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Grega Vrbančič⋆⋆, Špela Pečnik, and Vili Podgorelec

University of Maribor, Faculty of Electrical Engineering and Computer Science
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Abstract. For more than a year the COVID-19 epidemic is threatening people all
over the world. Numerous researchers are looking for all possible insights into the
new corona virus SARS-CoV-2. One of the possibilities is an in-depth analysis of X-
ray images from COVID-19 patients, commonly conducted by a radiologist, which
are due to high demand facing with overload. With the latest achievements in the
field of deep learning, the approaches using transfer learning proved to be success-
ful when tackling such problem. However, when utilizing deep learning methods,
we are commonly facing the problem of hyper-parameter settings. In this research,
we adapted and generalized transfer learning based classification method for detect-
ing COVID-19 from X-ray images and employed different optimization algorithms
for solving the task of hyper-parameter settings. Utilizing different optimization al-
gorithms our method was evaluated on a dataset of 1446 X-ray images, with the
overall accuracy of 84.44%, outperforming both conventional CNN method as well
as the compared baseline transfer learning method. Besides quantitative analysis, we
also conducted a qualitative in-depth analysis using the local interpretable model-
agnostic explanations method and gain some in-depth view of COVID-19 charac-
teristics and the predictive model perception.
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1. Introduction

Not much more than a year since December 2019, when in Wuhan city, the capital of
Hubei province in China, the cases of ”unknown viral pneumonia” started to gather, the
world is witnessing a huge spread of coronavirus disease 2019 (COVID-19) caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Based on the World
Health Organization report published on the 2nd of Februar 2021, there were more than
102 million confirmed cases and more than 2.2 million deaths globally, spreading across
220 countries and territories [34].

Currently, one of the mostly used method globally for detecting a COVID-19 disease
is using the real-time transcription-polymerase chain reaction (RT-PCR) test [35]. How-
ever, the sensitivity of such method ranges around 70%, while the alternative methods
using CT or X-ray imaging can achieve significantly better performance, up to 98% [14].
While such methods can provide us with better sensitivity performance, the main bottle-
neck is that analysing such imaging requires an experienced radiologist, who manually,
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visually scans such images trying to detect some pathology. This bottleneck especially
in current situation comes to the fore, when a large number of such imaging should be
analyzed in very short time, and thus increasing the probability of miss-classification
and putting large amount of stress on medical staff. In those terms the use of advanced
machine learning approaches for classification of images radiography imaging can be jus-
tified.

With the advancements of deep learning methods and techniques in recent years, es-
pecially the ones utilizing convolutional neural networks (CNNs), various research works
proved that the application of such methods against the medical domain problems is
resulting in encouraging results [25]. In the last year, there were large amount of re-
searches published, focusing on applying the machine learning algorithms to identifica-
tion of COVID-19. One of the most common approaches to tackle the mentioned issue is
to utilize the transfer learning approach as presented in [2, 26].

While such approaches enable us to successfully train a predictive model, we are still
faced with a major problem common to all training approaches of deep neural networks –
setting the values of hyper-parameters [52] also known as hyper-parameter optimization
(HPO). Setting the appropriate values of hyper-parameters for the process of training has
a direct impact on the final predictive performance of such models, therefore the values
should be carefully chosen. While commonly this is still a manual process, a great amount
of research was put into developing automatic methods [38, 43, 49], which would take
care of this problem. Since many studies have addressed the problem of identifying a
COVID-19 from X-ray images and since the chosen hyper-parameter values have a direct
impact on the final classification performance, it is crucial to set hyper-parameter values
appropriately especially when addressing such sensitive problem.

Based on our previous experience with the identification of COVID-19 [43], promis-
ing results from similar studies [3, 36] and our previous work on solving HPO prob-
lem [38,43], we set our goal to generalize our GWOTLT [43] from our previous research,
in which we utilized the grey wolf optimizer (GWO) algorithm to find the most suitable
values of hyper-parameters, to make it agnostic to the usage of different optimization
algorithms. Such a generalized HPO method for transfer learning (HPO-TL) enables us
to employ various optimization algorithms in order to find the most suitable values of
hyper-parameters in order to achieve the best possible predictive model utilizing transfer
learning. Beside providing predictive model using the HPO-TL method and evaluating the
performance of such models from a quantitative standpoint, we also conducted an analysis
of interpretable representations of our model using local interpretable model-agnostic ex-
planations (LIME) method. To gain useful insights on how the model perceives the chest
X-ray images, evaluating the model’s decisions from a qualitative perspective, we took a
different approach where multiple interpretable representations obtained by LIME were
aggregated into one single representation, which could enable us to gain different insights
into perception of predictive model.

We can sum up our main contributions presented in this research as follows:

– We generalize GWOTLT method in order to make it optimization algorithm agnos-
tic, which enables us to use various optimization algorithms for the task of hyper-
parameter optimization.
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– We conducted an empirical evaluation of the generalized HPO-TL method with three
optimization algorithms (GWO, DE, GA), tackling the problem of detecting COVID-
19 from X-ray images.

– We conducted an extensive performance analysis and comparison against the conven-
tional approaches of training the predictive CNN model.

– We performed a qualitative analysis of the predictive model using the LIME method.

The remaining of the paper is structured as follows. In section 2, a brief review of re-
lated work is presented. Utilized methods and generalized HPO-TL method are presented
in section 3, while in section 4 the experimental framework is described. In section 5 the
results of conducted experiments are presented and interpreted, while section 6 presents
the conclusions.

2. Related work

So far, many analyses have been performed using convolutional neural networks over
chest X-ray images of patients, which try to help better identify COVID-19 cases. For
example, Apostolopoulos and Mpesiana [2] were among the first to evaluate the perfor-
mance of CNNs using transfer learning over a collection of images showing COVID-19
condition, pneumonia, or a normal condition. They found that in this way we could extract
significant biomarkers related to the COVID-19 disease with great accuracy (above 96%).
The use of eight different pre-trained CNNs over a dataset of normal and COVID-19 cases
was also used in [32], where the authors report that the best model achieved an accuracy
of up to 98%. Marques et al. [28] proposed a medical decision support system based on
CNN with EfficientNet architecture. The built model was used for both binary classifi-
cation and multiclass classification. In the case of binary classification, X-ray images of
COVID-19 positive patients and healthy patients were used. For multiclass classification,
images of patients with pneumonia were added to the dataset. The results showed that bet-
ter values of different metrics are achieved in binary classification. S. Govindarajan and
R. Swaminathan [18] acquired critical image features using CNN with several different
hyper-parameter settings and cross-validation methods. They visualized them using oc-
clusion sensitivity maps. The resulting images showed some localized abnormal regions,
which indicate COVID-19. In [21], the authors conducted a study on images obtained
from portable chest X-ray (pCXR), which included two types of pneumonia, the normal
condition and the COVID-19 condition. CNN with transfer learning was used over whole
pCXR and over segmented lungs. Better results were obtained over segmented lungs (ac-
curacy 88%) than over whole pCXR (accuracy 79%). Majeed et al. [27] used 12 CNN
architectures with transfer learning and a shallow CNN architecture which they trained
from scratch. The X-ray images were also not preprocessed before the use. The parts of
the images that were supposed to influence the decision of the model were visualized by
class activation maps (CAMs), which, according to their findings, are not reliable, as they
indicate parts that are not characteristic for COVID-19 disease.

As we can see, the use of CNNs with transfer learning is very common in this problem
area. Differences can be found in the optimization of the algorithms, the parameter set-
tings and used datasets. In the original, our research differs from the existing ones in that
we used a dataset to predict COVID-19 status, which contains X-ray images of the chest
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of COVID-19 patients and images showing a normal condition or any other respiratory
disease. So our main purpose was to predict whether it is a COVID-19 case or some other
condition.

3. Methods

Since the first introduction of CNNs in the 1980s [16], the remarkable progress has been
made in the image recognition field especially due to the availability of large annotated
datasets, development of various deep CNN architectures and increased computational
capabilities. The CNNs or more precisely the convolutional layers leverage three impor-
tant ideas that can help improve a machine learning system: sparse interaction, parameter
sharing and equivariant representations. In contrast to the traditional neural network layers
which use matrix multiplication by a matrix of parameters with a separate parameter de-
scribing the interaction between each input unit and each output unit, the CNNs, however,
typically have sparse interactions, also known as sparse connectivity or sparse weights.
The sparse interactions are achieved by making a kernel smaller than the input, which on
the one side enables us to detect small, meaningful features with kernels that occupy only
tens of pixels, while on the other side reduces the memory consumption of the models and
improves its statistical efficiency, since we need to store fewer parameters. Additionally,
the use of parameter sharing in CNNs also increases the memory and statistical efficiency
in comparison to the traditional neural network, where each element of the weight matrix
is used exactly once when computing the output of a layer. Furthermore, in the case of
convolution, the particular form of parameter sharing causes the layer to have a property
called equivariance. Basically, equivariance enables convolution to create a 2-dimensional
map of where certain features appear in the input. If the object in the input is moved, its
representation will also move for the same amount [17].

Those capabilities make the CNNs de facto standard for solving the image recognition
tasks in various domains from medicine [45,48], information security [19] to seismology
[22] or even agriculture [20]. However, training such CNN models requires a large amount
of labeled data, which can be in certain fields, especially in medicine, a challenging task.
To overcome the lack of sufficient labeled dataset, one of the commonly used methods is
transfer learning with fine-tuning, which enables us to adapt a pre-trained model to our
domain problem, without requiring a large dataset.

3.1. Transfer Learning

The first appearances of transfer learning in publications are dating back to the 1995 [6],
mostly under different names such as inductive transfer [12], incremental or cumulative
learning [55], and multitask learning [51], the latter one being the most closely related to
the transfer learning as we know it today. In the most broader terms, the transfer learning
technique can be defined as the improvement of learning a new task through the trans-
fer of knowledge from a related task which has been already learned. However, in the
machine learning terms, the transfer learning can be defined as transferring the weights
of an already trained predictive model, specialized for a specific task, to the new model
addressing similar but not the same task.
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There are many different techniques on how to utilize the transfer learning, one of
the most commonly used being the fine-tuning. When utilizing the fine-tuning approach
to transfer learning, we are transferring the weights from a pre-trained CNN to the new
one [41]. Commonly, we only transfer the weights in the so-called convolutional base of
CNN architecture, which is composed of a sequence of convolutional layers and pooling
layers, since those layers’ weights contain general feature extraction capabilities. In gen-
eral, the bottom layers (more towards the input) of the CNN tend to extract more abstract,
generally applicable features than the top layers (more toward the output), which tend
to extract more task-specific features. Therefore, when utilizing a fine-tuning technique,
most commonly we only fine-tune (train) the layers more towards the top of the CNN
architecture and leave the bottom ones frozen (disabled for training) [41].

Regardless of the benefits of the transfer learning with fine-tuning, such approach
still has some challenges common to the traditional approach of training CNN. One of
such problem is the selection of training parameters also known as hyper-parameters. Set-
ting appropriate value for hyper-parameters such as learning rate, batch size, optimization
function, etc. directly reflects on how well the model is capable to train and consequently
impacts the model classification performance.

3.2. Hyper-parameter Optimization for Transfer Learning

The problem of setting the right values for the hyper-parameters is also known as hyper-
parameter optimization (HPO) task. Most commonly are such tasks addressed with the
Gaussian Process approach, Tree-structured Parzen Estimator approach or Random search
approach [4]. But in recent years, population-based metaheuristic algorithms are becom-
ing more and more popular in successfully solving HPO problems [23, 46, 49].

Based on our previous success with utilization of various optimization algorithms
for the purpose of optimizing hyper-parameter values [38, 47], we decided to generalize
our Grey Wolf Optimizer for Transfer Learning Tuning (GWOTLT) method presented
in [49] to make it work and evaluate it with other popular metaheuristics, such as genetic
algorithm (GA) and differential evolution (DE). The basic concept of our generalized
Hyper-parameter optimization for transfer learning (HPO-TL) method can be generally
defined in the following steps:

1. Optimization algorithm produces the solution.
2. Solution is mapped to the values of sought hyper-parameters.
3. CNN with mapped hyper-parameter values is trained.
4. The solution is evaluated, calculating fitness value.
5. Fitness value is being passed back to the optimization algorithm.

Those steps are then being executed in an iterative manner, for the given number of
function evaluations.

The HPO-TL is producing a solution with the same number of elements as is the num-
ber of sought hyper-parameter values. In our case the dimension of the produced solution
is 4, since we are searching for the most optimal value of four different hyper-parameters,
namely: learning rate, optimizer function, dropout probability of dropout layer, and the
number of neurons in the last fully-connected (dense) layer. Formally, the individuals of
such HPO-TL produced solutions are presented as a real-valued vectors:

x
(t)
i = (x

(t)
i,0, . . . , x

(t)
i,n), for i = 0, . . . ,Np − 1 , (1)
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where each element of the solution is in the interval x(t)
i,1 ∈ [0, 1]. These real-valued

vectors (solutions) are then mapped to the used hyper-parameter values as defined in
equations 2 to 5, where y1 denotes the number of neurons in the last fully connected
layer, y2 denotes dropout probability, y3 denotes optimization function and y4 denotes
learning rate. Each y1 value is mapped to the particular member of the population N =
{64, 128, 256, 512, 1024} according to the members position in the population, which
represents a group of available numbers of neurons in the last fully connected layer. All of
the y3 values are mapped to the specific member of population O = {adam, rmsprop, sgd},
which represents a group of available optimizer functions, while each y4 value is mapped
to the member of population L = {0.001, 0.0005, 0.0001, 0.00005, 0.00001}, which rep-
resents a group of learning rate choices.

y1 =

{
⌊x[i] ∗ 5 + 1⌋; y1 ∈ [1, 5] x[i] < 1

5 otherwise,
(2)

y2 = x[i] ∗ (0.9− 0.5) + 0.5; y2 ∈ [0.5, 0.9] (3)

y3 =

{
⌊x[i] ∗ 3 + 1⌋; y3 ∈ [1, 3] x[i] < 1

3 otherwise,
(4)

y4 =

{
⌊x[i] ∗ 5 + 1⌋; y4 ∈ [1, 5] x[i] < 1

5 otherwise,
(5)

The training utilizing the fine-tuning with mapped hyper-parameter values is then be-
ing conducted in a straight-forward manner where the last block of used CNN architecture
is being fine-tuned while the other (more bottom) layers remain frozen. After the training
is finished, the fitness values are being calculated. We defined the fitness value as:

f(sol) = 1−AUC(sol) (6)

where sol denotes the model trained with hyper-parameters set based on the obtained
HPO-TL solution, and AUC defines the area under the ROC curve metric.

The fitness value is then being passed back to the chosen optimization algorithm,
based on which the new solution will be produced.

3.3. HPO-TL variations

Since our presented HPO-TL method is designed to work with various optimization al-
gorithms, we selected three of the most popular algorithms to showcase the advantages
of such an approach where the method is not conceptually bonded to a particular algo-
rithm. For this purpose, we utilized a grey wolf optimizer algorithm, which is in recent
works [15, 43, 49] showing a great performance solving various tasks, differential evolu-
tion which is still dominating in various solutions [5,9,50], and one of most conventional
nature-inspired evolutionary algorithms – genetic algorithm.
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Grey Wolf Optimizer variation (GWO-TL) is based on the GWO algorithm [31],
which is one of the most popular representatives of nature-inspired population-based
metaheuristic algorithms. The GWO is inspired from a strict leadership hierarchy and
hunting mechanisms of grey wolves (Canis lupus). As defined by authors in [31], there
are three main phases of grey wolves hunting. First one is tracking, chasing and approach-
ing the prey, the second one is pursuing, encircling and harassing the prey until it stops
moving, and final third phase is the attack toward the prey. In GWO, we consider the
fittest solution as the alpha, therefore consequently, the second and third-best solutions
are named beta and delta. Other candidate solutions are assumed to be omega. In general,
the search process starts by creating a random population of grey wolves in the GWO
algorithm. In each iteration alpha, beta, and delta candidate solutions estimate the prob-
able position of the prey. The parameter a is decreased from 2 to 0, to emphasize the
exploration and exploitation, respectively. In each iteration the candidate solutions tend
to converge to the prey when vector A, which is mathematically modeling divergence, is
decreasing below 1 and diverge from the prey when A is increasing above 1 [31].

Differential Evolution variation (DE-TL) is based on arguably one of the most power-
ful and versatile evolutionary optimizers in recent times. Standard DE algorithm consists
of four basic steps: initialization, mutation, recombination or crossover, and selection.
From those steps, only the last three are repeated into the subsequent DE iterations [9].
In the initialization phase, Np real-value coded vectors are randomly initialized. Each
such vector is also known as genome or chromosome and forms a candidate solution. Af-
ter initialization, DE creates a donor or mutant vector corresponding to each population
member in the current iteration with utilization of mutation. In order to increase the diver-
sity of the parameter vectors of DE, the crossover step is conducted, where CR parameter
controls the fraction of parameters that are copied to the candidate solution. Finally, the
selection step is executed in which the decision whether a produced candidate solution
should become a generation member is made, using the greedy criterion [9]. Those three
steps are being repeated until stopping condition is not reached.

Genetic Algorithm variation (GA-TL) is based on the one of the first population-based
stochastic algorithm. Similar to the other evolutionary algorithms, the main steps of the
GA are selection, crossover, and mutation [30]. In the same manner as the DE, GA starts
with a random population, which represents chromosomes of individual candidate solu-
tions. Nature is the main inspiration for the selection step in GA algorithm, which is trying
to mimic the phenomena where the fittest individuals have a higher chance of getting food
and mating. For this purpose GA is employing a roulette wheel to assign probabilities to
individuals and select them for creating the next-generation proportional to their objec-
tive. In the crossover step the selected individuals are being combined producing new
solutions in GA algorithm. In the last step, mutation is conducted, in which one or multi-
ple genes of created new solutions are altered. This step in GA maintains the diversity of
population by introducing another level of randomness [30]. The algorithm iterates those
three steps in the same manner until the stopping condition is not reached.
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3.4. Local Interpretable Model-agnostic Explanations

Many times, in the world of machine learning, it is not enough just to build a good decision
model, its success is also influenced by how decision makers understand and trust its
predictions. This is especially important in more sensitive domains, such as medicine.
Decision-makers’ confidence in model results usually increases when they have a clear
insight into what influenced the model’s decision, what is its behavior and what are the
possible errors. For this purpose, various interpretive methods have been developed. Some
of them are also able to give an explanation for a model built over unstructured data (in
our case images). [39].

The interpretive method we used in our case is the Local Interpretable Model-Agnostic
Explanations (LIME) method, which was first introduced in 2016 by Ribeiro et al. [39].
An interpretive method that also allows the interpretation of models built above images
is the SHapley Additive exPlanations (SHAP) method, which is, in addition to LIME,
considered as one of the most widely used methods of this kind. LIME creates an expla-
nation for an individual input prediction by sampling its neighboring inputs and builds a
sparse linear model based on the predictions of these inputs. The most relevant features
for a specific prediction are then those that have the highest coefficient calculated in this
linear model [54]. One of the main advantages of the algorithm behind the LIME method
is that it can explain the predictions of any black box classifier with two or more output
classes. The condition for its operation is that the classifier implements a function that
accepts a set of classes and then returns the probabilities for each class. The main goal of
the algorithm is to identify an interpretive model over an interpretative representation that
is locally faithful to the classifier. In our case or in general when working with images,
the interpretative representation is a binary vector that indicates the presence or absence
of neighboring sets of similar pixels, while the classifier can display the image as a tensor
with three color channels per pixel.

As mentioned earlier, LIME explanation is based on the sampling of neighboring
inputs of the selected input x and their outputs, while returning as a result a model g from
the class of potential interpretive models G according to the following formula:

argmin
g∈G

L(f, g, πx) +Ω(g). (7)

If we explain the formula in more detail, then we can say that x represents the input
for which we want to know on the basis of which value was determined to belong to the
selected class, f denotes the built model that we want to explain and πx denotes the prob-
ability distribution around x. With Ω(g) we mark the complexity of model interpretation,
that is opposite to its interpretability. Not every model is simple enough to be interpretive.
The part of the equation L(f, g, πx) tells us how the values of g approach the values of f
at the location defined by πx. If we want to achieve high interpretability, this value must
be as low as possible [39].

4. Experiments

To objectively evaluate the COVID-19 image classification results, we conducted the fol-
lowing experiments:
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– base, where the CNN is trained in a conventional manner without pre-training,
– TL, where transfer learning methodology is utilized, and
– three HPO-TL methods: TL-GWO, TL-GA, and TL-DE experiments where our pro-

posed method is used.

All conducted experiments were implemented in Python programming language with
the support of following libraries: scikit-learn [37], Pandas [29], Numpy [42], NiaPy [44],
Keras [7] and Tensorflow [1].

Experiments were performed using the octa-core Intel CPU, 64 GB of RAM, and two
Nvidia Tesla V100 GPUs each with dedicated 32 GB of memory.

4.1. Datasets

Almost a year after we published our previous work on COVID-19 [43], the COVID-
19 dataset initially prepared by Cohen et al. [8] was greatly enlarged by various re-
searchers from all over the world. Different contributors provided additional COVID-19
and other chest x-ray images, performed double-checking for potential labeling errors,
and improved the dataset both in terms of quality and quantity. Therefore, for the purpose
of evaluating the proposed methods, we obtained an updated version of the COVID-19
dataset, which in current state, on January 20th 2021, consists in total of 929 chest x-ray
images.

Since the chest X-ray images are collected from various sources, the image size and
format are varying. In Figure 1 are presented two samples from each of the target classes.

a) b)

Fig. 1. Examples of X-ray images, where a) represents a COVID-19 case image, while b) represents
an image with other or no pathology identified.

Inspecting the obtained dataset more in-depth, we can see that the majority of the col-
lected chest x-ray images are labeled as an COVID-19 instances, as presented in Table 1.
Comparing the number of classes in the updated version of COVID-19 dataset in compar-
ison to the older version, we can see a significant increase. Additionally, in the updated
version of the dataset we can see that one of the classes in labeled as ”todo”, which means
that the instances with such label are not yet classified. Therefore, we removed instances
with such label in order to avoid having some instances miss-classified and consequently
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training the predictive model with wrong labeled chest x-ray images. This way we ended
up with the total of 846 instances, 563 of them being labeled as ”COVID-19” and the
remaining 283 labeled as ”other”.

Table 1. Target class distribution of updated COVID-19 image data collection.

Class COVID-19
image data collection

COVID-19 563
Pneumonia 81

SARS 16
Pneumocystis 30
Streptococcus 22

No finding 22
Chlamydophila 3

E.Coli 4
Klebsiella 10
Legionella 10
Unknown 1

Lipoid 13
Varicella 6
Bacterial 4

Mycoplasma 11
Influenza 5

todo 83
Tuberculosis 18

H1N1 2
Aspergilliosis 2

Herpes 3
Aspiration 1
Nocardia 8

MERS-CoV 10
MRSA 1

Total 929

Similar as we did in our previous research [43], with the older version of COVID-19
dataset, we have extended the updated version. Additional 600 randomly selected ”Nor-
mal” labeled chest images from RSNA Pneumonia Detection Challenge [33] were added
to the existing ”other” labeled chest x-ray images, which resulted in a final updated and
extended version of COVID-19 dataset with properties presented in Table 2.
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Table 2. Target class distribution of an updated and extended COVID-19 image data collection.

Class Extended COVID-19
image data collection

COVID-19 563
Other 883

Total 1446

4.2. Data Pre-processing

As are the images in the COVID-19 image data collection in various sizes, we applied the
image resizing to uniform target size of 224 x 224 pixels, which is in line with default
input size of the selected VGG19 CNN architecture. Additionally, in the train time, we
applied an image augmentation technique, to prevent the over-fitting which commonly
occurs when dealing with pre-trained complex CNN architecture and relatively small
datasets.

The image augmentation in train time is conducted in a manner where each training
instance is randomly manipulated e.g. rotated, zoomed, shifted, flipped, etc. within the
given value range. The complete list of utilized augmentation parameters and its values
can be observed in Table 3. The value for rotation range specifies the degree range for
random rotation, while the values for width shift and height shift range specifies the frac-
tion of a total image size for corresponding dimension. Shear range value defines a shear
intensity – the shear angle (in radians) in counter-clockwise direction and zoom range
value specifies the randomly selected zoom between the lower and upper bounds defined
as 1 − zoom range and 1 + zoom range respectively. Lastly, the horizontal flip value
defines whether each image instance can be randomly flipped horizontally or not.

Table 3. Utilized image augmentation parameter settings.

Parameter Value
Rotation range 5

Width shift range 0.1
Height shift range 0.1

Shear range 0.1
Zoom range 0.1

Horizontal flip True

4.3. CNN Setup

For the deep CNN architecture, we adapted a well known VGG19 architecture presented
by Simonyan et al. in 2014 [40]. As presented in Figure 2, we left the convolutional base
(blocks from 1 to 5) of VGG19 as it was presented originally, while the classifier part of
the architecture was customized. Instead of a flatten layer, we utilized a 2-dimensional
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global average pooling layer, followed by a dropout layer, fully connected layer with
ReLU activation function and fully connected output layer with sigmoid activation func-
tion.

The dropout probability values for the base and TL experiments were set to 0.5, while
the dropout value for the experiments utilizing the HPO-TL methods is being optimized
(set) by the method itself. The number of units in fully connected layer, followed by the
dropout layer, was for the base and TL experiments set to 256, while the number of units
for HPO-TL based experiments are also being optimized by the method itself.

Input

Block 1

Block 2

Block 3

Block 4

Block 5

Global Average Pooling

Dropout

Fully Connected Layer 1

Fully Connected Layer 2
+ Softmax

Fig. 2. The adapted VGG19 convolutional neural network architecture.
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For the TL and HPO-TL based experiments, the transfer learning was utilized. The
VGG19 convolutional base was pre-trained on the ImageNet dataset, while for the fine-
tuning we enabled only the last convolutional block (block 5). The rest of the layers in
convolutional base remained frozen (disabled for fine-tuning).

4.4. Settings of HPO-TL methods

Since the utilized HPO-TL based methods work in an iterative manner, where the next
produced solution is based on fitness of the previous one, we tailored the dataset split
methodology in order to retain the fairness between the compared approaches. While the
base and TL experiments consume the whole training split of the dataset for the training
purpose, we additionally divided the given training set in ratio 80:20, where the larger
subset was used for training different solutions produced by a HPO-TL based method and
evaluating them – calculating the fitness value against the remaining smaller subset of the
initial training set.

For each fold, the method generates and evaluates 50 different solutions, from which
the best – the one with the best (lowest) fitness value is selected and finally evaluated
against the test split of the dataset. While this approach makes the such method computa-
tionally complex, we also introduced the early stopping approach to the evaluation of each
solution, where the solutions which training is not improving for 5 consecutive epochs is
prematurely stopped.

Table 4 presents parameter settings of three utilized optimization algorithms, namely
grey wolf optimizer, differential evolution, and genetic algorithm, which were used to-
gether with the HPO-TL method. Other than population number NP parameter, all pa-
rameter values are set to default values as are defined in the NiaPy framework, from which
we utilized the implementations of the selected optimization algorithms.

Table 4. Parameter settings for used optimization algorithms.

Parameter Value
Grey Wolf Optimizer Differential Evolution Genetic Algorithm

Population NP 10 10 10
Scaling factor F - 1 -

Crossover rate CR - 0.8 0.25
Mutation rate MR - - 0.2

4.5. Training Parameter Settings

Presented in Table 5 are utilized training parameter settings for each of the conducted
experiments. For each fold every method is provided with the total of 50 epochs, except
the HPO-TL methods which, in worst-case scenario, consume a total of 2500 epochs
(50 epochs for each solution evaluation). The batch size remains the same for all three
experiments and it is set to 32. For the base and TL experiments, we set the learning rate
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to 1 ∗ 10−5 and optimizer to RMSprop, while the learning rate and optimizer for HPO-
TL methods is set (optimized) by the method itself and therefore is not explicitly defined
since it is not chosen deterministically.

Table 5. Training parameter settings for conducted experiments.

Parameter Value
base TL HPO-TL

Nr. of epochs 50 50 2500
Batch size 32 32 32

Learning rate 1 ∗ 10−5 1 ∗ 10−5 -
Optimizer RMSprop RMSprop -

5. Results

5.1. Classification Performance
In order to evaluate the COVID-19 X-ray image classification results, we first compared
our three HPO-TL methods: TL-GWO, TL-GA, and TL-DE. For this purpose, we applied
them upon the same CNN architecture using the same 10-fold cross-validation train-test
folds, in order to objectively identify which of the three performed the best.

Results, obtained from the conducted experiments, are summarized in Table 6. As
can be observed from the table, the difference among the three methods are quite small.
Anyhow, the TL-DE method performed the best on average in most of the performance
measures, while also achieving the lowest time for training. Interestingly, the results of
the TL-DE method on all 10 folds were also the most stable, achieving the lowest stan-
dard deviation among the three methods regardless of the selected metric. In general,
the second-best results were obtained by the TL-GWO method, while the results of the
TL-GA lag a bit behind.

Table 6. Comparison of classification performance results on selected metrics over 10-fold cross-
validation (averages and standard deviations are reported) for the three HPO-TL methods.

metric TL-GWO TL-GA TL-DE
Accuracy 84.10 ± 3.2 82.45 ± 4.54 84.44 ± 2.91

AUC 83.61 ± 3.93 80.89 ± 6.26 83.89 ± 3.36
Precision 88.52 ± 5.59 85.09 ± 7.53 88.16 ± 3.84

Recall 85.82 ± 7.16 87.75 ± 6.03 86.38 ± 3.98
F -1 86.79 ± 2.93 86.01 ± 3.08 87.16 ± 2.43

Kappa 66.70 ± 6.92 62.27 ± 10.86 67.40 ± 6.19
Time 6096.40 ± 427.33 5383.10 ± 501.70 5020.30 ± 380.97

Fig. 3 shows a comparison of test accuracy results obtained by the three methods for
all 10 folds on the Covid-19 X-ray image dataset. As we can see, in two folds the TLGA
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method performed a bit worse than the other two methods, while other differences are
rather insignificant. If we look in detail, there is one situation where TL-GWO performed
noticeably better than TL-DE (fold-6), while TL-DE performed noticeably better than
TL-GWO in two situations (in fold-0 and fold-9). Very similar to accuracy were also
the results of the rest of the metrics. Fig. 4 shows the box-plot comparison of the three
methods with regard to AUC. It can be seen that the TL-DE achieved the best average
AUC result, while also being the most stable among the methods.
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Fig. 4. Comparison of AUC for the three HPO-TL methods.

While the predictive performance results of the TL-DE and the TL-GWO methods
were barely distinguishable, there was a bigger difference with regard to the time elapsed
for training the CNN model (Fig. 5). As it can be seen, the TL-GWO method consumed
the most time for training, while the TL-DE was the fastest of the three methods.

In general, with regard to the presented classification performance results, the TL-DE
can be considered as the best method overall, although the differences between the three
methods turned out to be very small.



342 Grega Vrbančič et al.
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Fig. 5. Comparison of consumed time for training for the three HPO-TL methods.

5.2. Comparison with Other Methods

As the TL-DE turned out to be the best of the three methods, we wanted to compare it with
the two most common existing approaches – base method for training the CNN model and
TL method that performs transfer learning upon the same CNN architecture. For the base
method, we utilized the VGG19 [40] CNN architecture, pre-trained on the ImageNet [11]
dataset. For the TL method, we utilized the transfer learning approach and applied it on
the same VGG19 CNN convolutional base. In this manner, the differences among the
obtained predictive performance results can be contributed solely to the consequence of
different learning method used. For the sake of comparison, we performed a series of
experiments on the COVID-19 X-ray image dataset using the 10-fold cross-validation
approach.

Results, obtained from the conducted experiments, are summarized in Table 7. As can
be observed from the table, our proposed TL-DE method showed the best performance
among the three compared methods regardless of the selected performance metric, with
the exception of elapsed training time. In general, the second-best results were obtained
by the TL method, while significantly the worst results were obtained by the base method.

Table 7. Comparison of classification performance results on selected metrics over 10-fold cross-
validation (averages and standard deviations are reported) for the three compared methods.

metric base TL TL-DE
Accuracy 54.51 ± 10.78 80.97 ± 4.37 84.44 ± 2.91

AUC 50.00 ± 0.00 80.85 ± 4.25 83.89 ± 3.36
Precision 42.85 ± 29.57 86.94 ± 4.18 88.16 ± 3.84

Recall 70.00 ± 48.30 81.38 ± 7.53 86.38 ± 3.98
F -1 53.16 ± 36.68 83.84 ± 4.20 87.16 ± 2.43

Kappa 0.00 ± 0.00 60.69 ± 8.56 67.40 ± 6.19
Time 377.50 ± 9.23 340.40 ± 6.45 5020.30 ± 380.97
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Fig. 6 shows a comparison of test accuracy results obtained by the three compared
methods for all 10 folds on the Covid-19 X-ray image dataset. As we can see, the TL-DE
method achieved the highest accuracy in 7 out of 10 folds, followed by the TL method
with 3 remaining wins, while the results of the base method lag quite distinctively behind.
In all three folds, where the TL method outperformed the TL-DE, the differences were
hardly noticeable, while the advantage of the TL-DE method were substantial in 6 out of
7 folds. Very similar results were obtained for all other predictive performance metrics.
Fig. 7 shows the box-plot comparison of the three methods with regard to AUC, one of
the most important metric when evaluating classification models in medicine, where the
advantage of the TL-DE method can be easily observed. Not only that the mean AUC is
the highest, the TL-DE produced results also with smaller standard deviation than the TL
method.
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Fig. 7. Comparison of AUC for the three compared methods.

To achieve such excellent classification results, however, the TL-DE method pays its
price with a much longer training time. While the base method spent on average 377.5
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seconds to fully train the CNN mode, and the TL method 340.4 seconds, the HPO-based
TL-DE method spent on average 5020.3 seconds, which is of course the consequence of
the used optimization method.

5.3. Statistical Comparison

To evaluate the statistical significance of classification performance results of the three
compared methods (base, TL, and TL-DE), we first applied the Friedman test by calcu-
lating the average Friedman ranks, Friedman asymptotic significance and p-values for all
the three methods and for all 7 measures (acc, auc, prec, rec, F -1, kappa, and time), as
suggested by Demšar [10]. The statistical results are summarized in Table 8. We can see
that there is a significant difference among the three methods for all measures but the
recall. The TL-DE is significantly better than the base method with regard to accuracy,
AUC, precision, F -1, and kappa. It is also significantly better than the TL method with
regard to accuracy, F -1, and kappa, while the difference is nearly significant with regard
to AUC. On the other hand, the TL-DE method is significantly worse than the other two
methods with regard to the required training time, as expected.

Table 8. Statistical comparison (p-values) of the Friedman test and Wilcoxon signed rank test for
TL-DE vs. other two methods for all 7 metrics; significant differences are marked with *.

Friedman test Wilcoxon signed rank test
metric all three TL-DE vs. base TL-DE vs. TL

Accuracy <0.001* 0.002* 0.033*
AUC <0.001* 0.005* 0.084

Precision <0.001* 0.002* 0.625
Recall 0.154 — —
F -1 <0.001* 0.002* 0.014*

Kappa <0.001* 0.002* 0.049*
Time <0.001* 0.002* 0.002*

5.4. HPO-TL Methods Parameter Selection Analysis

Presented in Table 9 are the best performing selected values for optimized parameters for
each fold. Inspecting the presented selected values, we can see that in the 4 folds, the
number of selected units in the last fully-connected (dense) layer was set to 128, while
also in 4 folds the number of selected units was set to 256, which is in line with the value
which we handpicked. Those two values together were selected in 80% of all folds, while
the remaining 2 selections were the lowest (64) and highest (1024) of possible values.
The selected dropout probabilities are roughly ranging from 0.5 to 0.76, 7 of being in
a range between 0.5 and 0.57 which is somewhat similar to what we manually selected
for the remaining experiments (0.5). Focusing on the selected optimizer function, we can
observe that the selection is almost evenly distributed between the RMSprop (4 out of 10
folds) and Adam optimizer (6 out of 10 folds), while the SGD is not a part of the best
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found solution in any fold. Regarding the selection of learning rates, 4 times each were
selected learning rates 5∗10−4 and 5∗10−5. The latter is also the same as our handpicked
value for the learning rate in the TL experiment.

Table 9. Best achieved solutions for the sought parameters per fold using TL-DE.

Fold Neurons in Dropout Optimizer Learning
last dense layer probability rate

0 128 0.660450 adam 0.00050
1 64 0.500000 adam 0.00050
2 128 0.754095 adam 0.00005
3 256 0.500000 rmsprop 0.00005
4 256 0.512172 rmsprop 0.00050
5 128 0.537716 rmsprop 0.00001
6 256 0.571608 adam 0.00005
7 128 0.570084 adam 0.00050
8 1024 0.763849 rmsprop 0.00010
9 256 0.536784 adam 0.00005

We have also analyzed and compared parameter selections of remaining two HPO-
TL methods, TL-GWO and TL-GA. Comparing the best parameter selections from best
performing variation (TL-DE) against parameters selections of TL-GWO (Table 10), we
can see that in general, the values for number of last hidden layer are lower, but on the
other side, the dropout probability values of the best parameter selections are more similar
to the best performing TL-DE variation. Also, the selection of optimizer is somewhat
similar to the TL-DE variation, with a bit more tendency to selection of adam optimizer
function.

Table 10. Best achieved solutions for the sought parameters per fold using TL-GWO.

Fold Neurons in Dropout Optimizer Learning
last dense layer probability rate

0 128 0.660413 adam 0.00005
1 128 0.703526 adam 0.00010
2 64 0.732706 rmsprop 0.00005
3 512 0.513470 adam 0.00050
4 64 0.532255 adam 0.00010
5 64 0.642986 adam 0.00010
6 256 0.516314 rmsprop 0.00005
7 128 0.734866 rmsprop 0.00010
8 256 0.777165 adam 0.00010
9 64 0.555470 adam 0.00010
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Table 11. Best achieved solutions for the sought parameters per fold using TL-GA.

Fold Neurons in Dropout Optimizer Learning
last dense layer probability rate

0 1024 0.731663 rmsprop 0.00001
1 512 0.778245 adam 0.00050
2 128 0.557576 rmsprop 0.00050
3 256 0.872333 rmsprop 0.00050
4 256 0.567304 adam 0.00010
5 512 0.512127 adam 0.00010
6 256 0.532396 adam 0.00050
7 128 0.511880 adam 0.00010
8 256 0.821332 adam 0.00010
9 256 0.613837 adam 0.00050

If we compare the TL-DE further, with the worst performing of three variations TL-
GA (Table 11), we can observe that selection of values for number of hidden units are
quite similar to the best performing TL-DE variation. The selection of the optimizer func-
tion is proportionally the same as in TL-GWO. Interestingly, none of the three variations
chose the SGD optimizer function as the best performing optimizer in any combination of
parameter selections. The biggest difference between the parameter selection values can
be seen in the range of dropout probabilities, which is in the case of TL-GA varying from
0.51 to 0.87.

5.5. Interpretable Representation of Model

When employing predictive models in various mission-critical decision-making systems,
one of the biggest problem is determining trust in individual prediction of such models.
Especially if such systems are being used in the fields like medicine, where predictions
cannot be acted upon blind faith, consequences may be catastrophic [39].

In general, it is a common practice to evaluate predictive models using different met-
rics against the available test dataset. However, such common metrics may not be neces-
sarily indicative of the model’s goal. Therefore, inspecting individual instances and their
representations which can be interpreted is a good complementary solution, especially
when dealing with so called ”black-box” methods, to gain useful insights on how our
model perceives it. Additionally, such evaluation can also help us increase the under-
standing and trust in our predictive model.

In Figure 8, we are showcasing LIME interpretable representations of our best per-
forming predictive model, obtained by HPO-TL variation named TL-DE, which utilizes
a DE algorithm for finding most suitable set of hyper-parameter values. In our previous
research on COVID-10 identification [43], we have also used LIME method for evalu-
ating the models’ performance from a qualitative standpoint. The conducted analysis in
the mentioned research was performed in such way, that all corresponding interpretable
representations obtained from LIME were plotted on each corresponding sample (chest
x-ray image), and each sample was then evaluated individually. In contrast to our previous
research, here we are taking a different approach where we are obtaining the interpretable
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representations in the same manner for each sample as in our previous research, but in
this case we are aggregating them into one. This allows us to get an insight into predic-
tive model behavior over all test samples in one aggregated interpretable representation,
instead of analyzing each sample individually.

Labeled as a) in Figure 8, we are showing green groups of pixels (super-pixel) denot-
ing sections of image which have a positive impact towards classifying our input chest
x-ray image as COVID-19, while labeled as b), we are showing red super-pixels denot-
ing sections of image which have a negative impact. The scale on the right side of each
analyzed image is representing the intensity of each marked region, where a darker color
is denoting a higher intensity and vice versa. Inspecting the image labeled a), we can
see similar patterns as we already identified in our previous research [43]. In the image
showing green super-pixels, those are a bit more focused on the central thorax body re-
gion in contrast to the marked red super-pixels which are spread more across the whole
upper body including shoulders and neck. Also, the intensity of the red super-pixels is a
bit higher in those regions.

Fig. 8. Explaining predictive model decisions using LIME method. The image below the a) label
represents the super-pixels which positively impact towards the COVID-19 class, while the image
below the b) label is showcasing the super-pixels which negatively impact towards the COVID-19
class.

Comparing those two aggregated positive and negative interpretable representations
could also be challenging, trying to compare specific regions of each sample. Therefore,
we decided to aggregate those two into only one interpretable representation, which would
possibly give us more clear insight into the regions which the predictive model is identi-
fying as the ones having positive or negative impact. Such aggregated interpretable rep-
resentation is presented on Figure 9 labeled as a). As we can observe from the image, we
can see that the most green super-pixels are still positioned in more central part of thorax
body region, while the red super-pixels are also still positioned more on the outer parts of
upper body. Interestingly, we can see the that green super-pixels also cover a region of the
aortic arch and a part of the heart, which is similar to findings in our previous research.
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Also, if we compare interpretable representations of our predictive model with similar
researches [13, 53] and their interpretations, we can observe that our green super-pixels
are in similar positions as in the most intense regions of the mentioned researches.

Fig. 9. Comparison of aggregated explanations between TL-DE and TL-GWO. The image below
the a) label represents the TL-DE aggregated LIME explanations, while the image below the b)
label is showcasing TL-GWO aggregated LIME explanations.

Interpretable representation labeled as b) presented on Figure 9 is also showing aggre-
gated representation obtained from LIME but for the TL-GWO variation of the HPO-TL
method. Since by the accuracy classification metric the TL-GWO lagged behind only by
0.34%, we were curious how does the representations from best performing model ob-
tained by TL-GWO look like in comparison to the TL-DE. Comparing those two images,
we can see that regardless of lagging behind for a small amount, the visual representation
reveals that the difference is quite noticeable. In the case of TL-DE, the bounds of each
super-pixel are more sharp and the border between them is more noticeable, while in the
case of TL-GWO the borders of super-pixels are more blurred and the border between
them is not so distinct. Overall, the TL-DE super-pixels are more exact in contrast to TL-
GWO. Also, the green super-pixels of TL-GWO cover the majority of the upper body,
which is not necessarily useful when trying to detect particular affected regions.

6. Conclusions

In this work, we proposed a generalized image classification method, based on GWOTLT
[43], that trains a CNN using transfer learning with fine-tuning approach, in which hyper-
parameter values are optimized with an optimization algorithm. Such generalized version,
named HPO-TL, enables us to use different optimization algorithms which can be useful
when dealing with various domain problems where different optimization algorithms can
result in better final predictive model. The generalized method has been applied on a
dataset of COVID-19 chest X-ray images using three different optimization algorithms
DE, GWO, and GA. The obtained results showed that the best performing variation of
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HPO-TL method is TL-DE which featured DE as an optimization algorithm. The best
performing TL-DE also showed an impressive performance in all classification metrics
when comparing to the conventional approaches of training a CNN.

We have also adopted a local interpretable model-agnostic explanations approach to
provide insights of the COVID-19 disease, based on classification of chest X-rays. In
contrast to straight-forward usage of such explanations, we have aggregated them into
one, trying to get an insight on overall perception of a predictive model over all test
samples instead of anayzing one by one. Thus, such approach was able to provide some
interesting insights into the characteristics of COVID-19 disease and predictive model
behaviour, by performing qualitative explanations upon the results of the trained model
classification of a set of X-ray images.

In the future, we would like to expand our research to utilize different CNN architec-
tures and conducted qualitative evaluations using additional methods such as SHAP [24].

Acknowledgments. The authors acknowledge the financial support from the Slovenian Research
Agency (Research Core Funding No. P2-0057).

References

1. et al., M.A.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/, software available from tensorflow.org

2. Apostolopoulos, I.D., Mpesiana, T.A.: Covid-19: automatic detection from X-ray images uti-
lizing transfer learning with convolutional neural networks. Physical and Engineering Sciences
in Medicine 43(2), 635–640 (jun 2020)

3. Apostolopoulos, I.D., Mpesiana, T.A.: Covid-19: automatic detection from x-ray images utiliz-
ing transfer learning with convolutional neural networks. Physical and Engineering Sciences in
Medicine p. 1 (2020)
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