
DOI: 10.2298/CSIS121102040T

Efficient Implementation for QUAD Stream Cipher
with GPUs

Satoshi Tanaka1, Takashi Nishide2, and Kouichi Sakurai2

1 Graduate School of Information Science and Electrical Engineering,
744 Motooka, Nishi-ku, Fukuoka, Japan

tanasato@itslab.inf.kyushu-u.ac.jp
2 Faculty of Information Science and Electrical Engineering,

744 Motooka, Nishi-ku, Fukuoka, Japan
{nishide@inf, sakurai@csce}.kyushu-u.ac.jp

Abstract. QUAD stream cipher uses multivariate polynomial systems. It
has provable security based on the computational hardness assumption.
More specifically, the security of QUAD depends on hardness of solv-
ing non-linear multivariate systems over a finite field, and it is known as
an NP-complete problem. However, QUAD is slower than other stream
ciphers, and an efficient implementation, which has a reduced computa-
tional cost, is required.
In this paper, we propose an efficient implementation of computing mul-
tivariate polynomial systems for multivariate cryptography on GPU and
evaluate efficiency of the proposal. GPU is considered to be a commodity
parallel arithmetic unit. Moreover, we give an evaluation of our proposal.
Our proposal parallelizes an algorithm of multivariate cryptography, and
makes it efficient by optimizing the algorithm with GPU.

Keywords: stream cipher, efficient implementation, Multivariate Cryptog-
raphy, GPGPU.

1. Introduction

1.1. Background

Nowadays cryptography is a necessary technology for network communication.
Multivariate cryptography uses multivariate polynominals system as a public
key. The security of multivariate cryptography is based on the hardness of solv-
ing non-linear multivariate polynomial systems over a finite field [2]. Multivariate
cryptography is considered to be a promising tool for fast digital signature, be-
cause it requires just computing multivariate polynomial system.

QUAD is a stream cipher, which uses a multivariate quadratic system [4].
Symmetric ciphers are used to authentication schemes [8] and signatures [10].
The security of QUAD depends on the multivariate quadratic (MQ) problem.
Therefore QUAD has provable security like public key cryptography though it is
a symmetric cipher. QUAD has high security, but it is very slow compared with
other symmetric ciphers. When QUAD stream cipher is accelerated, we can
realize high security communication with QUAD.

Satoshi Tanaka, Takashi Nishide, and Kouichi Sakurai

1.2. Related Works

Berbain et al. [3] provided efficient implementation techniques for multivariate
cryptography including QUAD stream cipher on CPUs. They implemented 3
cases of QUAD instances, over GF (2), GF (24), and GF (28). Arditti et al. [1]
showed FPGA implementations of QUAD for 128, 160, 256 bits blocks over
GF (2). Chen et al. [6] presented throughputs of a GPU implementation of
QUAD for 320 bits blocks over GF (2). However the results show that GPU im-
plementations are slower than ideal CPU implementaitons.

Most of these related works just implemented several QUAD instances. They
did not evaluate computational costs of QUAD stream ciphers. Only Berbain et
al. [3] showed the computational costs of QUAD with n unkonowns and m mul-
tivariate quadratics, which are O(mn2). We extended several implementation
strategies for multivariate quadratic of Berbain et al. to GPU implementations
and evaluated the computational cost of QUAD [12].

This is an extension work of our previous result [12]. We present extended
GPU implementation results from GF (2) case to GF (2p) cases, and compar-
isons with other works. Moreover, we refine the evaluations of computational
costs of QUAD for general cases and optimized GF (2) cases.

1.3. Motivation

Our goal is to implement efficient QUAD stream cipher. Since QUAD has a
rigorous security proof as public key cryptography, we can use a fast and secure
cipher when QUAD becomes fast like other stream ciphers.

1.4. Our Contribution

We provide two techniques to implemnt QUAD stream cipher. One is a parallel
implementation for computing multivariate polynomials. The other is an opti-
mization technique for implementing QUAD on GPUs.

In this paper, we discuss the computational time for generating keystreams
of QUAD in more detail than [12]. Moreover, we report results of implementation
of QUAD stream cipher over GF (2), GF (22), GF (24), and GF (28) on GPU.

2. CUDA Computing

2.1. GPGPU

Originally, Graphical Processing Units (GPUs) are process units for drawing
the computer graphics. Recently, some online network games and simulators
require very high level computer graphics. The GPU performance is growing
to satisfy such requirements. Therefore, GPU has a large amount of power for
computation.

GPGPU is a technique for any general process by using GPUs. In cryptog-
raphy, it is used for some implementations. For example, Manavski proposed

898 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Efficient Implementaion for QUAD Stream Cipher with GPUs

an implementation of AES on GPU, which is 15 times faster than an imple-
mentation on CPU, in 2007 [7]. Moreover, Osvik et al. presented a result of an
over 30 Gbps GPU implementations of AES, in 2010 [9]. On the other hand,
the GPGPU technique is also used for cryptanalysis. Bonenberger et al. used
a GPU to generating polynomials of the General Number Field Sieve [5].

Because GPUs are designed based on SIMD, it is better to handle several
simple tasks simultaneously. On the other hand, the performance of a GPU core
is not higher than CPU. Therefore, if we use GPU for sequencial processing, it
is not effective. In the GPGPU techniques, how to parallelize algorithms is an
important issue.

2.2. CUDA API

CUDA is a development environment for GPU, based on C language and pro-
vided by NVIDIA. Pregnancy tools for using GPU have existed before CUDA is
proposed. However, such tools as OpenGL and DirectX need to output com-
puter graphics while processing work. Therefore, these tools are not efficient.
CUDA is efficient, because CUDA uses computational core of GPU directly.

In CUDA, hosts correspond to computers, and devices correspond to graphic
cards. CUDA works by making the host control the device. Kernel is a function
the host uses to control the device. Because only one kernel can work at a time,
a program requires parallelizing processes in a kernel. A kernel handles some
blocks in parallel. A block also handles some threads in parallel. Therefore a
kernel can handle many threads simultaneously.

NVIDIA GeForce GTX 480 In this paper, we use a GPU, which is named
GeForce GTX 480 by NVIDIA. It is a high-end GPU of GeForce 400 series
released in March 2010. GTX 480 is constructed by a Fermi architecture which
is a new architecture. GTX 480 uses 15 streaming multiprocessors(SMs), which
are constructed by 32 cuda cores instead of by 8 cuda cores.

3. Multivariate Cryptography

3.1. Cryptography

Cryptography is a technique to prevent data from being leaked by adversaries.
Mainly, we use it on network communication. Cryptography is categorized into
two types, one is symmetric key cryptography and the other is asymmetric key
cryptography.

Symmetric Key Cryptography Symmetric key cryptography uses the same
keys or functions in encryption and decryption. It has two types, block cipher
and stream cipher. Block cipher encrypts message block by block size. Stream
cipher uses pseudorandom number generators as keystream generators. A
message is encrypted with keystream in sequence.

ComSIS Vol. 10, No. 2, Special Issue, April 2013 899

Satoshi Tanaka, Takashi Nishide, and Kouichi Sakurai

Asymmetric Key Cryptography Asymmetric key cryptography has two types
of keys. One is a public key, which is used for encryption. The other is a private
key for decryption.

3.2. Multivariate Polynomial Systems

Multivariate Polynomials We use a finite field GF (q). Let X = (x1, . . . , xn) be
a n-tuple variable of GF (q), we describe monomials as α

(k)
s1,...,sk

∏k
i=1 xsi , where

k ≥ 0, 1 ≤ s1 ≤ · · · ≤ sk ≤ n. α(k)
s1,...,sk is a coefficient of a k-dimensional mono-

mial. Therefore, they consist of a coefficient and k variables. If a dimension of a
monomial is 0, it is called a constant.

Multivariate polynomials contain a sum of monomials. Let f (d)(X) be a d-
dimensional multivariate polynomial. It is denoted as Formula (1),

f (d)(X) = α(0) +
d∑

k=1

∑
1≤s1≤···≤sk≤n

αk
s1,...,sk

k∏
i=1

xsi . (1)

Especially when k = 2, polynomials are called quadratics. Let Q(X) be a
multivariate quadratics, and Formula (2) presents Q(X) with n unknowns,

Q(X) =
∑

1≤i≤j≤n

αi,jxixj +
∑

1≤i≤n

βixi + γ, (2)

where αi,j = α
(2)
i,j , βi = α

(1)
i and γ = α(0).

Multivariate Polynomials Systems and MP Problem A multivariate polyno-
mial f(X) can be considered as a multivariate function, which computes re-
sults with some given variables. A multivariate polynomial system is a group
of such functions. The multivariate polynomial system MP (X) which is con-
structed with n unknowns and m d-dimensional polynomials is given in Formula
(3).

MP (X) = {f (d)
1 (X), . . . , f (d)

m (X)} (3)

A multivariate quadratic system is a special case of the multivariate polyno-
mial system, which uses quadratic functions Q(X). The multivariate quadratic
system MQ(X) which is constructed with n unknowns and m quadratics is also
given in Formula (4).

MQ(X) = {Q1(X), . . . , Qm(X)} (4)

We assume that MP (X) is constructed with m d-dimensional polynomials.
MP problem is to find X = (x1, . . . , xn) where f

(d)
i (X) = 0 for all 1 ≤ j ≤ m.

MP problem on a finite field is known as an NP-hard problem [11]. We can also
define MQ problem for multivariate quadratic systems MQ(X). It is also known
as an NP-hard problem. The security of QUAD stream cipher depends on the
MQ assumption.

900 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Efficient Implementaion for QUAD Stream Cipher with GPUs

3.3. QUAD Stream Cipher

QUAD is a stream cipher which is proposed by Berbain et al. [4]. However, it is
a stream cipher, and the security of it is based on the MQ assumption.

Constructions QUAD uses a n-tuple internal state value X = (x1, . . . , xn)
and a random multivariate quadratic system S(x1, . . . , xn) with m multivariate
quadratic function Q(X): GF (q)n 7→ GF (q), such that

S(X) = {Q1(X), · · · , Qm(X)}, (5)

as a pseudorandom number generator. It is denoted by QUAD(q, n, r), where r
is a number of output keystreams, and r = m−n. Usually, m is set to kn, where
k ≥ 2, and therefore r = (k − 1)n.

Keystream Generation Let m = kn and S(X) = {Q1(X), . . . , Qkn(X)} be di-
vided two parts as Sit(X) = {Q1(X), . . . , Qn(X)} and Sout(X) = {Qn+1(X), . . . , Qkn(X)}.
The keystream generator of QUAD follows three steps, such that,

Computation Step
The generator computes values of system S(X), where X = (x1, . . . , xn) is
a current internal value.

Output Step
The generator outputs keystreams Sout(X) = {Qn+1(X), . . . , Qkn(X)} from
values of S(X).

Update Step
The current internal value X = (x1, . . . , xn) is updated to a next internal
value with a n-tuple value Sit(X) = {Q1(X), . . . , Qn(X)} from S(X).

The sketch illustrating the keystream generation algorithm is shown in Fig. 1. It
indicates that the generator outputs keystreams by repeating the above three
steps.

Fig. 1. Generating keystream of QUAD

The generated keystreams are considered to be a pseudorandom bit string
and used to encrypt a plaintext with the bitwise XOR operationg.

ComSIS Vol. 10, No. 2, Special Issue, April 2013 901

Satoshi Tanaka, Takashi Nishide, and Kouichi Sakurai

Key and Initialization of Current State Berbain et al. [4] also provides a tech-
nique for initialization of the internal state X = (x1, . . . , xn). For QUAD(q, n, r),
we use the key K ∈ GF (q)n, the initialization vector IV = {0, 1}|IV | and two
carefully randomly chosen multivariate quadratic systems S0(X) and S1(X),
mapping GF (q)n 7→ GF (q)n to initialize X.

The initialization of the internal state X follows two steps, such that,

Initially Set Step
We set the internal state value X to the key K.

Initially Update Step
We update X for |IV | times. Let i be a number of iterating initially update
and IVi = {0, 1} be a value of i-th element of IV , and we change the value
of X to

– S0(X), where IVi = 0, and
– S1(X), where IVi = 1.

Computational Cost of QUAD The computational cost of multivariate quadrat-
ics depends on computing quadratic terms. The summation of quadratic terms
requires n(n + 1)/2 multiplications and additions. Therefore the computational
costs of one multivariate quadratic is O(n2). QUAD(q, n, r) requires to compute
m multivariate quadratics. Since m = kn, the computational cost of generating
key stream is O(n3).

Security Level of QUAD The security level of QUAD is based on the MQ
assumption. Berbain et al. [4] prove that solving QUAD needs solving MQ prob-
lem. However, according to the analysis of QUAD using the XL-Wiedemann
algorithm which was proposed by Yang et al. [14], QUAD(256, 20, 20) has 45-bit
security, QUAD(16, 40, 40) has 71-bit security, and QUAD(2, 160, 160) has less
than 140-bit security. Actually, secure QUAD requires larger constructions such
as QUAD(2, 256, 256), QUAD(2, 320, 320).

4. Strategy

4.1. Existing Methods of Berbain et al.

Berbain et al. [3] provided efficent implementation techniques of computing mul-
tivariate polynomial systems for multivariate cryptography. In this paper, we use
these strategies from [3].

– Variables are used as vectors. For example, C language defines int as a
32-bit integer variable. Therefore, we can use int as a 32-vector of boolean.

– We precompute each quadratic term. Because in multivariate quadratic sys-
tems, we must compute the same xixj for every polynomials, we can make
efficient implementation by precomputing quadratic terms.

– We compute only non-zero terms in GF (q). Because the probability of
xi = 0 is 1/2 the probability of xixj = 0 is 3/4. Therefore, we can reduce
computational cost to 1/4.

902 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Efficient Implementaion for QUAD Stream Cipher with GPUs

4.2. Parallelizing on the GPU

In the GPGPU, the most important point is the parallelization of algorithms.
Because the performance of GPU cores is worse than that of CPU, serial im-
plementations with GPU are expected to be slower than CPU implementations.

Since all the polynomials of a multivariate quadratic system are independent
of each other, parallelization of system is easy. We discuss how to parallelize a
multivariate quadratics of system.

Summation of quadratic terms can be considered as summation of every
element of a triangular matrix as the left side of Fig. 2. We assume that other
elements of matrix are zero. Therefore we can compute summation of quadratic
terms as summation of regular matrix as the right side of Fig. 2. Then, we can
compute the summation as

∑n
i=1

∑n
j=1 αi,jxixj in the following method.

1. We compute Sk(x) =
∑n

i=1 αk,ixkxi for all k in parallel.
2. We compute

∑n
k=1 Sk(x).

However computations increase trivial computations; we can make efficient im-
plementations by parallelization with GPU.

Fig. 2. Left: handling as a triangular matrix. Right: handling as a rectangle matrix
with trivial 0 elements.

Next we reduce trivial computations of that way. We reshape a triangular
matrix to a rectangular matrix as in Fig. 3, which presents the method of re-
shaping matrix. By this reshaping, we can reduce efficiently about 25% of the
cost for computing an equation of a multivariate quadratic system.

4.3. Optimization on GPU architectures

On GPU implementations, we must consider characteristics of GPU. The strongest
point of GPU is the computational power by processing cores, and a core is
slower than a CPU. Therefore, non-active cores in a process affect results.

ComSIS Vol. 10, No. 2, Special Issue, April 2013 903

Satoshi Tanaka, Takashi Nishide, and Kouichi Sakurai

Fig. 3. Reshaping triangle to rectangle

Optimization of Matrix Calculation NVIDIA GeForce GTX 480 has 15 SMs,
and every SM has 32 cuda cores. Since every SM handle 32 threads at a time,
a process, which handles 32 threads, is not suitable for GPU implementations.
Therefore, we should make sure that the number of threads in a process is
divisible by 32. In the same way, we should make sure that an algorithm can be
handled by 15 SMs in parallel. Finally, an algorithm should be paralleled as a
multiple of 32× 15.

An n-dimensional triangular matrix has n(n + 1)/2 elements. Then a long
side of a rectangle matrix, which is reshaped by an n-dimensional triangular
matrix, has n or n + 1 elements. However in GF (2), a number of a long side’s
elements can be counted in a process, counting is a cost of computing a matrix.
Therefore, we assume that n = 30k where k is a natural number. In this way, a
rectangle matrix is constructed by 15k × (31k + 1) in Fig. 4, and we can handle
the rectangle matrix as 15k × 32k. Moreover, computing k-dimensional square
submatrix from the matrix in parallel, we can reduce the 15k × 32k matrix to a
15 × 32 matrix. Thus we can parallelize calculating of a matrix by 15 SMs and
32 cuda cores per SM.

Fig. 4. Handling a 15k × 32k matrix e.g. k = 1

904 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Efficient Implementaion for QUAD Stream Cipher with GPUs

Optimizing in Processes For realizing an efficient GPU implementation, we
must design an algorithm as a chunk of similar small computings. Moreover,
conditional branches are not suited to processing on GPU. Then we handle
conditional branches as difference of kernels, and implement them by process-
ing on CPU. In this case, we make kernels by difference of a number of non-zero
terms. However, making all kernels every number of non-zero temrs is a heavy
cost of implementaions. Therefore, we make kernels just every number of k.
E.g. QUAD(2, 320, 320), the maximum of k is 11, thus we have to make only 11
kernels.

4.4. Evaluation of GPU Implementation

Accelerating by strategies of Berbain et al. Originally, QUAD(q, n, n) re-
quires n(n+1)(n+2) additions and 2n2(n+2) multiplications. Moreover, QUAD(q, n, n)
requires 2n times computation of equations.

By the strategy of Berbain et al. [4], we can reduce multiplications of mono-
mials. A monomial xixj is a common value for each polynomial. Then we need
to calculate monomials only once. Since it takes n(n+ 1)/2 multiplications, we
reduce multiplications from 2n2(n+ 2) times to n2(n+ 3) + n(n+ 1)/2 times.

Moreover, we can compute some polynomials at a time by vectorization
of variables. In case of q = 2t, i.e. using GF (2t), a 32-bit integer variable
handles 32/t polynomials. Therefore QUAD(q, n, n) (=QUAD(2t, n, n)) requires
⌈t/16n⌉(n+ 1)(n+ 2) additions and ⌈t/16n⌉n(n+ 3)/2 + n(n+ 1)/2 multiplica-
tions.

Accelerating by parallelization In GPU implementations, we can parallelize
some computational steps of evaluating multivariate polynomial systems.

By computing xixj in parallel for each i’s, it takes n multiplications.
The computational cost of summations of row elements in a matrix requires

(n + 1)(n + 2)/2 additions and multiplications for 64n/t polynomials. By paral-
lelization using C cores in GPU, it takes ⌈tn(n+ 2)/32C⌉(n + 1) additions and
multiplications. Also, the computational cost of summations of column elements
in a matrix can be reduced from ⌈tn/16⌉(n+ 2) additions to ⌈tn/16C⌉(n+ 2)/2
additions.

Actually, GTX 480 has 480 cores. Then it computes all the polynoimals at a
time over GF (2t) field, where tn/32 ≤ 480. Therefore, QUAD(2t, n, n) requires
⌈(n+ 2)/P ⌉(n+1)+(n+2)/2 additions and ⌈(n+ 2)/P ⌉(n+1)+n multiplications
for generating keys, where P = 32C/tn.

Acclerating for GF (2) By the strategy of Berbain et al. [4], we can compute
only non-zero terms in GF (2). Because the probability of xi = 0 is 1/2 the
probability of xixj = 0 is 3/4. Therefore, we can reduce computational cost to
1/4.

ComSIS Vol. 10, No. 2, Special Issue, April 2013 905

Satoshi Tanaka, Takashi Nishide, and Kouichi Sakurai

Then we can compute an equation of QUAD(2, n, n) by ⌈(n+ 4)/4P ⌉(n +
2)/2 + (n + 4)/4 additions and ⌈(n+ 4)/4P ⌉(n + 2)/2 + n/2 multiplications,
where P = 32C/tn.

Suppose the number of non-zero variables is 30k. Then k-dimensional sub-
matrix requires k × k additions. Using our strategy, we can compute the sum-
mations of QUAD(2, n, n) by (⌈(15× 32nk)/16C⌉ + ⌈15× 32n/16C⌉)k + 15 +
32 additions. Since the GTX 480 has 480 cores (i.e., C = 480), it requires
(⌈nk/16⌉ + ⌈n/16⌉)k + 47 additions. For example, QUAD(2, 320, 320) requires
20k2 + 20k + 47 additions.

5. Experiments

In this section, we present and discuss results of experiments. We used NVIDIA
GeForce 480 GTX as a GPU, and also used Intel Core i7 875K as a CPU.
Moreover, the memory of implementation environment was 8GB.

5.1. Experimentations of Encryption

We implement QUAD(2, n, n) on CPU and GPU; set n = 32, 64, 128, 160, 256, 320, 512,
and measure the time of encrypting 5MB file. Also, we implement QUAD(2t, n, n)
on GPU; set t = 2, 4, 8 and n = 32, 64, 128, 160, 256, 320, 512, and measure the
time of encrypting messages 1000 times.

Moreover, we optimized GPU implementation of QUAD(2, n, n) by our opti-
mization strategies, and also measure the time of encrypting 5MB file.

5.2. Results

We present the results of QUAD(2, n, n) implementations in Table 1, and QUAD(2t, n, n)
in Table 2. Table 1 presents the time of encrypting 5MB files and throughputs of
implementations of each QUADs. In Table 2 we compared our implementations
of QUAD(2p, n, n), where p = 1, 2, 4, 8.

Table 1. Results of QUAD implementations.

QUAD(q,n,r) Encryption time(s) Throughputs(Mbps)
CPU GPU CPU GPU

(2, 32, 32) 0.35 66.02 114.286 0.606

(2, 64, 64) 13.56 46.58 2.949 0.859

(2, 128, 128) 52.56 36.82 0.761 1.086

(2, 160, 160) 82.07 36.23 0.487 1.104

(2, 256, 256) 206.80 35.87 0.193 1.115

(2, 320, 320) 326.52 38.96 0.123 1.027

(2, 512, 512) 858.20 72.80 0.047 0.549

906 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Efficient Implementaion for QUAD Stream Cipher with GPUs

The image results of QUAD(2, n, n) are shown in Fig. 5. Encryption time of
CPU implementations follows square of n. However the computational cost of
generating keystream is O(n3), number of generating keystream follows n.

On the other side, the results of GPU Implementations are not almost differ-
ent. NVIDIA GeForce GTX 480 can use 15 blocks, and every block can use 32
threads, programs can handle 480 processes at the same time. QUAD(2, n, n)
requires ⌈(n+ 4)/4P ⌉(n + 2)/2 + (n + 4)/4 additions and ⌈(n+ 4)/4P ⌉(n +
2)/2 + n/2 multiplications for generating keystreams, where P = 32C/tn. How-
ever when (n+ 4)/4P ≤ 1 (i.e., tn(n+4) = 128C), we can generate keystreams
of QUAD(2, n, n) by only (3n+ 8)/4 additions and n+ 1 multiplications. On the
GTX 480, we can set C = 480. Then we have that n ≤ 247. Therefore the com-
putational cost of QUAD(2, n, n) is proportional to the number of unknowns n,
and it generates keystreams in stable throughputs, when n ≤ 247. Actually, we
can see the decrease of the throughput of QUAD(2, n, n) between n = 256 and
320.

Fig. 5. Comparison of encryption time between CPU and GPU.

Table 2 and Fig. 6 also show the decrease of throughputs of QUAD(2t, n, n),
where t = 1, 2, 4, 8 and n = 32, 64, 128, 160, 256, 320, 512. Especially, Fig. 6
shows that the higher the degree of GF (2t) is, the more drastic the decrease
of the throughput of QUAD is. For example, when n > 44, the computational
cost of QUAD over GF (28) follows O(n3). Therefore the larger the number of
unknowns n is, the slower the throughput of QUAD is.

Moveover, we provide the results of our optimized implementation with the
results of a non-optimized implementation Table 3 shows that the throughputs of
our optimized GPU implementations with the throughputs of our non-optimized
GPU implementations, and ratio of GPU and CPU implementations. The re-
sults of GPU implementations show that the throughputs of optimized QUAD

ComSIS Vol. 10, No. 2, Special Issue, April 2013 907

Satoshi Tanaka, Takashi Nishide, and Kouichi Sakurai

Table 2. Implementation of QUAD(2t, n, n).

Unknowns Througputs(Mbps)
n GF (2) GF (22) GF (24) GF (28)

32 0.606 2.517 4.128 6.110

64 0.859 3.353 4.810 4.863

128 1.086 3.271 4.424 1.405

160 1.104 2.603 2.570 0.827

256 1.115 1.161 0.858 0.249

320 1.027 0.581 0.473 0.189

512 0.549 0.177 0.146 0.072

was improved compared with the non-optimized implementation. Our optimized
implementations are 2.0 to 4.4 times faster than non-optimized implementation.
We infer that the main cause of accelerated encryption time is due to the opti-
mizations to handle n = 30k. Because computing n elements in serial is heavy
to GPU, we can reduce serial computation by such handling.

Table 3. Throughputs of QUAD Implementations with Optimization and Non-
Optimization.

QUAD(q,n,r) Throughputs(Mbps) Speed Up
Non-optimized Optimized Rate(times)

(2, 32, 32) 0.606 1.234 x2.037
(2, 64, 64) 0.859 2.319 x2.699

(2, 128, 128) 1.086 4.132 x3.805
(2, 160, 160) 1.104 4.872 x4.413
(2, 256, 256) 1.115 4.115 x3.691
(2, 320, 320) 1.027 3.656 x3.560
(2, 512, 512) 0.549 1.494 x2.722

In Table 4, we compared related works Berbain et al. [3], Arditti et al. [1], and
Chen et al. [6] for QUAD(2, n, n), where n = 128, 160, 256, 320, 512, and com-
pared throughputs of QUAD(24, 40, 40) and QUAD(216, 20, 20) with Berbain et al.
[3]. According to Table 4 although our optimized implementation of QUAD(2, 160, 160)
is slower than Berbain et al. [3], our optimized implementation of QUAD(2, 256, 256)
and QUAD(2, 320, 320) is faster than the GPU implementation of Arditti et al. [1]
and Chen et al. [6]. 3 These results show that our optimized GPU implementa-
tion technique is suited to large QUAD constructions.

3 Chen et al. also presented the CPU implmentations result of QUAD stream cipher.
Although 6.10Mbps is the fastest known result, it was just a theoretic estimate [13]
without a real implementation.

908 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Efficient Implementaion for QUAD Stream Cipher with GPUs

0

1

2

3

4

5

6

7

0 128 256 384 512

QUAD(2,n,n) QUAD(4,n,n) QUAD(16,n,n) QUAD(256,n,n)

Throughput[Mbs]

Number of

unknowns

�

Fig. 6. Throughputs of QUAD implementations over GF (2t) (t = 1, 2, 4, 8)

On the other hand, Table 4 shows that both of our GPU implementation both
for QUAD(24, 40, 40) and QUAD(28, 20, 20) are slower than Berbain et al. [3]. We
infer that our implementation strategies are very specialized to GF (2).

6. Conclusion

We presented and evaluated the GPU implementation techniques for QUAD
stream cipher. Also we provided optimization techniques of QUAD to suit NVIDIA
GeForce GTX 480.

Moreover, we carried out the experiments on the implementations of QUAD
over GF (2), GF (22), GF (24) and GF (28). As a result, the larger the num-
ber of unknowns n is, the slower the throughput of QUAD is. However, when
tn(n + 2) ≤ 32C, it is stable. The condition for stable throughputs depends on
the number of cores C. Although the GTX 480 has only 480 cores, the GTX
680, which is the latest high-performance GPU, has 1536 cores. Therefore, the
throughput of QUAD(2, n, n) is stable if n ≤ 439. We expect that future GPUs
allow efficient implementation of QUAD(2, 512, 512) and more heavy construc-
tions of QUAD.

ComSIS Vol. 10, No. 2, Special Issue, April 2013 909

Satoshi Tanaka, Takashi Nishide, and Kouichi Sakurai

Table 4. Comparison QUAD Implementations with Related Works.

Throughputs(Mbps)
Our Works Berbain et al. [3] Arditti et al. [1] Chen et al. [6]

GPU(Optimized) CPU FPGA GPU
QUAD(2, 128, 128) 4.132 N.A. 4.1 N.A.
QUAD(2, 160, 160) 4.872 8.45 3.3 N.A.
QUAD(2, 256, 256) 4.115 N.A. 2.0 N.A.
QUAD(2, 320, 320) 3.656 N.A. N.A. 2.6
QUAD(24, 40, 40) 4.320 23.59 N.A. N.A.
QUAD(28, 20, 20) 3.895 42.15 N.A. N.A.

Acknowledgments. This work is partially supported by Japan Science and Technol-
ogy agency (JST), Strategic Japanese-Indian Cooperative Programme on Multidisci-
plinary Research Field, which combines Information and Communications Technology
with Other Fields, entitled ”Analysis of Cryptographic Algorithms and Evaluation on En-
hancing Network Security Based on Mathematical Science.” The authors are grateful to
three anonymous referees of ComSIS-2013 for improving this article.

References

1. Arditti, D., Berbain, C., Billet, O., Gilbert, H.: Compact fpga implementations of quad.
In: Proceedings of the 2nd ACM symposium on Information, computer and commu-
nications security. pp. 347–349. ACM (2007)

2. Bard, G.: Algebraic cryptanalysis. Springer (2009)
3. Berbain, C., Billet, O., Gilbert, H.: Efficient implementations of multivariate quadratic

systems. In: Selected Areas in Cryptography. pp. 174–187. Springer (2007)
4. Berbain, C., Gilbert, H., Patarin, J.: Quad: A practical stream cipher with provable

security. Advances in Cryptology-EUROCRYPT 2006 pp. 109–128 (2006)
5. Bonenberger, D., Krone, M.: Factorization of rsa-170. Tech. rep., Tech. rep., Ostfalia

University of Applied Sciences (2010)
6. Chen, M.S., Chen, T.R., Cheng, C.M., Hsiao, C.H., R., N., Yan, B.Y.: What price a

provably secure stream cipher? (2010)
7. Manavski, S.: Cuda compatible gpu as an efficient hardware accelerator for aes

cryptography. In: Signal Processing and Communications, 2007. ICSPC 2007. IEEE
International Conference on. pp. 65–68. Ieee (2007)

8. Miyaji, A., Rahman, M.S., Soshi, M.: Efficient and low-cost rfid authentication
schemes. Journal of Wireless Mobile Networks, Ubiquitous Computing, and De-
pendable Applications 2(3), 4–25 (2011)

9. Osvik, D., Bos, J., Stefan, D., Canright, D.: Fast software aes encryption. In: Fast
Software Encryption. pp. 75–93. Springer (2010)

10. Pakniat, N., Eslami, Z.: A proxy e-raffle protocol based on proxy signatures. Journal
of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications
2(3), 74–84 (2011)

11. Patarin, J., Goubin, L.: Asymmetric cryptography with s-boxes is it easier than ex-
pected to design efficient asymmetric cryptosystems? Information and Communica-
tions Security pp. 369–380 (1997)

910 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Efficient Implementaion for QUAD Stream Cipher with GPUs

12. Tanaka, S., Nishide, T., Sakurai, K.: Efficient implementation of evaluating multi-
variate quadratic system with gpus. In: Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), 2012 Sixth International Conference on. pp. 660–664.
IEEE (2012)

13. Yang, B.Y.: (private communicate) (2011)
14. Yang, B., Chen, O., Bernstein, D., Chen, J.: Analysis of quad. In: Fast Software

Encryption. pp. 290–308. Springer (2007)

Satoshi Tanaka received a B.E. degree from National Institution for Academic
Degrees and University Evaluation, Japan in 2010, and an M.E. degree from
Kyushu University, Japan in 2012. Currently he is a candidate for the Ph.D. in
Kyushu University. His primary research is in the areas of cryptography and in-
formation security.

Takashi Nishide received a B.S. degree from the University of Tokyo in 1997,
an M.S. degree from the University of Southern California in 2003, and a Dr.E.
degree from the University of Electro-Communications in 2008. From 1997 to
2009, he had worked at Hitachi Software Engineering Co., Ltd. developing se-
curity products. Since 2009, he has been an assistant professor in Kyushu Uni-
versity. His primary research is in the areas of cryptography and information
security.

Kouichi Sakurai is Professor of Department of Computer Science and Commu-
nication Engineering, Kyushu University, Japan since 2002. He received B.E.,
M.E., and D.E. of Mathematics, Applied Mathematics, and Computer Science
from Kyushu University in 1982, 1986, and 1993, respectively. He is interested
in cryptography and information security. He is a member of IPSJ, IEEE and
ACM.

Received: October 06, 2012; Accepted: January 31, 2013.

ComSIS Vol. 10, No. 2, Special Issue, April 2013 911

	Efficient Implementation for QUAD Stream Cipher with GPUs
	Satoshi Tanaka cl@@auth, Takashi Nishide cl@@auth, Kouichi Sakurai

