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Abstract. In this paper we present the ReSpecTX language, toolchain, and stan-
dard library as a first step of a path aimed at closing the gap between coordination
languages – mostly a prerogative of the academic realm until now – and their indus-
trial counterparts. Since the limited adoption of coordination languages within the
industrial realm is also due to the lack of suitable toolchains and libraries of reusable
mechanisms, ReSpecTX equips a core coordination language (ReSpecT) with
tools and features commonly found in mainstream programming languages. In par-
ticular, ReSpecTX makes it possible to provide a reference library of reusable and
composable interaction patterns.
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1. Introduction

Many efforts are being devoted in both the industry and the academia to deal with the issue
of enabling and governing the interaction space—that is, the dimension of computation
defining the admissible interactions among the components of a (possibly concurrent and
distributed) system. In the literature it is well understood how such a dimension is con-
ceptually orthogonal to the algorithmic one, thus requiring ad-hoc models and languages
[49]. While in the industry they often take the form of communication protocols tailored
to the particular business domain – e.g., MQTT vs. CoAP for the IoT landscape, FIPA3

protocols for multi-agent systems (MAS), REST vs. SOAP for micro-services – in the
academia they constitute the subject of the research area known as coordination models
and languages [39], studying the set of abstractions and mechanisms enabling the man-
agement of dependencies amongst computational activities [32].

In spite of the number of coordination languages available to date, they are mostly ei-
ther core calculus, proof-of-concept frameworks, or domain-specific languages for rapid
prototyping or simulation, rather than full-fledged programming languages [17]. Even
though a number of important expressiveness results have been provided [28,12,22] –
proving that, in principle, any interaction pattern can be suitably modelled –, their full po-
tential in the engineering of complex distributed systems cannot be really assessed without
the corresponding engineering tools. In particular, we believe that the full expressiveness
of coordination models and languages should be also measured against the availability of

3 http://www.fipa.org/
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mature-enough standard libraries and infrastructures actually enabling engineers to build
real-world complex systems without, e.g., re-implementing the same interaction patterns
over and over again. Also, no suitable toolchain for supporting the increasingly complex
task of programming the interaction space is usually provided to developers, resulting in
the lack of features typical of state-of-art programming languages—like static-checking
and live debugging.

On the other hand, in the MAS area – where coordination models and languages are
known to be essential to deal with complex interaction patterns [15], agent-oriented pro-
gramming (AOP) frameworks are nowadays mostly integrated with mainstream program-
ming languages, and come equipped with all sorts of development tools [45]. As a re-
markable example in the field, JADE [5] is a Java-based AOP language and infrastructure
equipped with a GUI for remote monitoring of the agents’ lifecycle, an Introspector agent
(with a GUI) to debug agents’ inner working cycle, and a Sniffer agent (again, with a
GUI) to observe agents’ messaging protocols.

Along this line, the first aim of this paper is to draw the attention of the academic
community on the poor support coordination languages provide to the engineering of
concurrent and distributed systems such as MAS—when the coordination technology is
available at all, of course. So, along with expressive coordination models and languages
backed by a sound semantics, the engineering of complex distributed systems also calls
for tools and libraries of coordination patterns in order to face complex and mutable in-
teraction requirements.

As a first step to face these issues, we here present the ReSpecTX language, toolchain,
and standard library for programming the coordination of MASs as well as distributed ap-
plications in general, providing (i) a well founded and expressive semantics, (ii) a number
of features supporting the development process, (iii) a library of general purpose, reusable,
and composable interaction mechanisms. ReSpecTX builds upon the ReSpecT lan-
guage [36] inheriting and extending its semantics, while pushing it beyond the limits
of other coordination languages through features such as modularity, composability, and
tools—with an Eclipse IDE plugin4 for static-checking, auto-completion, and code gen-
eration. Finally, the ReSpecTX Standard Library is conceived as a constantly evolving
collection of interaction mechanisms – a few examples of which are shown in the follow-
ing sections – allowing developers to focus on which particular interaction pattern they
need for their agents, instead of how it is actually built.

Accordingly, the remainder of the paper is organised as follows. Section 2 provides the
background context that motivates our work, briefly describes a few notable coordination
models and languages, and informally describes how the TuCSoN model and technology
and the ReSpecT language work. Section 3 presents ReSpecTX and its syntax, and
discusses its modularity and composability features. Section 4 showcases some example
modules taken from the ReSpecTX Stadard Library—purposely selected to highlight
their composability. Finally, Section 5 provides some conclusive remarks along with an
outlook on possible further developments.

Notice. This paper is an extended version of [16], firstly presented at the 11th Interna-
tional Symposium on Intelligent Distributed Computing (IDC 2017). Sections 2.1 and 2.2
have been extended to better describe TuCSoN and ReSpecT. Sections 3.2 and 3.4 have

4 http://www.eclipse.org/ide
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been extended with examples to highlight ReSpecTX improvements over ReSpecT.
ReSpecTX Standard Library has been extended with novel reusable mechanisms, de-
scribed in Section 4.

2. Developing MAS: Computation vs. Interaction

Two prominent examples of agent development frameworks born in the academic world
and proficiently transferred to the industry are JADE [5] and Jason [10]: the former is
an object-based framework (JADE agents are Java objects) for developing agent-oriented
distributed applications in compliance with FIPA standard specifications; the latter is a
Java-based implementation of an extension of the AgentSpeak(L) language [43] as well
as a BDI agent runtime. Other notable mentions among the many are JADEX [42], JACK
[50], and SARL [44], which are industry-ready platforms for developing and running
MAS featuring BDI agents. Among the application context where the aforementioned
platforms have been actually deployed there are autonomous guidance of unmanned ve-
hicles [48], smart homes security [11], surveillance [13], healthcare [46], and simulation
[27].

Conversely, examples of coordination languages and infrastructures proficiently ex-
ploited in the industrial world are more difficult to find, despite the abundance of well-
known and expressive models [17]. To the best of our knowledge, the few coordination
technologies that show some degree of maturity – w.r.t. either supporting developers or
enabling deployment in real-world systems – are the following:

Reo [3] is a channel-based coordination model that defines how designers can build
complex coordinators, called connectors, out of simpler ones. The Reo technology
is implemented as a Java library, and comes with a set of related and complementary
development tools integrated with the Eclipse IDE, providing for instance a graphi-
cal editor and Java code generator [4] plus some data-flow animation and verification
tools. Reo has been employed in the field of web services orchestration and compo-
sition [30].

KLAIM/KLAVA [19] is a LINDA-like coordination language for mobile computing fo-
cussing on strong code mobility [6]. In KLAIM, both processes and data can be moved
across the network among computing environments (tuple spaces), being localities a
first-class abstraction meant to explicitly manage mobility and distribution-related as-
pects. KLAIM is distributed with its own Java code generator [7], producing sources
leveraging on the KLAVA library. No tool is provided to developers, except for the
code generator and the KLAVA library itself, and no integration is available with AOP
frameworks. KLAIM has been extended by X-KLAIM [8], but no real-world deploy-
ment exists to the best of our knowledge.

LIME [41] is another implementation of LINDA [28] aimed at dealing with both physical
(mobile hosts) and logical mobility (code migration) so as to support location-aware
computation. LIME focusses in particular on making the federation of tuple spaces
transparent, a feature that has been appreciated in the area of wireless sensor networks
[18]. LIME is distributed as a Java library providing adaptation layers to different
mobile code frameworks and tuple space implementations. Even though the LIME
middleware is a mature and robust middleware, it is distributed without tools easing
the development and engineering process, and, again, no integration is provided with
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AOP frameworks. The only actual deployment of the LIME middleware we found is
based on the TeenyLime variant, used to monitor heritage buildings [14].

JavaSpaces/Jini [26] is Oracle’s implementation of LINDA aimed at coordinating dis-
tributed Java programs. The focus here is on using Java objects as tuples, storing
and retrieving them along with their state, which can be changed by interacting Java
programs. Indeed, JavaSpaces provides LINDA-like primitives enabling the insertion
(retrieval) of Java objects in (from) object spaces. As objects correspond to LINDA
tuples, object spaces correspond to LINDA tuple spaces. The Jini technology is still
alive as part of the Apache River project5, consisting of an actively maintained and
industry-ready middleware implementation. As far as we know, no other support tool
is provided, and no integration with AOP frameworks is available.

TuCSoN [40] enriches LINDA tuple spaces with programmability [21]: a TuCSoN tuple
centre is a programmable tuple space, and ReSpecT is the language used to pro-
gram tuple centres [37]. Targeting MAS community, TuCSoN is integrated with both
the JADE and Jason AOP frameworks [35]. TuCSoN is distributed as a Java mid-
dleware and is actively maintained [1]—and exploited, for instance, in the healthcare
field [23]. Before ReSpecTX and its ecosystem, it provided minimal development
supporting facilities.

In the remainder of this paper we focus on TuCSoN, and in particular on the ReSpecT
language used to program tuple centres, since ReSpecTX is built on top of it.

2.1. Structuring the interaction space with TuCSoN

TuCSoN [40] is a tuple-based coordination model available as a Java-based middleware
[1], providing coordination as a service [47] to the agents in a MAS—or, more generally,
processes in a distributed system. Following (and extending) the archetypal LINDA se-
mantics, TuCSoN agents coordinate by means of coordination primitives allowing them
to read (rd), insert (out), consume (in), or test for absence of (no) first-order logic tu-
ples within LINDA-like tuple spaces—see Fig. 1. Agents actions are synchronised thanks
to LINDA suspensive semantics [28] affecting the so-called getter primitives—rd, in,
and no. This means, for instance, that an agent trying to consume (in) a tuple matching
a given template from a tuple space succeeds only after such a tuple has been found in the
tuple space—typically inserted by an out. TuCSoN extends LINDA with the predicative,
bulk, and probabilistic version of the aforementioned primitives. Predicative primitives
(rdp, inp, and nop) are not susceptible to suspensive semantics, therefore represent
predicates about the state of the tuple spaces. Bulk primitives are used by agents will-
ing to insert (out all), read (rd all), or consume (in all) multiple tuples all at
once within tuple spaces. Finally, probabilistic primitives (urd, uin, and uno) let agents
read / consume tuples probabilistically, refining LINDA non-determinism with a uniform
probability distribution [33]. Since TuCSoN makes no assumption on the agents inner
architecture and capabilities, any Java program can be enabled to exploit its coordination
services via TuCSoN API. As a result, TuCSoN works as a general-purpose coordination
medium for distributed systems in general.

TuCSoN tuple spaces are actually tuple centres [37] because they are enhanced with
a behaviour specification—that is, a program specifying how the tuple space itself must

5 http://river.apache.org
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Fig. 1. Pictorial representation of a TuCSoN system: TuCSoN nodes are spread on a
network of hosts, tuple centres are hosted by these nodes, and agents interact by means of
TuCSoN primitives.

react to coordination-related events happening therein. TuCSoN expects tuple centres
behaviour specifications to be expressed in the ReSpecT language [36], shortly described
in next subsection.

TuCSoN is fully integrated with JADE and Jason by properly harmonising LINDA
suspensive semantics and TuCSoN invocation modes with JADE and Jason concurrency
models [35], and comes equipped with a few tools for monitoring, debugging, manual
testing, and inspection of the interaction space. Thus, TuCSoN represents a seldom case
of mature-enough coordination infrastructure actually viable as a solid option for coor-
dinating real-world industrial applications – for instance, to replace message-based with
stigmergic coordination in those scenarios where loose coupling of interacting entities is
required (e.g., in smart homes [20] and eHealth scenarios [23]) –, with a further benefit
for those already exploiting JADE or Jason.

2.2. Programming the interaction space with ReSpecT

ReSpecT [36] is a Prolog-based declarative language for defining tuple centre behaviour
specification. Each specification is composed by one or multiple specification tuples aimed
at intercepting the events involving the local tuple centre and to provide some ad-hoc ac-
tion to be performed as reaction. Specification tuples are a special kind of first-order logic
tuples whose form is

reaction(〈Event〉,〈Guards〉,〈Body〉)

where:
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Fig. 2. Pictorial representation of the triggering mechanism of ReSpecT reactions: a
coordination-related event (i.e. invocation of a TuCSoN primitive) triggers one or more
reactions, whose body executes provided that the guards hold true. When a reaction is
executing, it may trigger other reactions, in a sort of chain.

〈Event〉 is the triggering event of the reaction—that is, the coordination-related event
whose occurrence triggers evaluation of the reaction, like the invocation of a coordi-
nation primitive on the local tuple centre, or the local time reaching a given instant

〈Guards〉 is the (conjunction of) guard predicate(s) about the properties of the trigger-
ing event that must hold true for the reaction to be actually executed—thus enabling
fine-grained control over reactions selection

〈Body〉 is the reaction body—that is, the sequence of Prolog computations and Re-
SpecT primitives representing the intended actions to be performed as a response
to each occurrence of the triggering event

Fig. 2 graphically represents the triggering mechanism of ReSpecT reactions.
As an example, let us suppose ACME Inc. is leveraging TuCSoN/ReSpecT for its

workflow automation framework. In its simplest variant, the framework expects tasks to
be scheduled on the todolist@acme.com tuple centre in the form of tuples matching
the template task(Action). A number of worker-agents are responsible for the execu-
tion of scheduled tasks. An agent may take charge of a task by consuming the correspond-
ing task(Action) tuple, e.g., by invoking in(task(Action)) on the todolist
tuple centre. ACME Inc. does not allow its worker-agents to be idle, so it programs the
tuple centre to always provide a default task to idle workers by means of the following
reaction, lazily producing an unbounded amount of default tasks.

reaction(
in(task(_)), % reaction triggered whenever a task will be consumed
(

invocation, % reaction executed before any task is (possibly) consumed
from_agent % the invocation must come from an agent

), (
no(task(_)), % ensure no other task is available
event_source(WorkerName), % get the name of the worker
default_action_for_agent(WorkerName, Action), % Prolog computation
out(task(Action)) % produce the default task

)
).
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Such a reaction is triggered whenever an agent invokes the in(task( )) primitive (the
invocation is the triggering event), and both the invocation and from agent guards
evaluate to true given the current state of the tuple centre. The invocation guard
holds true until the operation is actually served – thus before any tuple is actually removed
from the tuple centre –, while the from agent guard holds true only if the invocation
comes from an agent—i.e. not from a tuple centre. Once triggered, the reaction should
abort if some tuple in the form task( ) occurs in the tuple centre because it would
represent an higher-priority task ready to be consumed by the requesting agent. In other
words, the reaction should continue only if no tuple having the aforementioned form
exists within the tuple centre. This is indeed the aim of the no(task( )) line, which
would simply fail if any of such tuples exist. Analogously to Prolog semantics, the failure
of a predicate within some reaction body causes the failure of that reaction as a whole:
ReSpecT failed reactions leave the tuple centre state unchanged, as better explained
below.

The rest of the reaction body simply retrieves the name of the entity provoking the
triggering event, an information which is always available within reaction bodies by
means of the event source/1 predicate, computes the default Action for agent
WorkerName (by means of ACME Inc.’s default action for agent/1 predi-
cate) and schedules a task containing that action—by means of out(task(Action)).

Reactions chaining. If some tuple centre’s behaviour specification contains more than
one reaction, an event may trigger more than one reaction. Moreover, coordination prim-
itives invocations could occur within specification tuples, too, thus further reactions may
be recursively triggered. So, what happens when multiple reactions are triggered (either
directly or recursively) by an event? According to ReSpecT semantics [36], reactions are
executed sequentially in a non-deterministic order, atomically, and with a transactional
semantics. In short, this implies that (i) reactions – triggered within the same tuple centre
– are executed one at a time with no overlapping whatsoever (sequentially), (ii) each reac-
tion either succeeds or fails as a whole (atomically), (iii) a failed reaction causes no effect
at all (they are transactions)—i.e., each side-effect provoked (resp. reaction triggered) by
a failing reaction is reverted (resp. cancelled).

As an example, imagine ACME Inc. is extending its workflow framework with the
capabilities of (i) automatically scheduling a task after another has been accomplished,
(ii) or, automatically requiring a pre-condition task to be accomplished before another is
actually scheduled.

To this end, it endows the todolist tuple centre with the following reactions.

reaction(
out(end(Action)),
completion,
(
rd(doAfter(Action, Next)),
out(task(Next))
)

).

reaction(
out(task(Action)),
completion,
(
rd(doBefore(Action, Prev)),
in(task(Action)),
no(doAfter(Prev, Action)),
out(doAfter(Prev, Action)),
out(task(Prev))
)

).

As in the previous example, the application assumes agents to take charge of a task by con-
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suming the corresponding task(Action) tuple, and to declare their accomplishment
of that task by inserting a end(Action) tuple into the same tuple centre. The leftmost
reaction intercepts the insertion of tuples matching end(Action), i.e., the accomplish-
ment of a task. If a tuple doAfter(Action, Next) exists within the tuple centre,
the reaction produces the corresponding task(Next), otherwise it simply fails leaving
the tuple centre unchanged. Analogously, the rightmost reaction is triggered by the inser-
tion of a newly scheduled task(Action). If a tuple doBefore(Action, Prev)
exists within the tuple centre, the reaction schedules task(Prev) – which should be
accomplished first – and states that task(Action) should be-rescheduled only af-
ter task(Prev) has been accomplished. If no such a tuple exists, the reaction fails
leaving the tuple centre unchanged. The reaction would fail also if a doAfter(Prev,
Action) exists within the same tuple centre. This would leave task(Action) as the
just-scheduled task.

Notice that the rightmost reaction may be triggered by a successful execution of both
the leftmost one and itself—because both reaction bodies have a line matching the right-
most reaction triggering event out(task(Action)). This would be the case, for in-
stance, of a Git-based workflow scenario where tuples doBefore(commit, run
tests) and doBefore(push, commit) both occur within the todolist tuple
centre and someone tries to schedule the push task. The rightmost reaction would be
triggered, thus causing the commit task to be scheduled instead of push, and the tu-
ple doAfter(commit, push) to be produced. Again, the rightmost reaction would
be triggered by the scheduling of task commit, causing the run tests task to be
scheduled instead, and the doAfter(run tests, commit) tuple to be produced.
Then, once the tests have been successfully executed and the end(run tests) tu-
ple published, the leftmost reaction would be triggered, removing the end tuple and
producing the task(commit) one. Of course, this would trigger the rightmost re-
action again, which is undesirable since it would prevent the ‘commit’ task to be
scheduled. But this time, the no(doAfter(Prev, Action)) would make the right-
most reaction fail, reverting all side effects it caused—such as that stemming from line
in(task(Action)).

The mechanism exemplified above is called “reaction chaining”, and enables the im-
plementation of expressive and flexbile event-driven coordination in TuCSoN [34].

Meta-coordination primitives. Agents interacting through TuCSoN tuple centres can
dynamically manipulate the set of reactions characterising a tuple centre behaviour by
means of meta-coordination primitives. Such primitives – with both their suspensive and
predicative variants – are aimed at dynamically inserting (out s), consuming (in s and
inp s), reading (rd s and rdp s) or checking for absence of (no s and nop s) spec-
ification tuples within the tuple centre they are invoked upon. Similarly to specification
tuples, meta-coordination primitives are ternary predicates in the form

〈MetaPrimitive〉(〈Event〉, 〈Guards〉, 〈Body〉)
which can be invoked either by the agents or by tuple centres themselves, within other
reactions bodies.

In particular, meta-coordination primitives can be used within ReSpecT programs to
postpone the “activation” of some reaction by lazily inserting the corresponding specifi-
cation tuple with the out s primitive, or “deactivating” some other reaction by removing
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the corresponding specification tuple with the in s primitive. Of course, other usage sce-
narios are supported, too, such as checking whether a reaction for a given event exists
(by means of rd s) or not (by means of no s), or reacting to the insertion/removal of
some specification tuple, thus providing great malleability of both the tuple centre and its
behaviour.

ReSpecT shortcomings. The ReSpecT Virtual Machine (VM henceforth) is the Prolog-
based engine responsible for on-the-fly interpretation (triggering, evaluation, and exe-
cution) of specification tuples, which may be either statically programmed by human
developers at design-time, or injected into a running TuCSoN system through meta-
coordination primitives, either by coordinating agents or tuple centres themselves. Stat-
ically programmed specifications must be grouped into a single, monolithic behaviour
specification file which can be loaded onto a tuple centre, removing any previously exist-
ing specification tuple from that tuple centre—thus replacing its behaviour. Conversely,
dynamic injection of specification tuples into a tuple centre may occur at any time by
means of the aforementioned meta-coordination primitives.

Despite ReSpecT being a Turing-powerful language [22] capable of capturing most
of other coordination models and actively exploited in a number of academic and indus-
trial projects [20,23], the lack of features typical of mainstream programming languages
– e.g., modularity, composability, concise syntax, debugging support etc. –, the lack of
a suitable toolchain assisting developers through the code-debug-fix loop, as well as the
lack of a library providing reusable and composable implementations of well-established
coordination mechanisms – such as publish-subscriber services – hinders its diffusion and
adoption in industrial environments. Indeed, until now, even if every interaction pattern
could be virtually implemented by properly programming TuCSoN tuple centres with
ReSpecT, developers should re-implement basic mechanisms from scratch over and over
again.

Accordingly, in the following section we present the ReSpecTX language, toolchain,
and standard library. ReSpecTX is an extension of ReSpecT dealing with the aforemen-
tioned issues by re-designing the language to support both modularity and a more concise
syntax, and providing suitable IDE tools aimed at intercepting programming issues as
soon as possible (e.g., by means of static-checking and IDE integration).

Related work. ReSpecT – thus ReSpecTX – shares features with other approaches
exploiting some form of Event-Condition-Action (ECA) rules.

For instance, within the scope of Event-Based Systems [25], ECA rules represent a
well established pattern for expressing the business logic of a component. ECA rules are
essentially triplets having the form “When 〈Event Type〉 occurs, If 〈Condition〉
holds, Perform 〈Action〉”. It is evident that ReSpecT reactions do adhere to this pat-
tern: event types correspond to TuCSoN primitives, conditions to guards, and actions to
arbitrary ReSpecT / Prolog computations.

ReSpecT reactions also presents analogies with Complex-Event-Processing (CEP)
systems [31], where the ability to capture events and generate new ones in response are
of primary importance. What ReSpecT lacks w.r.t. CEP systems is a first-class support
for event-related operators such as after, before, coincides, during, and so on, which are
formally defined in [2], and generally employed within CEP systems to recognise complex
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events. Nevertheless, it is easy to build such operators using ReSpecT itself—as shown
by the above examples in ReSpecT.

Finally, it may be argued that ReSpecT reactions are really close to AgentSpeak(L)
[43] plans, whose purpose is, i.e., to handle believes addition / removal from BDI agents’
belief base. Nevertheless, their target is very different: whereas the former are meant
to program a tuple centre, that is, the coordination artefacts governing the interactions
between agents, the latter are intended to program BDI agents—that is, the proactive
entities interacting with each other [38].

3. ReSpecTX: eXtended ReSpecT

ReSpecTX empowers ReSpecT with a few crucial features, enhancing the language
itself and adding the necessary tooling, thoroughly described in the upcoming subsections.

Modularity — Unlike ReSpecT monolithic files, ReSpecTX program definitions can
be split into different modules to be imported in a root specification file, enabling and
promoting code decomposition and reuse as well as development of code libraries

Development tools — ReSpecTX programs are written through an editor distributed
as an Eclipse IDE plugin, featuring syntax highlighting, static error checking, code
completion, and code generation of ReSpecT specification files and Prolog theories

Syntactic sugar — ReSpecTX adds special guard predicates testing presence/absence
of tuples without side effects (e.g., actual consumption of tuples), and adopts a more
concise syntax, stressing the procedural semantics of reaction bodies, for the benefit
of developers not familiar with declarative languages such as Prolog

Standard library — ReSpecTX comes with a standard library of modules implement-
ing general purpose coordination mechanisms, utilities, and interaction patterns eas-
ing, for instance, the creation of networks of tuple centres, the spreading of tuples
over such networks, the exploitation of a tuple centre as a publish-subscribe service,
the scheduling of delayed or periodic activities, etc.

It is worth to highlight how ReSpecT remains the underlying language actually ex-
ploited for coordination by the TuCSoN middleware. Indeed, ReSpecTX comes with
a code generator – automatically invoked by the Eclipse IDE – aimed at producing a
low-level monolithic ReSpecT specification file. This way, the TuCSoN infrastructure
has not been modified at all, and ReSpecTX is totally interoperable with legacy Re-
SpecT specifications. Though still in beta stage and not yet available as a stand-alone
Eclipse distribution, the ReSpecTX development project is already publicly available as
open source code6 – installation instructions are also provided –, allowing a test IDE to
be experimented. Fig. 3 shows a screenshot of the Eclipse environment. Notice that both
ReSpecTX and ReSpecT languages are supported.

3.1. Syntax overview

A ReSpecTX script consists of a single file containing a 〈Module〉 definition. Modules
are of two sorts: library modules, conceived to be reused by other modules, and specifi-
cations. Both contain the definition of the 〈Reaction〉s implementing the coordination

6 http://bitbucket.org/gciatto/respectx

http://bitbucket.org/gciatto/respectx
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Fig. 3. The Eclipse IDE supporting the development of ReSpecTX programs (on the
left). Generated ReSpecT code (on the right) is editable too.

mechanisms and policies to achieve a given goal in a specific application domain. In both
cases, the script must provide a qualified name enabling both its identification and local-
ization within the file system, analogously to Java packages and class names.

Each module may declare an arbitrary number of reactions as well as Prolog clauses
(〈PrologExpression〉). This implies that a module may contain arbitrary logic theo-
ries which can be exploited within reaction bodies to implement interaction rules. Finally,
in the same way as in ReSpecT, ReSpecTX reactions have a triggering 〈Event〉 (e.g.,
the invocation of some primitive or the local time reaching a given instant), an optional
〈Guards〉 expressing conditions about the current state of the tuple centre, or the Re-
SpecT VM, or the event itself, and a 〈Body〉 composed by ReSpecT primitives invoca-
tions or Prolog predicates / functors calls.

Table 1 below shows a detailed description of ReSpecTX grammar. The most inter-
esting features are thoroughly discussed in the following subsections.

3.2. Modularity, re-usability, composability

The ReSpecT VM expects reactions to be loaded on a tuple centre as a single monolithic
script. Consequently, the development of non-trivial coordination logic in ReSpecT is
often uncomfortable and error-prone due to the size of the specification script. Moreover,
developers wanting to reuse their tested and correctly working reaction set can only rely
on copy & paste. ReSpecT in fact provides no linguistic abstraction to partition specifi-
cations. Even if further reactions can be dynamically added to (or removed from) a tuple
centre by means of meta-coordination primitives, reusability is nonetheless hindered.

ReSpecTX overcomes such a limitation by providing two explicit scoping mecha-
nisms at the language level: modules and specifications. ReSpecTX library modules –
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Table 1. ReSpecTX language grammar

〈Module〉 ::= module 〈QualifiedName〉 { 〈ModuleBody〉 }
| specification 〈QualifiedName〉 { 〈ModuleBody〉 }

〈ModuleBody〉 ::= include 〈QualifiedName〉
| 〈PrologExpression〉 .
| 〈Reaction〉
| 〈ModuleBody〉 〈ModuleBody〉

〈Reaction〉 ::= 〈OptVirtual〉 reaction 〈OptName〉 to 〈Body〉
〈OptName〉 ::= ε | @〈ReactionName〉(〈PrologVarList〉)

〈OptVirtual〉 ::= ε | virtual
〈InlineReaction〉 ::= reaction 〈Body〉

| @〈ReactionName〉(〈PrologCode〉)
〈Body〉 ::= 〈Event〉 { 〈PrologCode〉 }

| 〈Event〉 : 〈Guards〉 { 〈PrologCode〉 }

〈Event〉 ::= 〈PrimitiveExecution〉
| time 〈Instant〉

〈PrimitiveExecution〉 ::= 〈Primitive〉 〈TupleTemplate〉 〈OptReturning〉
〈OptReturning〉 ::= ε | returning 〈ListTemplate〉

〈Primitive〉 ::= out | rd | rdp | in | inp | no | nop
| urd | urdp | uin | uinp | uno | unop
| out all | in all | rd all | no all | out s
| rd s | rdp s | in s | inp s | no s | nop s

〈Guards〉 ::= 〈Guard〉 | 〈Guard〉, 〈Guards〉
〈Guard〉 ::= ?〈TupleTemplate〉 | !〈TupleTemplate〉

| invocation | completion | success
| failure | endo | exo

〈PrologCode〉 ::= 〈PrimitiveInvocation〉
| 〈ObservationAtom〉
| 〈PrologExpression〉

〈ObservationAtom〉 ::= 〈ObservationView〉 〈ObservationInfo〉
〈ObservationView〉 ::= current | event | start
〈ObservationInfo〉 ::= predicate | tuple | source | target | time

〈PrimitiveInvocation〉 ::= 〈Primitive〉 〈TupleTemplate〉 〈OptReturns〉
〈OptReturns〉 ::= ε | returns 〈ListTemplate〉
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declared by means of the module keyword – are meant to wrap logically-related reac-
tions and Prolog predicates within the same file, together providing general-purpose and
reusable behaviours. Of course, each module may rely on pre-existing ones to provide its
functionalities. For instance, in the following sections we show how a module implement-
ing tuple dissemination over a network of tuple centres can be built on top of the module
providing interconnection facilities.

More precisely, a module definition contains an arbitrary number of (i) statements
of the form include 〈QualifiedName〉, recursively importing all the reactions de-
fined in the referenced module into the current one; (ii) Prolog facts and rules providing
the computations needed to realize potentially articulated behaviours; (iii) reactions, re-
alising the coordination policies provided by the module. ReSpecTX applications are
wrapped within a single file – declared with the specification keyword – that the
ReSpecTX compiler parses and translates into the aforementioned monolithic file ex-
pected by the ReSpecT VM, by composing all the ReSpecTX reactions defined therein
and in each included module. The above mechanisms straightforwardly support modular-
ity, by enabling the creation of libraries of modules implementing general coordination
mechanisms and policies suitable to be used, and composed together, in different contexts.

To support those scenarios where an additional behaviour must be injected into some
tuple centre as a response to an external event, reactions can be dynamically inserted
by means of meta-coordination primitives, as already mentioned. This soon leads to a
problem analogous to the callback-hell7, making the specification code difficult to read,
understand, and debug. To prevent such issues, reactions in ReSpecTX can be declared
as virtual—which implies they must provide a name. Virtual reactions are explicitly
meant to be referenced as the actual argument of meta-coordination primitives. They pro-
vide no behaviour until they are “activated” by an out s. The combination of virtual
and referenceability helps avoiding spaghetti-code in reactions, thus improving their read-
ability. Besides names, virtual reactions may specify unbound variables as formal argu-
ments, making their behaviour parametrizable.

As an example, suppose a malicious developer wants to hack ACME Inc.’s workflow
system enabling employees to silently delegate their personal tasks to their colleagues,
possibly promising something in return. The hacker guesses that EmployeeName’s per-
sonal tasks are in the form personal task(Action, EmployeeName) and that
their execution is acknowledged by tuples in the form end(Action, Employee-
Name). Then, he/she simply injects the following reactions into the todolist tuple
centre (the ReSpecT version is shown on the left, the ReSpecTX version on the right):

7 http://callbackhell.com/

http://callbackhell.com/
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reaction(
out(delegate(E, D)),
(completion, from_agent), (

in(delegate(E, D),
out_s(

out(personal_task(A, E)),
completion, (
in(personal_task(A, E)),
out(personal_task(A, D))

)
),
out_s(

out(end(A, D)),
completion, (
in(end(A, D)),
out(end(A, E))

)
)

)
).

reaction to out delegate(E, D)
: completion, from_agent {
in delegate(E, D),
out_s @del_schedule(E, D),
out_s @del_done(E, D)

}

virtual reaction @del_schedule(E, D)
to out personal_task(A, E) : completion {
in personal_task(A, E),
out personal_task(A, D)

}

virtual reaction @del_done(E, D)
to out end(A, D) : completion {
in end(A, D),
out end(A, E)

}

Such a reaction (on the left) enables an employee E to delegate his/her tasks to someone
else (D), by outing a tuple in the form delegate(E, D). To do so, the reaction dy-
namically specifies two more reactions by means of the out s meta-coordination prim-
itive: the first one states what should happen whenever a personal task(A, E) is
scheduled targeting E, while the second one states what should happen once the delegate
D acknowledges the execution of the task with end(A, D). In the former case, the task
is re-scheduled in order to target D, and the original schedule is removed. In the latter
case, the acknowledgement of D is replaced with another one, end(A, E), targeting E.

The ReSpecTX variant of this reaction (on the right) is more compact and concise,
leveraging on two virtual and named reactions whose only purpose is to be referenced as
the argument of the aforementioned out s meta-coordination primitive.

3.3. Toolchain: static-checking, code completion, code generation

ReSpecT lacks development tools: thus, for instance, ReSpecT programmers become
aware of syntactic or semantic errors only at run-time, by receiving a failure response
when trying to load an incorrect specification file. More subtly, syntactically correct but
inconsistent specifications – containing, e.g., a reaction having contradictory guards –
would be silently accepted. ReSpecTX overcomes the issue by empowering ReSpecT
with Eclipse IDE integration (in the form of a plugin) featuring static-checking, code
completion, and generation.

The Eclipse IDE plugin is implemented by exploiting the Xtext framework8, which
provides a few handy features common in mainstream programming languages, such as
syntax coloring, code completion, static-checking while writing code, and automatic gen-
eration of ReSpecT code—there included Prolog predicates and functors. Syntax colour-
ing and code completion straightforwardly move ReSpecTX closer to mainstream pro-
gramming languages. The static-checker needs some deeper discussion, stemming from
the peculiarities of tuple-based coordination languages and of declarative languages too.
For instance, in declarative untyped languages such as Prolog there is no declaration phase
regarding variables: they are simply used when required. This complicates spotting com-
mon problems such as useless variables. Further complicating things, for tuple-based co-

8 http://eclipse.org/Xtext/

http://eclipse.org/Xtext/
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ordination languages understanding what is admissible, useful, or even meaningful at the
language level heavily depends on the state of the tuple centre when the reaction specifi-
cation is executed: for instance, attempting to consume a tuple when no matching one is
available cannot be checked statically. For the above reasons, the amount of checks that
can be done are limited w.r.t. traditional programming languages.

ReSpecTX IDE now detects: (i) repeated reactions within the same specification,
i.e., reactions triggered by the same triggering event and enabled by the same guards;
(ii) inconsistent temporal constraints; (iii) bad-written URLs or TCP port numbers (e.g.,
reserved ones); (iv) singleton variables within a reaction, that is variables appearing only
once, which may hide a typo; (v) contradictory ReSpecT guards preventing reaction
execution regardless of the context, as defined in table below:

Reference Guard Contradictory Guard Condition
invocation completion —

endo exo —
intra inter —
success failure —

from agent from tc —
to agent to tc —

before(T1) after(T2) T1 >= T2
?X !Y X = Y, ground(X)

Indeed, a reaction declared with both guards invocation and completion is worth-
less, because it would be enabled only if the ReSpecT VM is simultaneously in two
mutually exclusive phases, which is impossible. The same rationale drives the function-
ing of the static-checker w.r.t. other contradictory guards. The last rows of the table above
prevents developers from writing inconsistent temporal constraints and looking for both
the presence of a tuple and its absence.

3.4. Syntax enhancements

ReSpecT declarative syntax – inherited from the Prolog programming language – may
be considered both a blessing and a curse. Despite declarativity being often a desirable
feature in programming languages, stressing what computations should do instead of how
to do it, Prolog syntax can easily become verbose, especially when the same set of com-
putation must be performed on lists of tuples. Moreover, the procedural interpretation of
Prolog code is particularly evident within ReSpecT reaction bodies, where order of side
effects performed on the local tuple centre is indeed relevant and not negligible. Accord-
ingly, ReSpecTX provides an hybrid style syntax in order to be more handy to write and
easier to read:

– primitive invocations are unary prefix operators: out T equals out(T)
– identifiers of TuCSoN tuple centres have a human-readable syntax
– the if C then T else F construct is introduced as a more familiar alternative

to Prolog’s (C -> T ; F) expressions in order to easily provide branching com-
putations within reaction bodies

– ReSpecT’s observation predicates – such as event time/1, event source/1,
etc. – become context-sensible atoms in ReSpecTX. This makes inspecting the reac-
tion context more handy. For instance, the following ReSpecT reaction (on the left)
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– used to log the insertion of tuples matching some(Template) – appears far less
concise than its ReSpecTX counterpart (on the right)

reaction(
out(some((Template)),
true, (
event_time(Time)
event_predicate(Pred),
event_tuple(Tuple),
event_source(Source),
event_target(Target),
log(Time, Pred, Tuple, Source,
Target)

)
).

reaction to out some(Template) {
log(event_time,
event_predicate,
event_tuple,
event_source,
event_target)

}

– The procedural nature of ReSpecTX reactions is stressed by their syntax. For in-
stance, the following snippet shows the ReSpecTX version of the reaction allowing
agents to infinitely consume a default task when they are idle (presented in Subsec-
tion 2.2):

reaction @idle_task
to in task(_) : invocation, from_agent, !task(_) {

default_action_for_agent(event_source, Action),
out(task(Action))

}

The reaction name is meant to be referenced likewise java method names, and the
reaction body is delimited by curly braces to syntactically group the part of the spec-
ification subject to procedural interpretation (as for Java methods’ body). In between
lies the triggering event along with the (optional) list of guards: the former not only
decides when to trigger the reaction, but also enables to bind variables to actual values
– through Prolog unification mechanism – thus may map to a Java method invocation
(there including parameters), whereas the latter is peculiar of ReSpecT and has no
intuitive mapping with mainstream programming languages. Summing up, the reac-
tion name alongside with the triggering event and the guards constitute altogether
the “method signature” of a ReSpecTX specification, playing a similar role of Java
methods’ signature

Furthermore, ReSpecTX also provides some syntactic sugar reducing the boilerplate
code w.r.t. ReSpecT specifications. For instance, special guards checking the presence
(?〈TupleTemplate〉) or absence (!〈TupleTemplate〉) of a tuple are provided. In
the near future, we plan to extend the set of available special guards with arbitrary predi-
cates about the state of the local tuple centre.

4. ReSpecTX standard library

In the following subsections we focus on ReSpecTX modularity feature to showcase
how reusability of reactions is straightforwardly enabled by encapsulation and composi-
tion. Accordingly, we introduce some modules from the ReSpecTX Standard Library9

9 https://bitbucket.org/gciatto/respectx-standard-library

https://bitbucket.org/gciatto/respectx-standard-library
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briefly describing their functioning and the use case they target. Then we show how sim-
ple behaviours, provided by the aforementioned modules, can be composed into more
articulated ones by means of ReSpecTX features.

Other ready-to-use ReSpecTX modules are available in the standard library – e.g.,
logging predicates supporting reaction debugging, functional-like predicates easing data
manipulation, or fork-join facilities for processes coordination – while others are currently
under development and testing.

4.1. Building reusable mechanisms

We now describe a number of ReSpecTX modules encapsulating the logic for some ba-
sic mechanisms – such as scheduling of periodic activities, handling tuples multiplicity,
interconnecting tuple centres to form a network, or exploiting a tuple centre as a publish-
subscribe service – provided as ready-to-use coordination laws from the ReSpecTX stan-
dard library.

Scheduling periodic activities. Listing 1.1 shows the ReSpecTX code implementing
module rsp.timing.Periodic, making it possible to schedule a periodic activity,
which is a building block for several distributed design patterns, i.e., decay or resilient
spreading [24].

1 module rsp.timing.Periodic {
2

3 reaction to
4 out start_periodic(Period, Activity) : exo, completion {
5 in start_periodic(Period, Activity),
6 if no periodic_context(_, _, Activity) then (
7 out periodic_context(Period, 0, Activity),
8 out tick(Activity)
9 )

10 }
11

12 reaction to
13 out tick(Activity) : endo, ?periodic_context(Period, _, Activity) {
14 in tick(Activity),
15 NextTickInstant is Period + current_time,
16 out_s @next_tick(NextTickInstant, Activity)
17 }
18

19

20 virtual reaction @next_tick(T, A) to
21 time(T) : endo, ?periodic_context(_, TickNumber, A) {
22 in periodic_context(Period, TickNumber, A),
23 NextTickNumber is TickNumber + 1,
24 out periodic_context(Period, NextTickNumber, A),
25 out A,
26 out tick(A)
27 }
28

29 reaction to out stop_periodic(Activity) : exo, completion {
30 in_all stop_periodic(Activity),
31 in_all periodic_context(_, _, Activity),
32 in_all tick(Activity)
33 }
34

35 }

Listing 1.1. The Periodic module
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Activities are represented by an Activity tuple: the module takes care of emitting
the Activity tuple once every Period milliseconds; then, if a reaction has tuple
out(Activity) as triggering event, its body would be executed periodically. By pro-
ducing a tuple of kind start periodic(Period, Activity) (or, respectively,
stop periodic(Period, Activity)), the periodic activity is started (resp. stopped)
causing

– reification of a periodic context (if none already exists) tracking the period,
number of executions carried out, and the Activity tuple—to allow for several
periodic activities to be executed concurrently

– emission of the tick(Activity) tuple to trigger scheduling of the next insertion,
thus creating the desired loop—through insertion of a new instance of the virtual
reaction next tick

Whenever next tick is executed: (i) the periodic context is updated; (ii) the
Activity tuple is emitted; (iii) and a tuple tick(Activity) is emitted to (re)trigger
the loop.

For instance, if an organisation leveraging on ACME Inc.’s workflow system wants
to schedule the ‘cleanup building’ task once per day, it must simply insert a
start periodic(86400000, task(cleanup building))10 tuple within the
todolist tuple centre on system deploy. In this case, the Activity tuple to be gen-
erated once per day has the form task(cleanup building).

Decorating tuples with multiplicity. There are application contexts where it is conve-
nient to decorate tuples with their multiplicity, increasing performance of getter opera-
tions; for instance, in the case tuple spaces are used as biochemical solutions simulators
[29]. There, tuples are considered as molecules floating in a chemical solution (the tu-
ple centre), tuple templates as chemical species, and multiplicity of tuples their chemical
concentration.

Listing 1.2 shows the rsp.biochemical.Concentration module, providing
library support to such a form of decorated tuples: (i) the tuple centre is forced to behave
like a set instead of a multi-set for tuples matching the conc(Tuple) template, which
are stored as conc(Tuple, Concentration); (ii) whenever a tuple conc(Tuple)
is emitted (resp. consumed) the corresponding Concentration is increased (resp. de-
creased).

Essentially, the module makes ordinary TuCSoN primitives (e.g., out, in, rd, no,
etc.) conform to their usual contract despite tuples’ decoration:

– if a species conc(Tuple) already exists, a tuple conc(Tuple, Concentration)
and exactly one copy of conc(Tuple) are stored until Concentration≤ 0—so
as to make rd, rdp, no, and nop function as usual. An invocation of either inp or
in conc(Tuple) would just decrease the Concentration value

– if Concentration ≤ 0 for a given species no conc(Tuple) tuple is stored,
to preserve usual functioning of rd, rdp, no, and nop. An invocation of inp
conc(Tuple) would fail, whereas invoking in conc(Tuple) would decrease
the Concentration of that species while tracking down waiting agents

10 1 day = 24× 60× 60× 1000ms = 86.400.000ms



ReSpecTX: Programming Interaction Made Easy 673

1 module rsp.biochemical.Concentration {
2

3 put_one(Tuple) :-
4 if no conc(Tuple, _) then
5 out conc(Tuple, 1)
6 else if in conc(Tuple, CurrentConcentration) then (
7 NextConcentration is CurrentConcentration + 1,
8 out conc(Tuple, NextConcentration),
9 if (NextConcentration > 1) then in conc(Tuple)

10 ) else fail.
11

12 reaction to out conc(Tuple) : completion, exo {
13 put_one(Tuple)
14 }
15

16 reaction to in conc(Tuple) : invocation, exo {
17 if no conc(Tuple, _) then (
18 out conc(Tuple, -1)
19 ) else if in conc(Tuple, CurrentConcentration) then (
20 NextConcentration is CurrentConcentration - 1,
21 out conc(Tuple, NextConcentration),
22 if (NextConcentration > 0) then
23 out conc(Tuple)
24 ) else fail
25 }
26

27 remove_one_if_any(Tuple) :-
28 if in conc(Tuple, CurrentConcentration) then (
29 if (CurrentConcentration > 0) then (
30 NextConcentration is CurrentConcentration - 1,
31 out conc(Tuple, NextConcentration),
32 in_all conc(Tuple),
33 if (NextConcentration > 0) then
34 out conc(Tuple)
35 )
36 ).
37

38 reaction to in conc(Tuple) : completion, exo {
39 remove_one_if_any(Tuple)
40 }
41

42 }

Listing 1.2. The Concentration module

Dynamically creating a network of tuple centres. A notion of neighborhood for a tu-
ple centre can be introduced by making it aware of other tuple centres. To this purpose
we propose the rsp.net.Neighborhoodmodule, shown in Listing 1.3, which essen-
tially makes the conventions adopted to build a connection between any two tuple centres
explicit, and provides a simple protocol enabling an agent to stimulate such a connection.

More precisely, we assume that a tuple centre Name1 @ Address1 : Port1 is
connected to another tuple centre Name2 @ Address2 : Port2 if the latter one
contains a tuple nbr(Name1, Address1, Port1). So, for the connection to be
symmetric there must exist a tuple nbr(Name2, Address2, Port2) on the for-
mer one, too. A connection from a tuple centre to another may be interrupted simply by
removing the reference to the latter from the former, by means of an ordinary in. We also
assume that each tuple centre composing the network contains a tuple self(MyName,
MyAddress, MyPort), making the tuple centre aware of its own identity. Under
such hypotheses, the neighborhood/1 predicate can be employed by reaction bod-
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ies to retrieve the current list of neighbours of the tuple centre evaluating it, whereas the
out to all/2 can be used to insert a given tuple on a number of tuple centres.

1 module rsp.net.Neighborhood {
2 neighborhood(Neighbors) :-
3 rd_all nbr(_, _, _) returns Neighbors.
4

5 self(MyName, MyAddress, MyPort) :-
6 rdp self(MyName, MyAddress, MyPort).
7

8 neighbor(’@’(TCName, ’:’(Address, Port)), nbr(TCName, Address, Port)).
9 neighbor(’@’(TCName, Address), nbr(TCName, Address, 20504)).

10 neighbor(TCName, nbr(TCName, "localhost", 20504)).
11

12 out_to_all(_, []).
13 out_to_all(Tuple, [nbr(TCName, Address, Port) | Others]) :-
14 out Tuple on TCName @ Address : Port,
15 out_to_all(Tuple, Others).
16

17 reaction to out want_connect(TupleCenter)
18 : exo, from_tc, completion, ?self(N, A, P) {
19 in_all want_connect(TupleCenter),
20 neighbor(TupleCenter, Neighbor),
21 in_all Neighbor,
22 out Neighbor,
23 out nbr(N, A, P) on TupleCenter
24 }
25

26 reaction to out connect_to(TupleCenter)
27 : completion, from_agent, ?self(N, A, P) {
28 in_all connect_to(TupleCenter),
29 neighbor(Me, nbr(N, A, P)),
30 out want_connect(Me) on TupleCenter
31 }
32 }

Listing 1.3. The Neighborhood module

A tuple centre Name @ Address : Port may request a connection to another one
by sending tuple want connect(Name @ Address : Port). Any tuple centre
receiving a tuple of such a sort, reacts by producing a local nbr(Name, Address,
Port) tuple, reads for its self(MyName, MyAddress, MyPort) tuple, and sends
back a nbr(MyName, MyAddress, MyPort) to the tuple centre which started the
connection protocol.

An agent may make a tuple centre Name1 @ Address1 : Port1 start a connec-
tion protocol with another tuple centre Name2 @ Address2 : Port2 by invoking
out connect to(Name2, Address2, Port2) on Name1 @ Address1 :
Port1. In this case, the former tuple centre would react by outing a tuple want
connect(Name1, Address1, Port1) on the latter one, thus beginning the in-
terconnection protocol.

Tuple centres as publish-subscribe intermediaries. TuCSoN tuple centres can be pro-
grammed to work as persistent brokers in the publish-subscribe (pub-sub from now on)
interaction pattern. Agents in a pub-sub architecture may play two roles: publishers or
subscribers. Publishers are in charge of perceiving event occurrences and publish their
notifications to the rest of the system, regardless of other agents actually being interested
in such information. Subscribers may be interested in one (ore more) particular class of
event notifications, so they just subscribe to that class and then wait for notifications of
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1 module rsp.interaction_patterns.PublishSubscribe {
2

3 reaction to out subscribe(Topic) : completion, from_agent {
4 in_all subscribe(Topic),
5 in_all subscription(Topic, event_source),
6 out subscription(Topic, event_source)
7 }
8

9 reaction to out publish(Fact) : completion, from_agent {
10 in_all publish(Fact),
11 rd_all subscription(Fact, _) returns Subscriptions,
12 store_publications(Fact, Subscriptions)
13 }
14

15 reaction to out publication(F, A) : endo, ?waitfor(F, A) {
16 in waitfor(F, A),
17 in publication(F, A),
18 out notify(F)
19 }
20

21 reaction to in notify(Fact) : invocation, from_agent {
22 if rd publication(Fact, event_source) then (
23 in publication(Fact, event_source),
24 out notify(Fact)
25 ) else (
26 out waitfor(Fact, event_source)
27 )
28 }
29

30 store_pub(Fact, subscription(Fact, Recipient)) :-
31 out publication(Fact, Recipient).
32

33 store_pub(_, subscription(_, _)).
34

35 store_publications(_, []).
36 store_publications(F, [S | Ss]) :-
37 store_pub(F, S),
38 store_publications(F, Ss).
39

40 }

Listing 1.4. The PublishSubscribe module

interest, regardless of the agents publishing them. If the system provides a persistent bro-
kering service, subscribers need not to be on-line when event notifications are published.

The rsp.interaction patterns.PublishSubscribemodule implements
a persistent pub-sub mechanism that can be used to make a brokering service out of a
TuCSoN tuple centre. The module script is shown in Listing 1.4, and the way it works is
described below.

The PublishSubscribe module expects publishers to publish facts on a tuple
centre by outing a tuple having the form publish(Fact), where Fact is an event
notification payload. Analogously, subscribers can subscribe to a particular event noti-
fication template Topic by outing a tuple having the form subscribe(Topic).
Whenever a Fact is published, the tuple centre would store a notification for each sub-
scriber whose Topic is matching that Fact. As soon as a subscriber is ready to handle
the next notification, it can retrieve it by invoking in notify(Topic). If a match-
ing fact had already been published, the subscriber consumes it, otherwise its request is
suspended until some is published.
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More precisely, the PublishSubscribe module makes the tuple centre intercept
productions of tuples matching subscribe(Topic), replacing them with tuples in
the form subscription(Topic, Agent), where Agent is the subscriber’s name.
The tuple centre also intercepts the production of tuples matching publish(Fact),
replacing it with as many publication(Fact, Recipient) tuples as the amount
of tuples matching subscription(Fact, Recipient) contained into the tuple
centre and as many notify(Fact) as the number of subscribers waiting for their in
notify(Fact) invocation to be handled. In this way, whenever a subscriber invokes
in notify(Fact), it will eventually retrieve the notification of published events it is
interested in (if any is ever published).

4.2. Articulated behaviours as composition of mechanisms

We now show a few examples of articulated behaviours achieved by means of modules
composition, like for instance the “decay” module, consuming tuples periodically to de-
crease their relevance over time, or the “spreading” module, diffusing tuples over a net-
work of tuple centres. The two newly-created modules, despite producing an articulated
behaviour, still appear to have a very concise representation thanks to ReSpecTX con-
structs allowing reuse of pre-existing modules.

Information relevance decaying with time. As a simple yet paradigmatic example of
reusability through encapsulation and composition, the rsp.biochemical.Decay
module shown in Listing 1.5 implements the “decay” mechanism often found in nature-
inspired and/or adaptive coordination models [39] whenever the relevance of some infor-
mation must decrease as time progresses. It relies on the other modules just described:
periodically, tuples are consumed regardless of whether they are either individual or dec-
orated ones.

The module works as follows: (i) either an agent or a tuple centre emits the start
periodic(Period, decay(Template)) tuple to trigger periodic emission of the-
rein defined tuple decay(Template); (ii) such a tuple represents an activity to be
performed once every Period milliseconds, namely decaying the multiplicity of all
tuples matching the provided template; (iii) the tuple centre reacts to the insertion of
the decay(Template) tuple by reducing the concentration of decorated tuples, if
Template = conc(Tuple), or by consuming a tuple matching Template, oth-
erwise.

1 module rsp.biochemical.Decay {
2 include rsp.biochemical.Concentration
3 include rsp.timing.Periodic
4

5 decay_one(conc(Tuple)) :- remove_one_if_any(Tuple).
6 decay_one(Something) :- in Something.
7

8 reaction to out decay(Something) {
9 inp decay(Something),

10 decay_one(Something)
11 }
12

13 }

Listing 1.5. The Decay module
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Spreading tuples over a network of tuple centres. The rsp.net.Spreading mod-
ule, shown in Listing 1.6, implements a simple “spreading” mechanism based on the
aforementioned interconnection capabilities provided by the rsp.net.Neighborhood
module.

1 module rsp.net.Spreading {
2 include rsp.net.Neighborhood
3 include rsp.biochemical.Concentration
4

5 produce_one(conc(Tuple)) :- put_one(Tuple).
6 produce_one(Something) :- out Something.
7

8 reaction to out spreading(Tuple) : exo, invocation {
9 if no spreading(Tuple) then (

10 produce_one(Tuple),
11 neighborhood(Neighbors),
12 out_to_all(spreading(Tuple), Neighbors)
13 ) else (
14 in_all spreading(Tuple)
15 )
16 }
17 }

Listing 1.6. The Spreading module

The module makes the tuple centre react to the insertion of a spreading(Tuple)
tuple, by leveraging the out to all/2 and neighborhood/1 predicates mentioned
above. The reaction is in charge of sending a copy of spreading(Tuple) tuple to
each tuple centre composing the local neighbourhood, and of creating a local copy of
Tuple. The reaction has no side effects if a spreading(Tuple) tuple already exists
within the tuple centre when a newer one is received. So, the occurrence of a tuple of
the form spreading(Tuple) is the termination condition for the spreading process
of Tuple over a network of tuple centres with an unknown topology.

Again, we provide an implementation of the “spreading” mechanism transparently
supporting either decorated or ordinary tuples. In the decoration case, the spreading af-
fects tuples concentration, increasing it, whereas the effect for ordinary tuples is a greater
multiplicity.

The reader may have noticed how such a module actually implements a fragile spread-
ing mechanism. In fact, since the diffusion of information only occurs once – i.e., after
a tuple matching spreading(Tuple) has been inserted into (any node of) a network
of tuple centres –, only those tuple centres which are currently on line eventually receive
the information spread. ReSpecTX easily enables developers to implement a “resilient
spreading” mechanism – continuously diffusing information on the network – by compos-
ing the aforementioned rsp.net.Spreading and the rsp.timing.Periodic
modules. One may imagine, for instance, to replace the reaction in Listing 1.6 with the
following lines:
include rsp.timing.Periodic

reaction to out spreading(Tuple) : endo {
if no spreading(Tuple) then (

produce_one(Tuple),
) else (

in spreading(Tuple)
)
neighborhood(Neighbors),
out_to_all(spreading(Tuple), Neighbors)

}
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reaction to out spreading(Tuple) : exo, invocation, !spreading(Tuple) {
out start_periodic(1000, spreading(Tuple))

}

The two reactions above are enough to make the spreading mechanism resilient: whenever
an external agent initiates a spreading process by outing a spreading(Tuple), a
periodic activity is started causing the Tuple information to be actually spread on the
neighbourhood, once per second. So, even if some node in the neighbourhood is not
currently on-line, it will eventually receive the information spread within a few seconds
after its re-connection.

In a similar way, the ReSpecTX standard library supports and encourages composi-
tion of the modules mentioned in this section to build increasingly complex coordination
pattern, from the more classic message-passing or publish-subscribe ones, to the bio-
inspired, pheromone-based, or stigmergic ones—as classified in [24].

5. Conclusions and Further Work

In this paper we presented the ReSpecTX language, toolchain, and standard library for
programming the interaction space of distributed systems, aimed at closing the gap be-
tween the conceptual advancement of coordination languages and their technological ma-
turity, so as to promote their widespread adoption. To this end, ReSpecTX has been
equipped with a few crucial features paving the way toward full integration with main-
stream programming languages and toolchain—modularity, static error checking, and
Eclipse IDE integration being the most notable ones. ReSpecTX also comes with a code
generator producing low-level ReSpecT code specifying the behaviour of TuCSoN tu-
ple centres. Thus, ReSpecTX is fully interoperable with the TuCSoN middleware and its
legacy applications. In particular, this paper focuses on the ReSpecTX Standard Library,
being – to the best of our knowledge – the first attempt of providing a library of reusable
coordination mechanisms supporting several general-purpose interaction patterns.

Next steps planned to further improve ReSpecTX and its ecosystem include the de-
velopment of more sophisticated debugging tools, possibly providing a tighter integration
with mainstream IDE environments such as Eclipse or JetBrains’ IntelliJ. Finally, for
ReSpecTX to have an impact, the set of ready-to-use composable coordination mech-
anisms provided by its Standard Library should be constantly extended to cope with an
increasing number of application scenarios and their typical interaction patterns.
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