
DOI: 10.2298/CSIS121210067R

Possible Realizations of Multiplicity Constraints

Zdeněk Rybola1 and Karel Richta23

1 Faculty of Information Technology, Czech Technical University in Prague
Thákurova 9, 160 00 Prague

zdenek.rybola@fit.cvut.cz
2 Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, 118 00 Prague
richta@ksi.mff.cuni.cz

3 Faculty of Electrical Engineering, Czech Technical University in Prague
Technická 2, 160 00 Prague

richta@fel.cvut.cz

Abstract. Model Driven Development (MDD) approach is often used to
model application data and behavior by a Platform Independent Model
(PIM) and to generate Platform Specific Models (PSMs) and even the
source code by model transformations. However, these transformations
usually omit constraints of the binary association multiplicities, especially
the source class optionality constraint.
This paper is an extended version of the paper ’Transformation of Special
Multiplicity Constraints - Comparison of Possible Realizations’ presented
at MDASD workshop at the FedCSIS 2012 conference. In this paper, we
summarize the process of the transformation of a binary association from
a PIM into a PSM for relational databases. We suggest several possi-
ble realizations of the source class optionality constraint to encourage
the automatically transformation and discuss their advantages and dis-
advantages. We also provide experimental comparison of our suggested
realizations to the common realization where this constraint is omitted.

Keywords: MDD, UML, transformation, multiplicity constraints, source class
optionality constraint, OCL, SQL.

1. Introduction

Model Driven Development (MDD) is a development process that is based on
modeling and transformations. In our case, it is based on the Model Driven Ar-
chitecture (MDA) developed by the Object Management Group (OMG) [8, 10].
This process usually consists of creating a set of models of various abstraction
levels and points of view. The process also consists of various transformations
between these models. These transformations usually support both forward
engineering and reverse engineering, the processes of transforming abstract
models into more specific models or source code, or specific models into more
abstract models, respectively.

The most common use case of MDD approach is the development of a
Platform Independent Model (PIM) of the application data and its transforma-
tion to a Platform Specific Model (PSM) for a relational database, as well as

Zdeněk Rybola and Karel Richta

the generation of SQL scripts to create the database schema. However, these
transformations usually do not take the multiplicity constraints into account, and
therefore a database schema created according to the generated PSM can be
inconsistent according to the defined multiplicity constraints and the database
can contain invalid data.

Therefore, in this paper, we deal with the transformation of binary associ-
ations along with their multiplicity constraints from a PIM into a PSM for rela-
tional databases. Many CASE tools such as Enterprise Architect [16] support
the model transformation and the source code generation. However, they have
many limitations regarding the integrity and multiplicity constraints [3]. The tools
usually do not transform these constraints to an implementation.

In particular, we focus on a special case of a multiplicity constraint – the
source class optionality constraint – that we consider the most often neglected
constraint during the transformations. We define this constraint using another
formalism then the grafical notation of the class diagram of the Unified Mod-
eling Language (UML) – as an invariant in the Object Constraint Language
(OCL). We believe such a definition can be transformed into the implementa-
tion more straightforwardly than it is done so far. For instance, OCL tools such
as DresdenOCL Toolkit [4] can be used to transform such a constraint into an
implementation.

Our motivation for this research is the intent to bring this issue in attention
of the community of data analysts and database designers and to show that
this constraint can be quite easily realized in common relational databases. We
also believe that the integration of the suggested realizations in the transforma-
tion processes of CASE tools may save a lot of effort of analysts and database
designers when trying to design a consistent database and even improve the
database consistency as this effort is usually neglected. Therefore, we want to
stimulate the motivation of CASE tool and transformation tool builders to include
a realization for such a constraint in their tools to support this case of the MDD
approach. Therefore, we propose several possible implementations for this con-
straint in relational databases and we discuss advantages and disadvantaged
of each suggested implementation. Finally, we provide an experimental com-
parison of suggested implementations to the common approach, without the
source entity optionality constraint implemented. The comparison is done from
the point of view of database operations – inserts to the database, queries to
the database and deletes of the data from the database.

This paper is an extended version of [14]. It extends the work presented
in [13] and [11] where the rules for the transformation of a binary association
from a PIM into a PSM are discussed. The contributions of this paper are the
constraint implementation, including the update and delete operations, and new
experiments for the delete operation and more suitable examples.

The paper is structured as follows: In Section 2, we present a running ex-
ample to define basic assumptions and illustrate our approach. In Section 3,
we discuss related work and existing tools and their problems in comparison
to our approach. In Section 4, the transformation of a binary association and

1622 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

its multiplicity constraints from a PIM into a PSM for a relational database is
discussed using an example. Various possible realizations of the special con-
straint for the source entity optionality are defined and discussed in Section 5.
Experiments and their results are discussed in Section 6. Finally, in Section 7,
the conclusions are given.

2. Running Example

In the running example, we use UML to express models and we use SQL as
the domain specific language for relational databases used in the implementa-
tion. UML [9, 2] is a general-purpose visual modeling language for specifying,
constructing, and documenting the artifacts of systems. Additional constraints
for UML models are usually defined in OCL [7], which is a part of UML spec-
ification. OCL is a specification language used to define restrictions, such as
invariants, pre- and post-conditions for the connected model elements. The in-
variants are conditions that must be satisfied by all instances of the element.
OCL can also be used as a general object query language.

In the PIM, each object of a problem domain is represented by a class – in
some languages called an entity – with a set of attributes and its instances [2].
The classes are linked together by associations to represent the relationships
between the objects – instances of the respective classes. Each association has
its name to describe the meaning of the relationship and multiplicities to define
the number of instances of each class related to each other. Fig. 1 shows a
general form of modeling a binary association by the means of a UML class
diagram [2].

Fig. 1. Labeling of the multiplicities of an association between two classes

The minimal multiplicity defines the minimal number of instances of one class
related to a single instance of another class. In Fig. 1, value k denotes the min-
imal multiplicity of instances of the ClassA for a single instance of the ClassB
and the value m denotes the minimal multiplicity of instances of ClassB for a
single instance of the ClassA. Although this constraint can be generally used to
restrict the minimal number of instances to any value possible, for instance at
least 11 members for a soccer team, usually the constraint is only used to re-
strict the optionality of the instances – if there needs to be at least one instance

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1623

Zdeněk Rybola and Karel Richta

related – value k = 1 – or if there can be no instances related at all – value k =
0.

The maximal multiplicity – also called cardinality – defines maximal num-
ber of instances of one class related to a single instance of another class. In
Fig. 1, the values l and n denote the maximal multiplicities of the ClassA and
ClassB, respectively. Although this constraint can be generally used to restrict
the maximal number to any possible value, for instance at most 11 members of
a soccer team playing in a match at a time, usually the constraint is used just to
distinguish if there can be just one instance related – value l = 1 – or there can
be a collection of instances related to the same instance – value l = *.

Further on, we will deal only with the minimal multiplicity values of 0 and 1
and the maximal multiplicity values of 1 and *. However, our approach can be
generalized for any special multiplicity values, whenever we want to restrict the
number to other values.

When transforming the PIM into a PSM for a relational database, each one–
to–many association is transformed to a foreign key constraint. Because the
foreign key is unidirectional, we need to distinguish between the source and
target class or table. The source class of an association is the class that is
transformed into the table where the foreign key value is situated. The target
class of an association is the class that is transformed into the table that is
referred by the foreign key constraint. Usually, the source class is the class at
the end of the association where the maximal multiplicity value is n = * and
the target class is the class at the end of the association where the maximal
multiplicity value is l = 1. Also notice that the association in the PIM is non-
directional. That is because on the PIM level we only define that two classes
of instances are related and define the association multiplicities but we do not
define the direction of the association’s realization – the direction is defined on
the PSM level or during the transformation. The determination of the source
and target classes of an association are discussed in more detail in [13].

In this paper, we focus mainly on the source class multiplicity constraint used
in one-to-many relationships where the minimal multiplicity value of the many -
class is equal to one. This constraint is often used in models when we need to
restrict the required existence of both related entities in such a relationship –
none of them can exist without the other one. Our approach will be illustrated on
an example of ordered items, where each order must include at least one item
and each item must be part of an order. The PIM of the example is shown in
Fig. 2. According to the maximal multiplicities of the association, the OrderItem
class is the source class and the Order class is the target class.

3. Related Work

The problem of the transformation of a PIM of the application data into the re-
lational database is not new. There is a lot of books such as Rob and Coronel
[12] describing the principles of the data modeling and the transformation tech-
niques to the database. It is also a part of the information technology education

1624 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

Fig. 2. PIM of one-to-many relationship of an order and its items

in most universities worldwide. Tools such as DresdenOCL [4] and Enterprise
Architect [16] provide the support for such a modeling and transformations.

Rob and Coronel [12] presented the basic transformation of an ER model
into database tables. They utilized FOREIGN KEY constraint to realize binary
relationships and UNIQUE and NOT NULL constraints to restrict the multiplic-
ities. They also suggested using an ON DELETE RESTRICT clause for the
FOREIGN KEY constraint to prevent violation of the target entity optionality
constraint, if required. However, this clause restricts only the target entity op-
tionality. Furthermore, they suggested no solution to restrict the source entity
optionality. Their suggested transformation can be also used for the transfor-
mation of a PIM into a PSM for a relational database as discussed in Section 4
with additional constraint for the source class optionality constraint.

In [3], Cabot and Teniente identify various limitations of a current code gen-
eration tools. The limitations concern the integrity constraints defined in PIMs,
including OCL constraints and multiplicity constraints. In our paper, we focus
on the multiplicity constraints and propose possible realizations of such con-
straints in relational databases. Regarding these constraints, Cabot and Te-
niente [3] identified only one tool called Objecteering/UML [15] that is able to
correctly transform multiplicity constraints. In addition to the tools compared in
[3], we also identify another CASE tool with similar limitations. Enterprise Ar-
chitect (EA) [16] is a complex commercial CASE tool for maintenance of mod-
els, their transformations, source code generation and reverse engineering pro-
cess from a source code into PSM. Besides, it provides transformations from
PIM data model to a specific database PSM model, and a generation of SQL
source code from such a PSM model. However, the default transformations of
Enterprise Architect do not consider the optionality of associations to determine
neither the direction of the relationship implementation by the FOREIGN KEY
constraint nor the required multiplicity restrictions. It does not support special
multiplicity values either. Although EA allows the definition of OCL constraints,
the constraints are not realized by the transformations.

In [1], the authors also identify a problem of current relational databases in
the realization of a source entity optionality constraint – they call this constraint
in the database an inverse referential integrity constraint (IRIC). The authors
also present an approach to the automated implementation of the IRICs by

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1625

Zdeněk Rybola and Karel Richta

database triggers in a tool called IIS*Case. This tool is designed to provide
a complete support for developing database schemes including the check of
the consistency of constraints embedded into the DB [1] and the integration of
subschemas into a relational DB schema [5].

DresdenOCL Toolkit [4, 17] is a research project at the Technical University
of Dresden. After loading a model and its instance along with a set of OCL con-
straints, the tool provides OCL syntax checking and OCL constraints evaluation.
It also provides generation of SQL tables and views according to the model.
OCL constraints are transformed into database views containing only records
satisfying the constraint. The tool also offers transformation of the model with
constraints into AspectJ for the Java source code. However, the DresdenOCL
Toolkit does not consider the minimal multiplicity constraints of associations in
the PIM to determine neither the source and target tables for the FOREIGN
KEY constraint nor the other multiplicity constraints’ realization.

4. Transformation of PIM into PSM for Relational Databases

Our approach to the transformation of a data PIM into a PSM for relational
databases has been introduced in [13, 11]. This section briefly summarizes our
approach.

In general, data is stored as rows in tables with a set of columns to store
specific data in a relational database. Therefore, the classes of PIM are trans-
formed into database tables with the columns corresponding to the attributes.
Each row in a database table is identified by a PRIMARY KEY. The PSM gen-
erated by the transformation of the PIM of our running example (see Fig. 2)
is shown in 3. The class Order is transformed into the Order table and the
class OrderItem is transformed into the OrderItem table. Also notice the PRI-
MARY KEY columns orderID and orderItemID and constraints denoted with PK
stereotype and prefix to identify individual rows in the Order and the OrderItem
tables, respectively. In the following, we will use the source and target tables as
the tables generated by the transformation of the source and target classes of
the PIM, respectively, to discuss the realization of the multiplicity constraints in
the PSM.
Associations defined in the PIM are realized by a mechanism called FOREIGN
KEY [12]. This mechanism adds a special column or columns to the source
table and defines the FOREIGN KEY constraint linking the FOREIGN KEY col-
umn or columns of the source table to the PRIMARY KEY column or columns
of the target table. In the Fig. 3, the orderID column in the OrderItem table is
defined for the FOREIGN KEY value and the FOREIGN KEY constraint is de-
fined for that column to refer to the orderID column of the Order table. Using
this mechanism, each row can refer only to a single target row, thus we can
realize only one-to-one and one-to-many associations and the cardinality of the
target table is always restricted to 1 [6]. However, many-to-many associations
can be transformed into two many-to-one associations and an association table
and these can be then transformed as usual [12].

1626 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

Fig. 3. PSM of one-to-many relationship of an order and its items

In fact, this restriction of the foreign key mechanism is the most important
clue to determine the direction of the association. In the running example in Fig.
2, the cardinality n = * requires the FOREIGN KEY in the table OrderItem which
refers to table Order as shown in Fig. 3, and therefore it automatically restricts
the cardinality of the target table to l = 1.

The target table optionality k = 1 can be realized by the NOT NULL con-
straint defined on the FOREIGN KEY column orderID in the OrderItem table.
This constraint enforces each row in the source table OrderItem to refer to a
row in the target table Order and thus restricting the target table optionality.
Furthermore, for the completeness of the multiplicity constraints discussed, a
UNIQUE constraint on the FOREIGN KEY column of the source table may be
used to restrict the source table cardinality n = 1 for one-to-one associations,
as the constraint prevents the insertion of more rows in the source table with
the same FOREIGN KEY value. However, this is not the case of our running
example.

The only multiplicity value we have not restricted yet is the source table
optionality m = 1. There is no possible way to restrict the source entity optionality
by the means of the FOREIGN KEY. As mentioned before, the usual method is
to omit this restriction and to provide the constraint checking by the application
that uses the database schema [12, 13]. However, we suggest a method to
express this constraint by an OCL invariant, and realize it in various ways in
SQL to keep the database consistent, independently of the application. The
OCL invariant is shown in Fig. 4.

context o:Order inv minItems:
OrderItem.allInstances()->exists(i|i.orderID = o.orderID)

Fig. 4. OCL constraint for the required source entity optionality

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1627

Zdeněk Rybola and Karel Richta

This constraint can be violated only by three operations:

1. If a new order is inserted with no items referring to this new order.
2. If the last item of an order is updated, changing its order to another one.
3. If the last item of an order is deleted.

Therefore, when executing these operations, the checks of the defined OCL
invariant must be executed to ensure the data consistency. Moreover, in a re-
lational database, one more operation can violate the constraint: if the order’s
ID is changed to a new value with no items referring to it. But, this operation
also violates the FOREIGN KEY constraint, and therefore it is not possible to
execute such an operation without changing the order’s items, as well.

5. Realization of the Source Table Optionality Constraint

SQL scripts for creating database tables can be generated from the PSM by
many tools including the EA. The creation scripts for the database tables used
in the following examples of realizations of the source table optionality constraint
are shown in Fig. 5. All examples are given in the Oracle SQL syntax.

CREATE TABLE Order (
orderID NUMBER(8) NOT NULL,
dateOrdered DATE,
paid CHAR(1));

CREATE TABLE OrderItem (
orderItemID NUMBER(8) NOT NULL,
orderID NUMBER(8) NOT NULL,
name VARCHAR2(50),
price NUMBER(8,2),
quantity NUMBER(8));

ALTER TABLE Order ADD CONSTRAINT PK_Order
PRIMARY KEY (orderID) USING INDEX;

ALTER TABLE OrderItem ADD CONSTRAINT PK_OrderItem
PRIMARY KEY (orderItemID) USING INDEX;

ALTER TABLE OrderItem ADD CONSTRAINT isContained
FOREIGN KEY (orderID) REFERENCES Order (orderID);

Fig. 5. SQL script for creating database tables of the running example

In some cases, after adding another constraint for checking the existing
items for an order, we could not be able to insert new data because of two

1628 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

mutually dependent checks – the constraint checking existing items for an or-
der, and the FOREIGN KEY constraint isContained requiring an existing order
for each of the order item. This conflict can be solved by deferring one of the
constraints [6]. Defining a constraint as deferrable causes the database engine
to check the constraint at the end of the transaction instead of checking it in
the time of inserting the data. By the deferred FOREIGN KEY constraint, we
can insert the order items referring to the order not inserted yet, and then to
insert this order. The other constraint would be evaluated when inserting the
order but, in that time, there already exist the items referring to it. On the other
hand, the FOREIGN KEY constraint is not evaluated while inserting the items,
it is evaluated at the end of the transaction when the order has already been
inserted. The deferred FOREIGN KEY constraint can be defined as shown in
Fig. 6.

ALTER TABLE OrderItem ADD CONSTRAINT isContained
FOREIGN KEY (orderID) REFERENCES Order (orderID)
DEFERRABLE INITIALLY DEFERRED;

Fig. 6. SQL script for creating the deferrable FOREIGN KEY constraint

The following subsections deal with the possible implementations of the re-
quired source table optionality constraint and their pros and cons.

5.1. Database Views

The most straightforward realization of the constraint are the database views
[13, 11]. Each constraint is transformed into a database view to filter only the
valid data stored in a table. This approach is inspired by DresdenOCL Toolkit
[4] that transforms defined OCL constraints into the database views. These
views contain only the rows that satisfy the defined constraint using the WHERE
clause. The realization of the constraint for the required optionality of OrderItem
in Fig. 3 can be defined as shown in Fig. 7.

CREATE VIEW valid_orders AS
SELECT o.* FROM Order o WHERE EXISTS
(SELECT 1 FROM OrderItem i WHERE i.orderID = o.orderID)

Fig. 7. SQL script for creating the view to select only valid orders

The realization by the database views does not increase the time required
for inserting new entries to the tables because the data is inserted directly into

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1629

Zdeněk Rybola and Karel Richta

the table without any additional constraints checks. On the other hand, the se-
lection of valid data contains the evaluation of the condition of the view, which
increases the time required to query the data.

This approach does not automatically ensure consistency of the data stored
in the database. We are still able to insert invalid data, which can violate the
multiplicity constraints defined in the PIM. The application itself must use the
view to work with the valid data only and must provide support for the correction
of the invalid data. For this process, an inverse view can be useful to detect the
invalid data violating the constraints. Such an inverse view can be defined as
shown in Fig. 8.

CREATE VIEW invalid_orders AS
SELECT o.* FROM Order o WHERE NOT EXISTS
(SELECT 1 FROM OrderItem i WHERE i.orderID = o.orderID)

Fig. 8. SQL script for creating the view to select invalid orders

Updatable Database Views. To overcome this problem of the invalid data be-
ing hidden by the view, DML operations should be executed on the view instead
of executing them over the tables directly. To be able to execute DML operations
on the view, the view must be updatable. A view is updatable, if:

– it does not use a DISTINCT quantifier, a GROUP-BY or a HAVING clause,
– all derived columns appear only once in the SELECT list,
– each column of the view is derived from exactly one table,
– and the table is used in the query expression in such a way that its primary

key or other candidate key relationships are preserved [6].

CREATE VIEW valid_orders AS
SELECT o.* FROM Order o WHERE EXISTS
(SELECT 1 FROM OrderItem i WHERE i.orderID = o.orderID)
WITH CHECK OPTION

Fig. 9. SQL script for creating the view to select only valid orders with CHECK OPTION
clause

If the view is updatable, then DML operations like inserts, updates and deletes
can be executed on the view. In fact, the operations are translated to the corre-
sponding underlying table or tables, and executed on the data directly in these
tables. Therefore, it is possible not only to manipulate with the data which is

1630 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

not accessible through the view, but it is also possible to violate the source ta-
ble optionality constraint. To prevent such operations that affect the data which
is not selected by the view, the view must be defined with the WITH CHECK
OPTION clause [6]. This clause prevents an insertion of not accessible records
and update operations that make accessible records inaccessible by the view.
Example of the view definition with the check option is shown in Fig. 9.

INSERT INTO valid_orders (ORDERID, ORDER_DATE, PAID)
VALUES (3, sysdate, ’N’);

Fig. 10. SQL script for inserting a new order using the view with CHECK OPTION clause

If we try to insert a new order to the database using the view as shown in Fig.
10, an exception is thrown as shown in Fig. 11.

Error report:
SQL Error: ORA-01402: view WITH CHECK OPTION
where-clause violation

01402. 00000 - "view WITH CHECK OPTION where-clause violation"

*Cause:

*Action:

Fig. 11. Exception thrown by Oracle database when trying to insert new record that is
not accessible by the view used for insertion

Using the updatable view with a check constraint, we can ensure that no
invalid data is inserted into the Order table. However, we are still able to violate
the source entity optionality constraint either by deleting the last item in the
order or by updating the last item to another order. To prevent such operations,
a view with CHECK OPTION should be defined joining the Order table and the
OrderItem table as shown in Fig. 12. In this view, an OUTER JOIN must be
used to filter out the orders without any item, and thus violating the WHERE-
clause as shown in Fig. 11. However, this view is not updatable because of that
OUTER JOIN, and therefore any updates and deletes result in an exception as
shown in Fig. 13.

5.2. CHECK Constraint

In relational databases, CHECK constraint can be used to restrict the values in
a column of a table [6]. The constraint is checked whenever a value is inserted
or updated in the column, and the operation is rolled back when the constraint is
violated. Such a constraint can restrict a range for the numeric values or provide

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1631

Zdeněk Rybola and Karel Richta

CREATE VIEW valid_items AS
SELECT i.*,
(SELECT COUNT(*) FROM OrderItem WHERE orderID = o.orderID) items
FROM Order o
LEFT OUTER JOIN OrderItem i ON (o.orderID = i.orderID)

WHERE (SELECT COUNT(*)
FROM OrderItem WHERE orderID = o.orderID) > 0

WITH CHECK OPTION;

Fig. 12. SQL script creating the view on the orders and their items with a CHECK OP-
TION clause

Error report:
SQL Error: ORA-01779: cannot modify a column which maps to
a non key-preserved table

01779. 00000 - "cannot modify a column which maps to
a non key-preserved table"

*Cause: An attempt was made to insert or update columns
of a join view which map to a non-key-preserved
table.

*Action: Modify the underlying base tables directly.

Fig. 13. Exception thrown by Oracle database when trying to insert a new record that is
not accessible by the view used for the insertion

a list of valid values. By this approach, we can define a CHECK constraint to al-
low only the primary key values of the orders that are referred by the rows in the
order items’ table. According to the SQL:1999 specification [6], the constraint
for the situation in Fig. 3 can be defined as shown in Fig. 14.

ALTER TABLE Order ADD CONSTRAINT order_check
CHECK (orderID IN (SELECT orderID FROM OrderItem))

Fig. 14. SQL script to create the CHECK constraint

As the CHECK constraint and the FOREIGN KEY constraint are mutually de-
pendent, one of them must be defined as deferrable. Other ways, we would not
be able to insert a new record to any of the two tables. We will suggest the
deferrable FOREIGN KEY constraint as shown in Fig. 6.
By this realization, the data consistence is ensured, since it is impossible to
insert invalid data. However, there are some problems with this implementa-
tion. One of the problems is as follows: if a violation is detected by the deferred
constraint, the whole transaction is rolled back because it is not possible to de-
termine which command caused the violation [6]. Another important problem

1632 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

Error report:
SQL Error: ORA-02251: subquery not allowed here
02251. 00000 - "subquery not allowed here"

*Cause: Subquery is not allowed here in the statement.

*Action: Remove the subquery from the statement.

Fig. 15. Exception thrown by the Oracle database when trying to create the CHECK
constraint

of this realization is the fact that, although specified by the SQL:1999 speci-
fication [6], none of the current common database engines support this kind
of the CHECK constraints because it contains a subquery. The Oracle data-
base returns the error message (see Fig. 15) when trying to create the CHECK
constraint.

Therefore we cannot use this realization until the database engines provide
the support for this specification.

5.3. Triggers

Triggers are special procedures available in many relational databases [6] con-
nected to some special events in the table. In Oracle database, each trigger
can be defined to be executed BEFORE or AFTER such an event, while the
event can be any statement to insert new rows, update rows or delete rows, in-
cluding combinations. Furthermore, the triggers can be defined to be executed
for each affected row or for all rows affected by the statement at once. During
the execution of the trigger, the original row data and the new row data can be
accessed by special keywords. In the following, we will use the syntax of the
Oracle PL/SQL language to define triggers but similar approach can be used in
other databases and database languages as well. The generic form of triggers
for inverse referential integrity constraint can be seen in [1].

In the context of constraints checking, a trigger can be defined to check
the validity of the inserted data. Such a trigger could throw an exception if the
inserted data is invalid. For the situation in Fig. 3, the trigger would check the
existence of order items for the inserted order. The insert trigger for Oracle 10g
database can be defined in Oracle PL/SQL as shown in Fig. 16.

This trigger is executed before each insert statement, which is executed for
the Order table. The order items referring to the inserted order by its PRIMARY
KEY are being searched. If no items are found, the exception is thrown, which
causes the statement to roll back. As this trigger is always executed in the
time of an order insertion, the items must be inserted before this statements. To
enable it, the FOREIGN KEY constraint on the orderID column of the OrderItem
table must be defined as deferrable (see Fig. 6).

The trigger ensures the data inserted into the database is consistent, as
it does not allow to insert the invalid data violating the multiplicity constraint.
However, the check is executed for each order insertion or update searching

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1633

Zdeněk Rybola and Karel Richta

CREATE OR REPLACE TRIGGER check_existing_items_insert
BEFORE INSERT ON Order
FOR EACH ROW
DECLARE
l_count NUMBER;

BEGIN
SELECT COUNT(*) INTO l_count
FROM OrderItem i
WHERE i.orderID = :new.orderID;
IF l_count = 0 THEN
raise_application_error (-20910,
’order item not found for the inserted order’);

END IF;
END

Fig. 16. SQL script for creating the trigger to check the constraint violation while inserting
new orders

for the related items. This search takes the longer time the more records have
already been stored in the table. However, this searching time can be decreased
by defining an index on the FOREIGN KEY column orderID in the source table
OrderItem. For the situation in Fig. 3, the index can be defined as shown in Fig.
17.

CREATE INDEX items_order_index ON OrderItem (orderID);

Fig. 17. SQL script for creating the index on orders of items

Moreover, this trigger does not prevent the violation of the source table option-
ality constraint by updating or deleting the items of an order. To prevent such
violations, another trigger must be defined, see Fig. 18. This trigger checks, if
there exists at least one order item for the currently referred order after updating
or deleting the order item.

However, this trigger causes a mutating table exception, see Fig. 19, when
trying to update or delete an item. This exception is caused because a query
is executed on the table that is currently being updated and therefore the data
cannot be reliable to resolve the query.

This problem can be solved by a trigger fired AFTER the event on the
STATEMENT level as shown in Fig. 20. This trigger is fired after the opera-
tion of update or delete was executed and all the data was updated. Then, the
trigger checks if there are any orders without the items. If it finds such orders,
it throws an exception that causes the whole transaction to roll back. However,
such a trigger can not detect which item caused the constraint violation.

1634 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

CREATE OR REPLACE TRIGGER check_existing_items_up_del
BEFORE UPDATE OR DELETE ON OrderItem
FOR EACH ROW
DECLARE
l_count NUMBER;

BEGIN
SELECT COUNT(*) INTO l_count
FROM OrderItem i
WHERE i.orderID = :old.orderID
and i.orderItemID <> :old.orderItemID;

IF l_count = 0 THEN
raise_application_error (-20910,
’No item left for the order ’ || :old.orderID || ’!’);

END IF;
END;

Fig. 18. SQL script for creating the trigger to check the constraint violation while updating
or deleting items

Error report:
SQL Error: ORA-04091: table ORDERITEM is mutating,

trigger/function may not see it
ORA-06512: at "CHECK_EXISTING_ITEMS_UP_DEL", line 4
ORA-04088: error during execution of trigger

’CHECK_EXISTING_ITEMS_UP_DEL’
04091. 00000 - "table %s.%s is mutating, trigger/function
may not see it"

*Cause: A trigger (or a user defined plsql function that
is referenced in this statement) attempted to look
at (or modify) a table that was in the middle of
being modified by the statement which fired it.

*Action: Rewrite the trigger (or function) so it does not read
that table.

Fig. 19. Exception thrown by the Oracle database when trying to update or delete a
record from the OrderItem table

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1635

Zdeněk Rybola and Karel Richta

CREATE OR REPLACE TRIGGER check_existing_items_up_del
AFTER UPDATE OR DELETE ON item_table_trigger
DECLARE
l_count NUMBER;

BEGIN
SELECT COUNT(*) INTO l_count FROM (

SELECT o.orderID
FROM order_table_trigger o
LEFT OUTER JOIN item_table_trigger i
ON (o.orderID = i.orderID)

GROUP BY o.orderID HAVING COUNT(i.orderItemID) = 0);

IF l_count > 0 THEN
raise_application_error (-20910,
’No item left for an order!’);

END IF;
END;

Fig. 20. SQL script for creating the trigger to check the constraint violation after update
or delete of items

6. Experiments

To compare our proposed implementations, we made some experiments. These
experiments compare our proposed realizations with the commonly used real-
izations without the source table optionality constraint checking in three areas -
in inserting new orders, in selecting existing orders, and in deleting order items.

The suggested implementation by the triggers requires the select operations
being executed during the insertion of the new entries to the table. Similarly, the
insert operations by the view with the CHECK OPTION require a condition eval-
uation. Therefore we made an experiment to compare our suggested implemen-
tations by the triggers and views with the CHECK OPTION with the commonly
used realization omitting this constraint. In our experiment, the implementation
by the check constraint should be also tested but it cannot be implemented in
the Oracle database, because it does not support the queries in the CHECK
constraints. The insertion experiment is described in Section 6.1.

The suggested realization by the triggers also requires additional select op-
erations during the deletion of the order items to check whether there always
remains at least one item for each order. Therefore, we made another exper-
iment to compare the execution time of our proposed implementation by the
triggers with the common implementation without such a validation. The exper-
iment is described in Section 6.2.

On the other hand, the suggested realization by the views used to select only
the valid data requires an additional condition evaluation during the selection.
Therefore, we also made the experiments to compare the time of the selection

1636 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

of the entries from the Order table directly, with the time of the selection using
the view valid orders. The experiment is described in Section 6.3.

Before each experiment and test variant, the database should contain from
one to five order items for each of the already existing orders according to the
following formula:

(orderID mod 5) + 1

items, where OrderId is the identifier of the order. To such a database, new
orders and items are inserted, existing order items are deleted and existing
orders are searched.

We used Oracle 10g XE database installed on Acer TravelMate 7730 (In-
tel(R) Core-(TM)-2 Duo CPU @ 2.00GHz with 2GB RAM, Windows 7 Profes-
sional 32-bit) for our experiments. The block size was set to 8kB and the data-
base buffer was 52736 blocks.

6.1. The Insert Experiment

The experiment presents the time comparison of the process of inserting new
entries for various implementations of a one-to-many relationship in a relational
database. We developed several scripts for creating the database tables with
the constraints and appropriate insert scripts for each of the implementation to
simulate the process of inserting new entries into the database.

Table 1 presents the constraint implementation for each variant. The Simple
variant is the standard implementation of one-to-many relationship with a pri-
mary key in both tables and a foreign key, which refers to the table Order, see
Fig. 5. This variant does not restrict the minimal multiplicity for the items in the
order. The View variant uses the view with the CHECK OPTION shown in Fig. 9
to insert new entries while checking whether there exist the items for this order.
The View with an index variant uses the same view with the index defined in
Fig. 17. The Trigger variant adds a trigger, as shown in Fig. 16, to check an ex-
isting item for each inserted order. In this variant, the trigger prevents inserting
the orders without any items. Finally, the Trigger with an index variant adds the
index on the orderID in the table OrderItem, as shown in Fig. 17, to speed up
the search of items by their order.

Table 1. Variants of create scripts for various constraint realizations (+ implemented, *
implemented deferrable, - not implemented)

Variant primary keys foreign key index trigger view
Simple + + - - -
View + * - - +
View with index + * + - +
Trigger + * - + -
Trigger with index + * + + -

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1637

Zdeněk Rybola and Karel Richta

The pseudo-SQL code of the insertion procedure for all the tested variants is
given in Fig. 21. The script inserts several items with a reference to the inserted
order. The number of the items of the same order differs in checking the options
of inserting no, one or more items for the same order, respectively. While insert-
ing and order, the number of its items is determined by the following formula:

(orderID mod 5).

The commit operation comes after each group of items of the same order to
apply the constraint check. In the case of the Simple variant, the items are
inserted after the order is inserted, because the FOREIGN KEY constraint is
checked immediately, while in the case of other variants, the items are inserted
before the order is inserted.
Fig. 22 presents the execution time of the insertion of 100 new orders for each
of the variants in database already containing a various number of entries as
described in the beginning of Section 6.

As we can see, the Simple variant proved that the execution time is nearly
independent on the data already stored in the database since there are no con-
straints to check during the insertion. However, the optionality of the order items
for each of the orders is not checked and even the orders without any items
are inserted. The Trigger variant enforces only valid orders with at least one
item to be inserted. However, the constraint check slows down the evaluation
when more entries already exist in the tables. The Trigger with the index variant
proved to be able to eliminate this problem and to be even faster than the Sim-
ple variant. Similar results were measured for the view implementations. The
View variant became even slower than the Trigger variant because of checking
the view condition after trying to insert new data. However, the View with the
index variant eliminates the slowdown by the index and is almost equivalent to
the Trigger with the index variant. All the measured data is summarized in Table
2.
The strange decrease of the time required for the insertion of data to the data-
base containing 10000 and 100000 records in the Simple method is proba-
bly caused by the checkpoint processing. In the Oracle database, records are
stored in data blocks in the buffer cache and the checkpoint process synchro-
nizes the buffer cache with the data blocks in the persistent storage – usually
data files. Also, for each experiment run, we delete the records inserted in the
last run to insert the new data in the same database state. Therefore, some data
blocks are loaded to the buffer cache just before the insert starts. Then, when
inserting into a small database, there is only a few of data blocks is available to
insert the data and the checkpoint process blocks the insertion when the blocks
are locked for synchronization. On the other hand, in the large database, a lot
of blocks is available in the buffer cache that are not locked by the checkpoint
process and thus are available for insertion.
However, this applies only for the Simple variant as there are no special con-
straints aside the PRIMARY KEY that need to be checked and which cause
the serialization of data access. Additionally, in all the variants except the Sim-

1638 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

CREATE PROCEDURE insert_values (p_orders_count)
IS
BEGIN
l_count := 0;
SELECT COALESCE(MAX(orderItemID)+1,1)
INTO l_items_count FROM OrderItem;

SELECT COALESCE(MAX(orderID)+1,1)
INTO l_orders_count FROM Order;

l_starting_orders_count := l_orders_count - 1;

FOR l_iter IN 1..p_orders_count
LOOP
INSERT INTO Order (orderID, order_date, paid)
VALUES (l_orders_count, sysdate, ’N’);
COMMIT;

FOR l_iter2 IN 1..l_count
LOOP
INSERT INTO OrderItem
(orderItemID, orderID, name, price, quantity)
VALUES (
l_items_count, l_orders_count,
’item’ || l_iter2, mod(l_orders_count, 10)+1,
mod(l_orders_count, 20)+1);

l_items_count := l_items_count + 1;
END LOOP; -- insert items
COMMIT;

l_orders_count := l_orders_count + 1;
l_count := mod (l_count + 1, 5);

END LOOP; -- insert order
END; -- insert_values

Fig. 21. Pseudo-SQL code of experimental insert scripts

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1639

Zdeněk Rybola and Karel Richta

Fig. 22. Execution time of insertion of new entries for various implementation variants

ple variant the FOREIGN KEY constraint is deferrable. This causes the con-
straint to be checked at the end of the transaction and therefore it requires
post-processing that eliminate the advantage of many available blocks in the
buffer cache.

Table 2. The results of the insertion experiment - execution times of new entries insertion
for various implementations in milliseconds.

Number of
entries Simple Trigger Trigger with index View View with index

0 0.930 0.540 0.540 0.470 0.390
100 0.950 0.520 0.490 0.480 0.390

1000 0.950 0.800 0.400 0.660 0.340
10000 1.000 1.590 0.390 3.150 0.310

100000 0.780 14.510 0.390 29.000 0.310
200000 0.370 28.980 0.440 57.870 0.320

Also note that the PRIMARY KEY value is generated in a sequence. If it is
generated randomly, the insert would take more time as the correct data block
would be needed to be loaded to the buffer cache to insert the record in the
correct place according to the PRIMARY KEY value. It would especially affect
the Simple variant in large databases where the execution time would not de-
crease.

1640 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

6.2. The Delete Experiment

The delete experiment compares the execution time of the delete operations on
the table OrderItem. If the source entity optionality constraint is realized by the
trigger as defined in Fig. 18, the DELETE operation requires to select the orders
and its items to check if the deleted item was not the last one, and thus making
the order invalid. This constraint check slows down the DELETE operation as
demonstrated by this experiment.

Table 3. Variants of deletes executed and measured (+ implemented, - not implemented)

Variant Trigger Index
Simple - -
Trigger + -
Trigger with index + +

Fig. 23. Execution time of the deletion of the order items for various implementation
variants

Three various implementations were tested to compare. The Simple variant
represents the delete operations on the OrderItem table directly without a con-
straint realization. The Trigger variant represents the delete operations with the
trigger defined on the OrderItem table as shown in Fig. 18. In this variant, only
such items are deleted that do not violate the source entity optionality constraint

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1641

Zdeněk Rybola and Karel Richta

of the orders. The Trigger with the index variant uses the same trigger. How-
ever, in this variant, the index is defined as shown in Fig. 17 to speed up the
search of the items by the order identifier. All the variants are summarized in
Table 3.

Fig. 23 presents the execution time comparison for the deletion of the last
100 order items inserted to the database by its OrderItemID attribute executed
for various number of orders and items existing in the database. Before such a
test, the database contains the data as described in the beginning of Section 6.

As we can see, the Simple variant is the fastest, since there are no con-
straints to check when deleting the order items. However, the required option-
ality of the order items for each order is not checked and the orders without
any item can appear in the database. It violates the source table optionality
constraint. The Trigger variant prevents from deleting the last item of an order,
however, the execution time is much slower, especially if more orders and order
items are stored in the database. Even the index does not help because it is not
used in the checking SELECT operation in the trigger while joining orders and
its items. The measured data is summarized in the Table 4.

Table 4. The results of the deletion experiment - execution times of deletion of order
items for various implementations in milliseconds.

Number of order items Simple Trigger Trigger with index
300 0,11 3,63 3,69

3000 0,14 5,45 5,74
30000 0,09 26,45 26,33

300000 0,13 256,76 256,72

6.3. The Select Experiment

This experiment presents a comparison of the execution time of a SELECT
operation from the table Order directly, and by the view for accessing the valid
data only. The SELECT statement is shown in Fig. 24, where X is a random
order identifier. It searches for an order by its OrderID. No other conditions
were measured because we compared the effect of the source entity optionality
constraint check for the selected data. Therefore the more data is stored in the
database, the slower the SELECT statement is.

SELECT * FROM Order WHERE OrderID = X;

Fig. 24. The SELECT statement for the selection experiment

Three various implementations were measured for each selection. The Simple
variant presents the selection from the table Order directly without checking the

1642 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

constraint. The View variant presents the selection from the view valid orders
defined over the table Order to check the existing entries in the Order table and
to select only from valid orders. The View with the index variant presents the
selection from the view valid orders defined over the table Order with the index
defined on the order identifier in the table OrderItem to speed up the search
of the items of the order while checking the existence. All select variants are
summarized in Table 5.

Fig. 25 presents the results of the experiment. It shows the execution time
of each variant for various number of orders stored in the Order table together
with associated items in the OrderItem table as described in the beginning of
Section 6.

The Simple variant proved to be the fastest variant – as expected – since
there is no additional condition to check during the selection. However, the
query returns back both valid and invalid data according to the source entity op-
tionality constraint. The View variant results become much slower when more
entries are stored in the tables, because of an additional constraint with a sub-
query for checking the valid orders. However, only valid orders according to the
source entity optionality constraint are returned back. The index defined over
the foreign key value in the OrderItem table speeds up the subquery execution
rapidly as shown by the View with index variant results. Therefore, the View
with the index variant seems to be nearly equivalent to the direct selection from
the table in the execution time. However, the View with the index provides only
the valid data. The measured data of the experiment is summarized in Table 6.

Table 5. Variants of selects executed and measured

Variant Source Index in the OrderItem table
Simple table Order not defined
View view valid orders not defined
View with index view valid orders defined

Table 6. The results of the selection experiment - execution times of SELECT operations
for various implementations in seconds

Number of entries Simple View View with index
100 0.002 0.002 0.003

1000 0.000 0.000 0.000
10000 0.000 0.002 0.000

100000 0.004 0.009 0.014
500000 0.039 0.061 0.031

1000000 0.050 0.519 0.039
2000000 0.054 3.091 0.041

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1643

Zdeněk Rybola and Karel Richta

Fig. 25. Execution time of selection of entries for various implementation variants

7. Conclusions

In this paper, we summarized the currently used method for modeling binary
associations in the data models using UML class diagrams. We showed the
way to specify multiplicity constraints in the model. Furthermore, we showed a
usual transformation of the model from PIM to PSM for the relational database
and the usual transformations for multiplicity constraints using FOREIGN KEY,
NOT NULL and UNIQUE constraints in SQL.

We pointed out the constraint for the source entity optionality. This constraint
is often used in the model but not realized in the database because the foreign
key is insufficient instrument for full implementation. Therefore, we defined this
constraint in another formal way by an OCL invariant and suggested several
methods how this constraint can realized in a relational database.

We also compared the suggested implementations to the currently used ap-
proaches in the context of the execution time while inserting new data to the
tables, deleting data from the tables and selecting existing data from the tables.
The experiments showed that the trigger realization and the view realization
slow down the insertion of new data the more rapidly the more data has been
stored in the tables. However, when the index is defined in the referring table,
this slowdown is eliminated and the insertion is even faster. The results also
showed that selecting the data using the view with the index on the FOREIGN
KEY column is equivalent in the execution time to the direct access while provid-
ing only the valid data. However, when trying to check the source table option-
ality constraint by the trigger when deleting the data, the trigger implementation
showed to be very slow even with the defined index.

1644 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

According to the experiment results, we suggest the constraint should be
realized in CASE tools’ transformations of data models to relational databases
either by the trigger or the view with the check option to prevent it from inserting
invalid data or by the view to filter invalid data from the selection. However, the
realization of the constraint check for the delete and update operations should
be objectives of the future research to be able to fully prevent the invalid data
being present in the database. We also believe that the integration of the sug-
gested realizations in the transformation processes of CASE tools may save a
lot of effort of analysts and database designers when trying to design a con-
sistent database and even improve the database consistency as this effort is
usually neglected.

Acknowledgments. We would like to thank for financial support of Student Grant Com-
petition of CTU in Prague, grant number SGS13/099/OHK3/1T/18 and also to AVAST
Foundation in Prague.

References

1. Aleksić, S., Ristić, S., Luković, I.: An approach to generating server implementa-
tion of the inverse referential integrity constraints. In: Proceedings. AL-Zaytoonah
University of Jordan, Amman, Jordan (May 2011)

2. Arlow, J., Neustadt, I.: UML 2.0 and the Unified Process: Practical Object-Oriented
Analysis and Design (2nd Edition). Addison-Wesley Professional (2005)

3. Cabot, J., Teniente, E.: Constraint support in MDA tools: A survey. In: Rensink, A.,
Warmer, J. (eds.) Model Driven Architecture Foundations and Applications. Lecture
Notes in Computer Science, vol. 4066, pp. 256–267. Springer Berlin / Heidelberg
(2006), http://www.springerlink.com/content/4902321654674181/abstract/

4. Demuth, B.: DresdenOCL. http://www.reuseware.org/index.php/ DresdenOCL (Jan
2011)

5. Luković, I., Mogin, P., Pavićević, J., Ristić, S.: An approach to developing complex
database schemas using form types. Software: Practice and Experience 37(15),
16211656 (Dec 2007), http://dx.doi.org/10.1002/spe.v37:15

6. Melton, J.: Advanced SQL:1999. Morgan Kaufmann Publishers (2003)
7. OMG: Object constraint language, version 1.3.

http://www.omg.org/spec/OCL/2.2/PDF (Feb 2010)
8. OMG: Object management group. http://www.omg.org/ (Dec 2011)
9. OMG: UML 2.4.1. http://www.omg.org/spec/UML/2.4.1/ (Aug 2011),

http://www.omg.org/spec/UML/2.4.1/
10. OMG, Miller, J., Mukerji, J.: MDA guide version 1.0.1. http://www.omg.org/cgi-

bin/doc?omg/03-06-01.pdf (Jun 2003)
11. Richta, K., Rybola, Z.: Transformation of relationships from UML/OCL to SQL.

In: ITAT 2011: Zbornı́k prı́spevkov prezentovaných na konferencii ITAT. vol. 11.
University of P. J. Šafárik, Košice, Slovakia, Terchová, Slovakia (Sep 2011),
http://itat.ics.upjs.sk/proceedings/itat2011-zbornik.pdf

12. Rob, P., Coronel, C.: Database Systems: Design, Implementation, and Manage-
ment. Boyd & Fraser, 2nd edn. (1995)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1645

Zdeněk Rybola and Karel Richta

13. Rybola, Z., Richta, K.: Transformation of binary relationship with particular multi-
plicity. In: DATESO 2011. vol. 11, pp. 25–38. Department of Computer Science,
FEECS VSB - Technical University of Ostrava, Pı́sek, Czech Republic (Apr 2011),
http://www.informatik.uni-trier.de/˜ley/db/conf/dateso/dateso2011.html

14. Rybola, Z., Richta, K.: Transformation of special multiplicity constraints - comparison
of possible realizations. In: Proceedings of the Federated Conference on Computer
Science and Information Systems. pp. 1357–1364. FedCSIS, Wroclaw, Poland (Sep
2012)

15. Softeam: Objecteering/UML. http://www.softeam.com/technologies objecteering.php
(Dec 2012)

16. Sparx Systems: Enterprise architect - UML design tools and UML CASE tools
for software development. http://www.sparxsystems.com.au/products/ea/index.html
(Mar 2011)

17. Wilke, C., Thiele, M., Freitag, B.: Dresden OCL: manual for installation, use and
development (Oct 2010)

Zdeněk Rybola is a PhD. student and an assistant professor at the Depart-
ment of Software Engineering at the Faculty of Information Technology, Czech
Techical University in Prague. His area of interest includes Model Driven De-
velopment in context of relational databases and multiplicity constraints and the
usage of OntoUML in software engineering.

Karel Richta is an associate professor at the Department of Software Engineer-
ing at the Faculty of Mathematics and Physics, Charles University in Prague,
and also at the Department of Computer Science and Engineering at the Fac-
ulty of Electrical Engineering, Czech Technical University in Prague. His re-
search is primarily focused on formal specifications and similar approaches us-
able in software engineering. He has published more than 100 publications,
including 5 books. He is the president of Czech ACM Chapter.

Received: December 10, 2012; Accepted: September 2, 2013.

1646 ComSIS Vol. 10, No. 4, Special Issue, October 2013

