at run-time.
When task τSWC A finishes its execution, it triggers τSWC B . Similarly, τSWC C

can only be triggered by τSWC B after finishing its execution. There cannot be
multiple outputs corresponding to a single input signal. In fact, there will always
be one output of the chain corresponding to the input trigger. Hence, the end-to-
end timing requirements correspond to the holistic response times. Distributed
real-time systems can also be modeled with trigger chains in a similar fashion.
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3.2. End-to-end timing requirements in data chains

As compared to the systems which are modeled with trigger chains, merely
computing the holistic response times and comparing them with the end-to-end
deadlines is not sufficient to predict the complete timing behavior of multi-rate
real-time systems which are modeled with data chains. There may be over-
and under-sampling in such systems because the individual tasks are activated
by independent clocks, often with different periods. Since data is transferred
among tasks and messages within a data chain by means of asynchronous
buffers, there exist different semantics of end-to-end delay in a data chain.
These buffers are often of a non-consuming type which means the data stays in
the buffer after it is read by the reader task. Moreover, the data in the buffer can
be overwritten by the writer task with new values before the previous value was
read by the reader task. Therefore, some input values in the data buffers can
be overwritten by new values, and hence the effect of the old input values may
never propagate to the output of a data chain. Further, there may be several
duplicates of the output of a data chain corresponding to a particular input.

The end-to-end timing requirements in multi-rate real-time systems, espe-
cially in the automotive domain, are placed on the first reaction to the input and
age of the data at the output [21]. The end-to-end delay in a data chain refers to
the time elapsed between the arrival of a signal at the first task and production
of corresponding output signal by the last task in the chain (provided the infor-
mation corresponding to the input has traversed the chain from first to last task)
[43]. In a single-rate real-time system that contains only trigger chains, tasks in
a chain are not activated by independent events, in fact, there is only one ac-
tivating event in the chain. Hence, the holistic response times and end-to-end
delays will have equal values. On the other hand, these values are not the same
in multi-rate real-time systems that are modeled with data chains. Therefore, a
complete analysis of a real-time system modeled with data chains requires the
calculation of not only holistic response times but also end-to-end delays.
Examples. A multi-rate real-time system modeled with three SWCs in RCM
is shown in Fig. 2(b). These SWCs are activated by independent clocks with
different periods, i.e., 8ms, 16ms and 4ms respectively. SWC A reads the in-
put signals from the sensors while SWC C produces the output signals for the
actuators. Assume that each SWC will be allocated to an individual task by
the run-time environment generator. Also assume that WCET of each task is
1ms. The time line corresponding to the run-time execution of the three tasks
(corresponding to three SWCs), depicted in Fig. 3, shows multiple outputs cor-
responding to a single input. The four end-to-end delays are also identified.
Last In First Out (LIFO). This delay is equal to the time elapsed between
the current non-overwritten release of task τA (input of the data chain) and
corresponding first response of task τC (output of the data chain).
Last In Last Out (LILO). This delay is equal to the time elapsed between the
current non-overwritten release of task τA and corresponding last response of
task τC . This delay is identified as “Data Age”5 in [21]. Data age specifies the

5 We will use the term “Data Age delay” to refer to LILO delay throughout the paper.
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longest time data is allowed to age from production by the initiator until the
data is delivered to the terminator. This delay finds its importance in control
applications where the interest lies in the freshness of the produced data. For a
data chain in a control system that initiates with a sensor input and terminates
by producing an actuation signal, it is very important to ensure that the actuator
signal does not exceed a maximum age [21]. Generally speaking, we consider
the last non-overwritten input that actually propagates through the data chain
towards the output in the case of both LIFO and LILO delays.

8 ms 16 ms 4 ms
SWC_A SWC_CSWC_B

Sensor Input Data sink

10 ms SWC_A SWC_CSWC_B

Sensor Input Data sink
(a) (b)

Fig. 2. RCM model of (a) trigger chain (b) data chain in a single-node real-time system
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Fig. 3. End-to-end delays for a data chain in a real-time system

First In First Out (FIFO). This delay is equal to the time elapsed between the
previous non-overwritten release of task τA and first response of task τC corre-
sponding to the current non-overwritten release of task τA. Assume that a new
value of the input is available in the input buffer of task τA “just after” the release
of the second instance of task τA (at time 8ms). Hence, the second instance of
task τA “just misses” the read of the new value from its input buffer. This new
value has to wait for the next instance of task τA to travel towards the output
of the data chain. Therefore, the new value will be read by the third and forth
instances of task τA. The first output corresponding to the new value (arriving
just after 8ms) will appear at the output of the chain at 34ms. This will result in
the FIFO delay of 26ms as shown in Fig. 3. This phenomenon is more obvious
in the case of distributed embedded systems where a task in the receiving node
may just miss to read fresh signals from a message that is received from the
network. This delay is identified as “first reaction or Data Reaction”6 in [21]. It is
equal to the longest allowed reaction time for data produced by the initiator to
be delivered to the terminator. It finds its importance in button-to-reaction appli-
cations in body electronics domain where first reaction to input is important.

6 We will consistently use the term “Data Reaction delay” to refer to FIFO delay.
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First In Last Out (FILO). It is equal to the time elapsed between the previous
non-overwritten release of task τA and last response of task τC corresponding
to current non-overwritten release of task τA. The reasoning about “just missing”
a fresh input (in the case of FIFO delay) is also applicable in this case.

The modeling of data chains and the definition of their end-to-end delays in
distributed real-time systems is done in a similar fashion.

3.3. Implemented Holistic Response-Time Analysis

In order to analyze tasks in each node, we implement RTA of tasks with offsets
developed by [47, 42] and improved by [29]. We implement the network RTA
that supports the analysis of CAN and its high-level protocols. It is based on
the following RTA profiles for CAN: (1) RTA of CAN [49, 19]; (2) RTA of CAN
for mixed messages [32]; (3) RTA of CAN for mixed messages with offsets [38]
(The analysis of this profile is implemented as a standalone analyzer).

The pseudocode of HRTA algorithm is shown in Algorithm 1. The HRTA al-
gorithm iteratively runs the algorithms for node and network analyses. In the first
step, release jitter of all messages and tasks in the system is assumed to be
zero. The response times of all messages in the network and all tasks in each
node are computed. In the second step attribute inheritance is carried out. This
means that each message inherits a release jitter equal to the difference be-
tween the worst- and best-case response times of its sender task (computed in
the first step). Similarly, each task that receives the message inherits a release
jitter equal to the difference between the worst- and best-case response times
of the message (computed in the first step). In the third step, response times
of all messages and tasks are computed again. The newly computed response
times are compared with the response times previously computed in the first
step. The analysis terminates if the values are equal otherwise these steps are
repeated. The conceptual view of HRTA plug-in is shown in Fig. 4.

3.4. Implemented End-to-end Delay Analysis

We implemented the end-to-end delay analysis that is derived in [21] as the
E2EDA plug-in for Rubus-ICE. This analysis implicitly requires the calculation
of response times of individual tasks, messages and holistic response times of
task chains. For example, the calculation of four end-to-end delays for the multi-
rate real-time system shown in Fig. 2(b) requires the response time of the task
τC (corresponding to the component SWC C ) and the activation times of tasks
τA and τC . Since, the HRTA plug-in is able to calculate response times of tasks,
network messages and task chains, we reuse the analysis results computed
by the HRTA plug-in as an input to the E2EDA plug-in as shown in Fig. 4. The
pseudocode of E2EDA algorithm (see [21] for details) is shown in Algorithm 2.
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Algorithm 1 Algorithm for holistic response-time analysis
1: begin
2: RTPrev ← 0 . Initialize all Response Times (RTs) to zero
3: Repeat ← TRUE
4: while Repeat = TRUE do
5: for all Messages and tasks in the system do
6: JitterMsg ← (WCRTSender task − BCRTSender task ) . WCRT: Worst-Case

Response Time, BCRT: Best-Case Response Time
7: JitterReceiver task ← (WCRTMsg − BCRTMsg)
8: COMPUTE RT OF ALL MESSAGES()
9: COMPUTE RT OF ALL TASKS IN EVERY NODE()

10: if RT > RTPrev then
11: RTPrev ← RT
12: Repeat ← TRUE
13: else
14: Repeat ← FALSE
15: end if
16: end for
17: end while
18: end

Rubus Builder

End-to-end

timing information

Analysis 

Results

HRTA Plug-in

Algorithms for RTA of 

tasks in a node

Algorithms for RTA 

network messages

HRTA Algorithm
E2EDA Plug-in

Algorithm for end-to-end 

delay analysis

End-to-end

timing information

Analysis 

Results

Fig. 4. Conceptual view of the E2EDA plug-in in Rubus-ICE

4. Encountered Problems, Solutions and Experiences

In this section we discuss several problems encountered during the process of
implementation and integration of HRTA and E2EDA as plug-ins for the Rubus-
ICE tool suite. We also present our solution to each individual problem.

4.1. Extraction of Unambiguous Timing Information

One common assumption in end-to-end response time and delay analyses is
that the timing attributes are available as input. However, when these analyses
are implemented in a tool chain used for the component-based development of
DRE systems, the implementer has to not only code and implement the analy-
sis, but also extract unambiguous timing information from the component model
and map it to the inputs for the analysis model. This is because the design and
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Algorithm 2 Algorithm for end-to-end delay analysis
1: begin
2: GET RT OF ALL TASKS MESSAGES TASK CHAINS() . Get the analysis results from

the HRTA plug-in
3: FIND ALL VALID TIMED PATHS() . Timed Path (TP) is a sequence of task instances

from input to output. A TP is valid if information flow among tasks is possible [21],
e.g., [τA(1stinstance), τB(1stinstance), τC (5thinstance)] in Fig. 3 is a valid TP. On the
other hand, TP [τA(1stinstance), τB(1stinstance), τC (1stinstance)] in Fig. 3 is invalid
because information cannot flow between τB(1stinstance) and τC (1stinstance)

4: procedure COMPUTE FF DELAY(FF TP)
5: FF delay = αn(instance) + δn(instance) - α1(instance) . αn(instance): Activation

time of the corresponding instance of the nth task in timed path FF TP
. δn(instance): Response time of the corresponding instance of the nth task in

timed path FF TP
6: return FF delay
7: end procedure

. The above mentioned procedure calculates FFDelay only. [21] should be
referred for the calculation of the rest of the delays

8: for all Delay constraints specified in the system do
9: FFDelay ← 0,FLDelay ← 0,LFDelay ← 0,LLDelay ← 0 . Initialize all delays

10: COMPUTE ALL REACHABLE TIMED PATHS() . All those paths from
input to output in which the changes in input actually travel towards the output, e.g.,
[τA(2ndinstance), τB(1stinstance), τC (5thinstance)] in Fig. 3

11: FF TPcount ← GET ALL FF TPS() . TP: Timed Path, FF: First to First
12: FL TPcount ← GET ALL FL TPS() . FL: First to Last
13: LF TPcount ← GET ALL LF TPS() . LF: Last to First
14: LL TPcount ← GET ALL LL TPS() . LL: Last to Last
15: for i:=1 doFF TPcount

16: if COMPUTE FF DELAY(i) > FFDelay then
17: FFDelay ← COMPUTE FF DELAY()
18: end if
19: end for
20: for i:=1 doFL TPcount

21: if COMPUTE FL DELAY(i) > FLDelay then
22: FLDelay ← COMPUTE FL DELAY()
23: end if
24: end for
25: for i:=1 doLF TPcount

26: if COMPUTE LF DELAY(i) > LFDelay then
27: LFDelay ← COMPUTE LF DELAY()
28: end if
29: end for
30: for i:=1 doLL TPcount

31: if COMPUTE LL DELAY(i) > LLDelay then
32: LLDelay ← COMPUTE LL DELAY()
33: end if
34: end for
35: end for
36: end
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analysis models are often build upon different meta-models [22]. Moreover, the
design model can contain redundant timing information. Hence, it is not trivial
to extract unambiguous timing information for HRTA and E2EDA. The timing
information (to be extracted) can be divided into two categories.
Extraction of Timing Information Corresponding to User Inputs. The first
category corresponds to the timing attributes of tasks and network messages
that are provided in the modeled application by the user. These timing at-
tributes include Worst Case Execution Times (WCETs), periods, minimum up-
date times, offsets, priorities, deadlines, blocking times, precedence relations in
task chains, jitters, etc. In [33], we identified all the timing attributes of nodes,
networks, transactions, tasks and messages that are required by the HRTA.
Extraction of Timing Information from the Modeled Application. The sec-
ond category corresponds to the timing attributes that are not directly provided
by the user but they must be extracted from the modeled application. For ex-
ample, message period (in periodic transmission) or message inhibit time (in
sporadic transmission) is often not specified by the user. These attributes must
be extracted from the modeled application because they are required by the
RTA of network communication. In fact, a message inherits the period or inhibit
time from the task that queues it. Thus, we assign period or inhibit time to the
message which is equal to the period or inhibit time of its sender.

However, the extraction of message timing attributes becomes complex when
the sender task has both periodic and sporadic activation patterns. In this case,
not only the timing attributes of a message have to be extracted but also the
transmission type of the message has to be identified. This problem can be
visualized in the example shown in Fig. 5. It should be noted that the Out Soft-
ware Circuit (OSWC), shown in the figure, is one of the network interface com-
ponents in RCM that sends a message to the network. Similarly, In Software
Circuit (ISWC) receives a message from the network [39].

In Fig. 5(a), the sender task is activated by a clock, and hence the corre-
sponding message is periodic. Similarly, the corresponding message is spo-
radic in Fig. 5(b) because the sender task is activated by an event. However,
the sender task in Fig. 5(c) is triggered by both a clock and an event. Here the
relationship between two triggering sources is important. If there exists a de-
pendency relation between them as in the case of mixed transmission in the
CANopen protocol [4] and AUTOSAR communication [9] then such message
will be treated as a special type of sporadic message. If triggering sources are
independent of each other (e.g., in the HCAN protocol [15]), the corresponding
message will be considered a mixed message [32, 36]. If there are periodic and
sporadic messages in the application, the HRTA plug-in uses the first profile for
network analysis (see Section 3.3). On the other hand, if the application con-
tains mixed messages as well, the second profile for network analysis is used.
Identification of Trigger, Data and Mixed Chains. The end-to-end timing re-
quirements on trigger chains are different from those on data chains. These
requirements correspond to end-to-end response times for trigger chains and
both end-to-end response times and delays for data chains. Data and trigger
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chains should be distinctly identified and the corresponding timing requirements
should be unambiguously captured in the timing model on which the analysis
tools operate. For this purpose, we add a new attribute “trigger dependency”
in the data structure of tasks in the analysis model. If a task is triggered by an
independent source such as a clock then this attribute will be assigned “inde-
pendent”. On the other hand, if the task is triggered by another task then this
parameter will be assigned “dependent”. Moreover, a precedence constraint will
also be specified on this task in the case of dependent triggering.

However, a system can also be modeled with mixed chains that are com-
prised of data chains as well as trigger chains as shown in Fig. 5(d). In this
chain, components SWC A, SWC B and SWC E are triggered by indepen-
dent clocks and which is the property of components in a data chain. Hence, the
“trigger dependency” attribute of the tasks corresponding to these three compo-
nents will be assigned “independent”. Whereas, the components SWC C and
SWC D are triggered by their respective predecessors and which is the prop-
erty of components in a trigger chain. The “trigger dependency” attribute of the
tasks corresponding to these two components will be assigned “dependent”.

8 ms 16 ms 4 ms
SWC_A SWC_CSWC_B

Sensor Input Data sink

10 ms SWC_A SWC_CSWC_B

Sensor Input Data sink
(a) (b)

(c)

(a) (b)

SWC_A

SWC_CSWC_BSensor Input Data sink

SWC_E

SWC_D

8 ms 16 ms 4 ms

(d)

Fig. 5. Extraction of transmission type of a message, (d) RCM model of a mixed chain

4.2. Extraction of Linking Information from Distributed Transactions

In order to perform HRTA, correct linking information of DTs should be extracted
from the design model [35]. Consider the following DT in a two-node DRE sys-
tem shown in Fig. 6. SWC1 → OSWC A→ ISWC B → SWC2 → SWC3
We identified the need for the following mappings in the component model: be-
tween signals and input data ports of OSWCs at the sender node; between sig-
nals and the outgoing message at the sender node; between data output ports
of ISWC components and the signals (to be sent to the desired components)
at the receiver node; between received message and signals at the receiver
node; between multiple signals (structure of signals) and a complex data port;
and among all trigger ports of network interface components along a DT.

Since, the E2EDA plug-in needs to compute all valid timed paths (i.e., those
paths in which input actually travels to the output) from initiator to the terminator
for every data chain (see Algorithm 2), the linking information among all tasks
and messages in the data chain should be extracted.

4.3. Analysis of Distributed Transactions with Branches

Consider the example of a two-node DRE system containing branches in DTs
as shown in Fig. 7. OSWC A1 and OSWC A2 in node A send messages m1
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and m2 that are received by ISWC C1 and ISWC C2 in node C respectively.
Hence, there are two DTs that have different initiators but a single terminator,
i.e., SWC C3 as shown below.
1. SWC A1 → SWC A2 → OSWC A1 → ISWC C1 → SWC C1 → SWC C3
2. SWC A3 → OSWC A2 → ISWC C2 → SWC C2 → SWC C3

Controller Area Network (CAN)

Node A

Signals

SWC3

OSWC 
A1

CAN 
SEND

Ext

messages

Signals

ISWC 
B1
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RECEIVE

Node B
Data Port

Trigger 
Port

External 
Event
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Data 
Source

Data 
Sink

Controller Area Network (CAN)
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SWC1

OSWC_A
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Ext

messages

Signals

ISWC_B

SWC2 SWC3

CAN 
RECEIVE

Node B
Data Port

Trigger 
Port

External 
Event

Ext

Data 
Source

Data 
Sink

Fig. 6. Two-node DRE system modeled with RCM

Assume that Data Age delay constraint is specified on SWC C3 . Also as-
sume that the start of this constraint is specified on the component SWC A1
in node A. Therefore, we need to perform end-to-end delay analysis only on
the first DT (in the above list). The calculations for Data Age delay require the
response time of SWC C3 . However, the response time of this task depends
upon the holistic response times of both DTs. In this case, the HRTA plug-in
will calculate the holistic response times of all branches whereas the E2EDA
plug-in will consider the maximum value among these holistic response times
during calculations for the end-to-end delays.
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SWC_A SWC_CSWC_B
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10 ms SWC_A SWC_CSWC_B

Sensor Input Data sink
(a) (b)
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SWC_A2 OSWC_A1SWC_A1
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SWC_A3 OSWC_A2

Engine 

torque

Node A

Fig. 7. RCM model of a two-node DRE system with branches in distributed transactions

4.4. Analysis of Mixed Task Chains

There are two options to handle mixed chains in the analysis model. In the first
option, if a component is triggered by its predecessor then it is assumed to be
triggered by independent clock with the same period as that of its predecessor’s
clock. Using this option, the execution time line of the task chain corresponding
to component chain of Fig. 5(d) is shown in Fig. 8(a). This time line will be used
by the E2EDA plug-in to calculate the total number of timed paths. However,
there are several timed paths, indicated with crosses in Fig. 8(a), that are im-
possible to occur in reality. This is because each instance of a task in a trigger
chain can be triggered only by one instance of its predecessor task. This will
result in unnecessary calculations.
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Instead, we use the second option that reduces the number of paths in
mixed chain by combining all tasks belonging to a trigger sub-chain into a single
task activated by independent clock. Hence, the reduced mixed chain resem-
bles a data chain. For example, SWC B , SWC C and SWC D are combined
to a single task (with combined WCETs, offsets, etc.) which is triggered by inde-
pendent clock whose period is exactly the same as that of the clock that triggers
SWC B component. The execution time line of the task chain corresponding to
reduced mixed chain of Fig. 5(d) is shown in Fig. 8(b). The corresponding end-
to-end delays are also identified. By implementing the second option , we got
rid of the so-called “impossible timed paths”. Mixed chains may also exist in the
models of DRE systems where they may contain many combinations of data
and trigger chains distributed over several nodes. Path reduction in distributed
mixed chains is done in a similar fashion.
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τC

5 10 15 20 250 30
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τE

0 30

(a)

Fig. 8. (a) Impossible timed paths in mixed chains (b) Reduction of a mixed chain

4.5. Analysis of the System Containing “Outside” Messages

One of the requirements by the users of the analysis tools was that the HRTA
and E2EDA plug-ins should be able to support the analysis of a system that
receives messages from unknown senders (from outside of the modeled appli-
cation). One motivation behind this requirement may be the integration of two
systems that are build using different methodologies and tools. Second motiva-
tion could be the integration of legacy systems with newly developed systems.
Another motivation could be the requirement for the end-to-end timing analy-
sis early during the development. At early stage, the models of some nodes
may not be available. However, the signals and messages which these missing
nodes are supposed to send and receive might have been decided. Hence, the
network is assumed to contain messages whose sender nodes are not devel-
oped yet. Similarly, the available nodes may send messages via network to the
nodes that will be available at a later stage.

The HRTA connects the tasks and messages in a DT by means of attribute
inheritance [48]. Moreover, the message also inherits other attributes from the
sender task such as transmission type (periodic, sporadic or mixed [32]); and
period or inhibit time or both. The only problem with this requirement is that
a message, obviously, cannot inherit these attributes if the sender is unknown
or the message is received from outside of the model. In order to solve this
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problem, each such message is assumed to be the initiator of the corresponding
DT. The transmission type and period (or inhibit time or both) of this message
are extracted from the user input (instead of the sending task as in the case of
intra-model messages). However, the forward attribute inheritance is valid, i.e.,
the receiver task will inherit the difference between the worst- and best-case
response times of the message as its release jitter.

4.6. Impact of Component Technology on the Analysis Implementation

The design decisions made in the component technology (i.e., RCM) can have
indirect impact on the response times computed by the analysis. For exam-
ple, design decisions could have impact on WCETs and blocking times which
in turn have impact on the response times. In order to implement, integrate
and test HRTA and E2EDA, the implementer needs to understand the design
model (component technology), analysis model and run-time translation of the
design model. In the design model, the architecture of an application is de-
scribed in terms of software components, their interconnections and software
architectures. Whereas in the analysis model, the application is defined in terms
of tasks, transactions, messages and timing parameters. At run-time, a task
may correspond to a single component or a chain of components. The run-time
translation of a component may differ among different component technologies.

4.7. Direct Cycles in Distributed Transactions

A direct cycle in a DT is formed when any two tasks located on different nodes
send messages to each other. When there are direct cycles in a DT, the HRTA
may run forever (if deadlines are not specified) because the response times
increase in every iteration. Consider a two-node application modeled in RCM
as shown in Fig. 9 (a). The OSWC A component in node A sends a message
m1 to node B where it is received by ISWC B . Similarly, OSWC B in node B
sends a message m2 to ISWC A in node A.

There are two options for the run-time allocation of network interface com-
ponent (OSWC or ISWC) as shown in Fig. 9 (b). First option is to allocate it
to the task that corresponds to the immediate SWC, i.e., the component that
receives/sends the signals from/to it. Since SWC A is immediately connected
to both network interface components in node A, there will be only one task in
node A denoted by τA as shown in Fig. 9 (b). Similarly, τB is the run-time rep-
resentation of ISWC B , SWC B and OSWC B . Obviously, this run-time allo-
cation will result in direct cycles. This problem may appear in those component
technologies which do not use exclusive modeling objects or means to differen-
tiate between intra- and inter-node communication in the design model and rely
completely on the run-time environment to handle the communication. Hence,
some special methods are required to avoid direct cycles in these technologies.

The direct cycles can be avoided by allocating each network interface com-
ponent to a separate task as shown in the option 2 in Fig. 9 (b). Although same
messages are sent between the nodes, one task cannot be both a sender and
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a receiver. No doubt, there is a cycle between the nodes, but not a direct one.
Hence, the HRTA may produce converging results, and non-terminating execu-
tion of the plug-in may be avoided. It is interesting to note that the requirements
and limitations of the analysis implementation may provide feedback to the de-
sign decisions concerning the run-time allocation of modeling components.
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Fig. 9. Options for the run-time allocation of network interface components

4.8. Sequential Execution of Plug-ins in Rubus Plug-in Framework

The plug-in framework in Rubus-ICE allows only sequential execution of plug-
ins. There exists a plug-in in Rubus-ICE that can perform RTA of tasks in a node
and it is already in the industrial use. There are two options to develop the HRTA
plug-in for Rubus-ICE as shown in Fig. 10. The option A supports reusability by
building the HRTA plug-in by integrating existing RTA plug-in with two new plug-
ins, i.e., one implementing network RTA and the other implementing the HRTA.
In this case, the HRTA plug-in will be lightweight. It iteratively uses the analysis
results produced by the node and the network RTA plug-ins and accordingly
provides new inputs to them until converging holistic response times are ob-
tained or the deadlines (if specified) are violated. On the other hand, option B
requires the development of the HRTA plug-in from the scratch, i.e, implement-
ing the algorithms of node, network and the HRTA. This option does not support
any reuse of existing plug-ins.
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Fig. 10. Options to develop the HRTA Plug-in for Rubus-ICE

Since, option A allows the reuse of a pre-tested and heavyweight node RTA
plug-in, it is easy to implement and requires less time for implementation, inte-
gration and test compared to option B. However, the implementation method in
option A is not supported by the plug-in framework of Rubus-ICE because the
plug-ins can only be executed sequentially. Hence, we selected option B for the
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implementation of the HRTA. Since E2EDA algorithm is non-iterative, there is
no need to build the E2EDA plug-in from the scratch. In fact, the HRTA plug-in
can be completely reused as a black box. This means that the response times
of tasks, messages and task chains computed by the HRTA plug-in can be used
as one of the inputs for the E2EDA plug-in as shown in Fig. 4.

4.9. Analysis of DRE Systems with Multiple Networks

In a DRE system, a node may be connected to more than one network. This
type of node is called a gateway node. If a transaction is distributed over more
than one network, the computation of its holistic response time involves the
analysis of more than one network. Such transaction is divided into sub- trans-
actions (each having a single network) which are analyzed separately in the
first step. In the second step, the attribute inheritance is carried out (see Section
3.3) and the sub-transactions are analyzed again. The second step is repeated
until the response times converge or the deadlines (if specified) are violated.
Although, we analyze the sub-transactions separately, the multi-step analysis
(especially attribute inheritance step) makes the overall analysis to be holis-
tic. The implemented HRTA does not support the analysis of a transaction that
is distributed cyclically on multiple networks, i.e., the transactions that is dis-
tributed over more than one network while its first and last tasks are located on
the same network. Since, the E2EDA plug-in receives the response times from
the HRTA plug-in, it does not need to split the system into sub-systems.

4.10. Specification of Delay Constraints on Data Paths

One issue that concerns both modeling and analysis is how to specify the de-
lay constraints on data paths in both data and mixed chains. This is important
because the delay constraints specified in the modeled application have to be
extracted in the timing model and the end-to-end delays have to be computed
only for the specified data path(s) by the E2EDA plug-in. For this purpose, we in-
troduce start and end objects for each of the four delay constraints (discussed
in Subsection 3.2) in the component technology. The constraint object has a
meaningful name, and start and end points along a data path. Fig. 11 shows
the “Data Age” delay constraint specified on a sensor-actuator data path. Sim-
ilarly, there are start and end objects for “Data Reaction”, “LIFO” and “FILO”
delays. A delay constraint can also be distributed over several nodes. Another
useful method for specifying the delay constraints is by selecting each compo-
nent (e.g., with mouse click) along the data path.

4.11. Presentation of Analysis Results

When HRTA of a modeled application has been performed, the next issue is
how to present the analysis results. There can be a large number of tasks and
messages in the system. It may not be appropriate to display the response
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times of all tasks, messages and DTs in the system because it may contain a
lot of useless information (if the user is not interested in all of it). A way around
this problem is to provide the end-to-end response times and delays of only
those tasks and DTs which have deadline requirements and delay constraints
(specified by the user) or which produce control signals for external actuators.
Apart from this, we also provide an option for the user to get detailed analysis
results from both the HRTA and E2EDA plug-ins. The analysis report also shows
network utilization which is defined as the sum of the ratio of transmission time
to the corresponding period (or minimum-update time) for all messages [32].

 

 

 

 

 

 

 

Fig. 11. Age delay constraint specified on a data path

4.12. Interaction between the User and the HRTA Plug-in

We feel that it is important to display the number of iterations, running time and
over all progress of the plug-in during its execution. Further, the user should be
able to interact with the plug-in, i.e., stop, rerun or exit the plug-in at any time.

4.13. Suggestions to Improve Schedulability Based on Analysis Results

If the analysis results indicate that the modeled system is unschedulable, it
can be interesting if the HRTA plug-in is able to provide suggestions (e.g., by
varying system parameters) guiding the user to make the system schedulable.
However, it is not trivial to provide such feedback because there can be so
many reasons behind the system being not schedulable. Another interesting
and related feature would be to provide a trace analyzer as another plug-in
that can be used after system has been developed. This analyzer will record
the execution of the actual system and then present a graphical comparison of
the trace with response times of tasks and messages; holistic response times
of trigger, data and mixed chains; and end-to-end delays of data and mixed
chains. Based on such comparisons, the user may have better understanding
of how the schedulability of the system can be improved. The support for this
type of feedback in the HRTA plug-in will be provided in the future.

4.14. Continuous Collaboration between Integrator and Implementer

Our experience shows that there is a need for continuous collaboration between
the integrator of the plug-ins and its implementer especially during the phase
of integration testing. This collaboration is more obvious when the plug-in is
developed in isolation by the implementer (from research background) and in-
tegrated with the industrial tool chain by the integrator (with limited experience
of integrating complex real-time analysis but aware of overall objective). A con-
tinuous consultation and communication was required between the integrator
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and the implementer for the verification of the plug-ins. Examples of small DRE
systems with varying architectures were created for the verification. The im-
plementer had to verify these examples by hand. The integration testing and
verification of the HRTA plug-in was non-trivial and most tedious activity.

5. Automotive Application Case Study
We provide a proof of concept for the analyses that we implemented in the
Rubus-ICE by conducting the automotive-application case study. First, we model
Autonomous Cruise Control (ACC) system with RCM using Rubus-ICE. Then,
we analyze the modeled ACC system using the HRTA and E2EDA plug-ins.

5.1. Autonomous Cruise Control System
A Cruise Control (CC) system is an automotive feature that allows a vehicle to
automatically maintain a steady speed to the value that is preset by the driver.
It uses velocity feedback from the speed sensor (e.g., a speedometer) and ac-
cordingly controls the engine throttle. However, it does not take into account
traffic conditions around the vehicle. Whereas, an Autonomous Cruise Control
(ACC) system allows the CC of the vehicle to adapt itself to the traffic environ-
ment without communicating (cooperating) with the surrounding vehicles. Often,
it uses a radar to create a feedback of distance to and velocity of the preceding
vehicle. Based on the feedback, it either reduces the vehicle speed to keep a
safe distance and time gap from the preceding vehicle or accelerates the ve-
hicle to match the preset speed specified by the driver [41]. The ACC system
may be divided into four subsystems, i.e., Cruise Control (CC), Engine Control
(EC), Brake Control (BC) and User Interface (UI) [14] as shown in Fig. 12. The
subsystems communicate with each other via the CAN network.

Controller Area Network (CAN)

Brake Control 
Subsystem

Engine Control 
Subsystem

Cruise Control 
Subsystem

User Interface 
Subsystem

Fig. 12. Block diagram of Autonomous Cruise Control System

User Interface (UI) Subsystem. It reads inputs (provided by the driver) and
shows status messages and warnings on the display screen. The inputs are
acquired by means of switches and buttons mounted on the steering wheel.
These include Cruise Switch input that corresponds to ON/OFF, Standby and
Resume (resuming to a speed predefined by the driver) states for ACC; Set
Speed input (desired cruising speed set by the driver) and desired clearing
distance from the preceding vehicle. It also receives messages that include
linear and angular speed of the vehicle, status of manual brake sensor, state of
ACC subsystem, status messages and warnings to be displayed on the screen.
It also sends messages (including status of driver’s input) to other subsystems.
Cruise Control (CC) Subsystem. The CC subsystem receives user input in-
formation as a CAN message from the UI subsystem. From the received mes-
sage it analyzes the state of the CC switch; if it is in ON state then it activates
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the CC functionality. It reads input from the proximity sensor (e.g., radar) and
processes it to determine the presence of a vehicle in front of it. Moreover, it
processes the radar signals along with the information received from other sub-
systems such as vehicle speed to determine its distance from the preceding
vehicle. Accordingly, it sends control information to the BC and EC subsystems
to adjust the speed of the vehicle with the cruising speed or clearing distance
from the preceding vehicle. It also receives the status of manual brake sensor
from the BC subsystem. If brakes are pressed manually then the CC function-
ality is disabled. It also sends status messages to the UI subsystem.
Engine Control (EC) Subsystem. The EC subsystem is responsible for con-
trolling the vehicle speed by adjusting engine throttle. It reads sensor input and
accordingly determines engine torque. It receives CAN messages from other
subsystems that include information regarding vehicle speed, status of manual
brake sensor, and input information processed by the UI system. Based on this
information, it determines whether to increase or decrease engine throttle. It
then sends new throttle position to the actuators that control engine throttle.
Brake Control (BC) Subsystem. The BC subsystem receives inputs from sen-
sor for manual brakes status and linear and angular speed sensors connected
to all wheels. It also receives a CAN message that includes control informa-
tion processed by the CC subsystem. Based on this feedback, it computes new
vehicle speed. Accordingly, it produces control signals and sends them to the
brake actuators and brake light controllers. It also sends CAN messages to
other subsystems that carry status of manual brake, vehicle speed and RPM.

5.2. Modeling of ACC System with RCM in Rubus-ICE

In RCM, we model each subsystem as a separate node connected to a CAN
network as shown in Fig. 13(a). The selected speed of the CAN bus is 500 kbps.
The extended frame format is selected, i.e., each frame will use 29-bit identifier
[24]. The ACC system is modeled with trigger, data and mixed chains.

There are seven CAN messages in the system as shown in Fig. 13(b). A
signal data base “signalDB” that contains all the signals sent to the network is
also shown. Each signal in the signalDB is linked to one or more messages.
The extracted attributes of all messages including data size (sm), priority (Pm),
transmission type (ξm) and period or inhibit time (Tm) are listed in the table
shown in Fig. 13(c). The high-level architectures of CC, EC, BC and UI nodes
modeled with RCM are shown in Fig. 14(a), 14(b), 14(c) and 14(d) respectively.
Internal Model of CC Node in RCM. The CC node is modeled with four assem-
blies as shown in Fig. 14(a). An assembly in RCM is a container for various soft-
ware items. The Input from Sensors assembly contains one SWC that reads
radar sensor values as shown in Fig. 15. The Input from CAN assembly con-
tains three ISWCs, i.e., GUI Input Msg ISWC, Vehicle speed Msg ISWC and
Manual brake input Msg ISWC as depicted in Fig. 16(a). These components
receive messages m1 , m6 and m7 from the CAN respectively. The assembly
Output to CAN contains three OSWC components that send messages m5 ,
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m4 and m2 to the CAN network as shown in Fig. 16(b). The Cruise Control as-
sembly contains two SWCs: one handles the input and CC mode signals while
the other processes the received information and produces control messages
for the other nodes. The internal model of this assembly is shown in Fig. 17.

(a) (b)

(c) (d)

(a)

(b) (c)

Fig. 13. (a) RCM model of ACC system, (b) RCM model of CAN messages and signal
database, (c) message attributes extracted from the model

(a) (b)

(c) (d)

Fig. 14. RCM model of (a) CC node, (b) EC node, (c) BC node, (d) UI node

(a) (b)

(c) (d)

(a)

(b) (c)

(a) (b)

Fig. 15. CC node: Internal model of the Input from Sensors assembly

Internal Model of EC Node in RCM. The EC node is modeled with four assem-
blies as shown in Fig. 14(b). The Input from Sensors assembly contains one
SWC that reads the sensor values corresponding to the engine torque as shown
in Fig. 18(a). The Input from CAN assembly contains three ISWCs, i.e., Vehi-
cle Speed Msg ISWC, Engine control info Msg ISWC and Manual brake input
Msg ISWC as shown in Fig. 18(b). These components receive messages m6 ,
m4 and m7 from the CAN network respectively. The third assembly, Output to
Actuators, shown in Fig. 18(c), contains the SWC that produces control signals
for the engine throttle actuator. The fourth assembly Engine Control, shown in
Fig. 19, contains two SWCs: one handles and processes the inputs from sen-
sors and received messages, while the other computes the new position for the
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engine throttle. These components are part of a distributed mixed chain that we
will analyze along with other distributed mixed chains in the next subsections.

8 ms 16 ms 4 ms
SWC_A SWC_CSWC_B

Sensor Input Data sink

10 ms SWC_A SWC_CSWC_B

Sensor Input Data sink
(a) (b)

(c)

(a) (b)

SWC_A

SWC_CSWC_BSensor Input Data sink

SWC_E

SWC_D

8 ms 16 ms 4 ms

(d)

Node C
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Speed

SWC_A2 OSWC_A1SWC_A1
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Node A
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Fig. 16. CC node: Internal model of assemblies (a) Input from CAN, (b) Output to CAN

 

 

 

 

 

  

Fig. 17. CC node: SWCs comprising the Cruise Control assembly

(a)

(b)

(c)

(c)

(b)

(a)

Fig. 18. EC node: Internal model of assemblies (a) Input from Sensors, (b) In-
put from CAN, (c) Output to Actuators

Internal Model of BC Node in RCM. The BC node is modeled with five as-
semblies as shown in Fig. 14(c). The Input from Sensors assembly contains
three SWCs as shown in Fig. 20(a). These SWCs read the sensor values that
correspond to the values of speed, rpm and manual brake sensors in the ve-
hicle. The Input from CAN assembly, shown in Fig. 20(b), contains the ISWC
component Brake control info Msg ISWC that receives a message m5 from the
CAN. The third assembly, i.e., Brake Control as shown in Fig. 21(a), contains
two SWCs: one handles and processes the inputs from sensors and received
messages while the other computes the control signals for brake actuators. The
fourth assembly Output to CAN contains three OSWC components as shown in
Fig. 20(c). These components send messages m7 , m6 and m3 to the CAN. The
fifth assembly, Output to Actuators as shown in Fig. 21(b), contains the SWCs
that produce control signals for the brake actuators and brake light controllers.
Internal Model of UI Node in RCM. The UI node is modeled with four as-
semblies along with one SWC as shown in Fig. 14(d). The GUI Control SWC
handles the input from the sensors and messages from the CAN. After pro-
cessing the information, it not only produces information for Graphical User
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Interface (GUI), but also computes control signals for the other nodes. The In-
put from Sensors assembly contains two SWCs as shown in Fig. 22(a). One of
them reads the sensor values that correspond to the state of the cruise control
switch on the steering wheel. The other SWC reads the sensor values that cor-
respond to the vehicle cruising speed set by the driver. The Input from CAN as-
sembly contains four ISWC components, i.e., Vehicle Speed Msg ISWC, RPM
Msg ISWC, Manual brake input Msg ISWC and ACC text display Msg ISWC
as shown in Fig. 22(b). These components receive messages m6 , m3 , m7 and
m2 from the CAN respectively. The third assembly, i.e., Output to CAN Periodic
sends a message m1 to the CAN via the OSWC component as shown in
Fig. 22(c). The fourth assembly, i.e., GUI Display Asm contains one SWC, i.e.,
GUIdisplay component as shown in Fig. 23. This component sends the signals
(corresponding to updated information) to GUI in the car.

 

 

 

  

Fig. 19. EC node: SWCs comprising the Engine Control assembly

(a)

(a)

(a)

(c)

(b)

(a)

Fig. 20. BC node: Internal model of assemblies (a) Input from Sensors, (b) In-
put from CAN, (c) Output to CAN

5.3. Modeling of End-to-end Deadline Requirements

We specify end-to-end deadline requirements on four DTs in the ACC system
using the deadline object in RCM. All these DTs, i.e., DT1, DT2, DT3 and DT4

are distributed mixed chains as shown in Table 1. All these chains have one
common initiator, i.e., their first task corresponds to the SWC that reads radar
signal which is denoted by RadarSignalInput and located in the CC node as
shown in Fig. 15. The last tasks of DT1 and DT2 are located in the BC node.
These tasks correspond to the SWCs SetBrakeSignal and SetBrakeLightSignal
as shown in Fig. 14(c). These two tasks are responsible for producing brake
actuation and brake light control signals respectively. The last task of DT3 cor-
responds to SetThrottlePosition SWC and is located in the EC node as shown
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in Fig. 14(b). It produces control signal for the engine throttle actuator. The last
task of DT4 corresponds to GUIdisplay SWC and is located in the UI node as
shown in Fig. 14(d). This task provides display information for the driver.

(a)

(b)

(c)

(c)

(b)

(a)

(a)

(b)

Fig. 21. BC node: Model of assemblies (a) Brake Control (b) Output to Actuators

(a)

(b)
(c)

Fig. 22. UI node: Internal model of assemblies (a) Input from Sensors, (b) In-
put from CAN, (c) Output to CAN Periodic

(a)

(b)
(c)

Fig. 23. UI node: Internal model of the GUI Display Asm assembly

All the mixed chains under analysis are distributed over more than one node.
We list all the components in the data path (from initiator to terminator) of each
chain as shown below. We also specify four delay constraints (discussed in
Section 3) on each DT under analysis. In RCM, the model of each delay con-
straint consists of start object and end object. The start objects for all four delay
constraints for each DT are shown in Fig. 15. There are sixteen start objects for
delay constraints in Fig. 15 because there are four DTs under analysis with four
delay constraints specified on each. The end objects for all delay constraints for
DT1 and DT2 are specified in Fig. 21(b). Similarly, the end objects for all delay
constraints for DT3 and DT4 are specified in Fig. 18(c) and Fig. 23 respectively.
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1. DT1: RadarSignalInput → InputAndModeControl → InfoProcessing →
Brake control info Msg OSWC → message : m5 →
Brake control info Msg ISWC → BrakeInputInfoProcessing →
BrakeController → SetBrakeSignal SWC

2. DT2: RadarSignalInput → InputAndModeControl → InfoProcessing →
Brake control info Msg OSWC → message : m5 →
Brake control info Msg ISWC → BrakeInputInfoProcessing →
BrakeController → SetBrakeLightSignal SWC

3. DT3: RadarSignalInput → InputAndModeControl → InfoProcessing →
Engine control info Msg OSWC → message : m4 →
Engine control info Msg ISWC → EngineInputInformationProcessing →
ThrottleControl → SetThrottlePosition

4. DT4: RadarSignalInput → InputAndModeControl → InfoProcessing →
ACC text display Msg OSWC → message : m2 →
ACC text display Msg ISWC → GUI Control → GUIdisplay

5.4. Analysis of ACC System using the HRTA and E2EDA Plug-ins

The run-time allocation of all the components in the model of the ACC system
results in 19 transactions, 36 tasks and 7 messages. We provide the analysis
results of only those transactions on which deadline requirements or delay con-
straints are specified. The transmission times (Cm) of all messages computed
by the HRTA plug-in are listed in the table shown in Fig. 13(c). The WCET of
each component in the modeled ACC system is selected from the range of 10-
60 µSec. The HRTA plug-in analyzes all four DTs (discussed in the previous
subsection). Once the HRTA plug-in has completed its execution and produced
analysis results then the E2EDA plug-in analyzes only those DTs on which end-
to-end delay constraints are specified (i.e., all four DTs).

The analysis report in Table 1 provides worst-case holistic response times
of the four distributed mixed chains using the HRTA plug-in. The correspond-
ing deadlines are also shown. The response time of a DT is counted from the
activation of the first task to the completion of the last task in the chain. The
response times of these four DTs correspond to the production of control sig-
nals for brake actuators, brake lights controllers, engine throttle actuator and
GUI. The analysis report produced by the E2EDA plug-in is shown in Table 2.
It lists four end-to-end delays calculated for each DT. The corresponding speci-
fied delay constraints are also listed in the table. By comparing the end-to-end
deadlines and specified delay constraints with the calculated holistic response
times and end-to-end delays in Tables 1 and 2 respectively, we see that the
modeled ACC system meets all of its deadlines.

6. Conclusion and Future Work

We presented the implementation of the state-of-the-art Holistic Response Time
Analysis (HRTA) and End-to-End Delay Analysis (E2EDA) as two individual
plug-ins for the existing industrial tool suite Rubus-ICE. The implemented anal-
yses are general as they support the integration of real-time analysis of various
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networks without a need for changing the end-to-end analysis algorithms. With
the implementation of these plug-ins, Rubus-ICE is able to support distributed
end-to-end timing analysis of trigger flows as well as asynchronous data flows
which are common in automotive embedded systems.

Table 1. Analysis report by the HRTA plug-in

Distributed Chain Control Signal Produced Deadline Holistic Response
Transaction Type by the Chain (µSec) Time (µSec)

DT1 Mixed Chain SetBrakeSignal 1000 220
DT2 Mixed Chain SetBrakeLightSignal 1000 280
DT3 Mixed Chain SetThrottlePosition 1000 130
DT4 Mixed Chain GUIdisplay 1500 345

Table 2. Analysis report by the E2EDA plug-in

Distributed Transaction DT1 DT2 DT3 DT4

Specified Age Delay Constraint(µSec) 5000 5000 5000 5000
Calculated Age Delay (µSec) 4220 4280 4130 4345
Specified Reaction Delay Constraint(µSec) 10000 10000 10000 10000
Calculated Reaction Delay (µSec) 8220 8280 8130 8345
Specified LIFO Delay Constraint(µSec) 1000 1000 1000 1500
Calculated LIFO Delay (µSec) 220 280 130 345
Specified FILO Delay Constraint(µSec) 15000 15000 15000 15000
Calculated FILO Delay (µSec) 12220 12280 12130 12345

There are many challenges faced by the implementer when state-of-the-art
real-time analyses like HRTA and E2EDA are transferred to the industrial tools.
The implementer has to not only code and implement the analyses in the tools,
but also deal with various challenging issues in an effective way with respect
to time and cost. We discussed and solved several issues that we faced during
the implementation, integration and evaluation of the plug-ins. The experience
gained by dealing with the implementation challenges provided a feed back to
the component technology. We found the integration testing to be a tedious and
non-trivial activity. Our experience of implementing, integrating and evaluating
these plug-ins shows that a considerable amount of work and time is required
to transfer complex real-time analysis results to the industrial tools.

We provided a proof of concept by modeling the ACC system with compo-
nent-based approach using the existing industrial component model (Rubus
Component Model) and analyzing it with the HRTA and E2EDA plug-ins.

We believe that most of the problems discussed in this paper are generally
applicable when real-time analysis is transferred to any industrial or academic
tool suite. The contributions in this paper may provide guidance for the imple-
mentation of other complex real-time analysis techniques in any industrial tool
suite that supports plug-in framework for the integration of new tools and allows
component-based development of distributed real-time embedded systems.

In the future, we plan to implement the analysis of other network communi-
cation protocols (e.g., Flexray, switched ethernet, etc.) and integrate them within
the HRTA plug-in. Another future work is the implementation of RTA for CAN
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with FIFO and work-conserving queues [18, 20], and RTA of CAN with FIFO
Queues for Mixed Messages [36] within HRTA plug-in. We also plan to inte-
grate the stand alone analyzer, that we developed for the analysis of mixed
messages with offsets [38], with the HRTA plug-in.
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35. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Tracing event chains for holistic response-
time analysis of component-based distributed real-time systems. SIGBED Review
8, 48–51 (September 2011), http://doi.acm.org/10.1145/2038617.2038628
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