
Computer Science and Information Systems 17(1):315–338 https://doi.org/10.2298/CSIS190501042A

A Tool-assisted Method for the Systematic Construction
of Critical Embedded Systems using Event-B

Pascal André, Christian Attiogbé and Arnaud Lanoix

LS2N CNRS UMR 6004 - University of Nantes
{firstname.lastname}@univ-nantes.fr

Abstract. Embedded control systems combine digital and physical components,
leading to complex interactions and even complexity of their development. In [4]
we proposed a method to build such complex systems in a systematic way. The
overall method starts from an abstract model of the physical environment of the
considered system and its controller. The method consists in a sequence of refine-
ment steps, in the spirit of Event-B, that gradually introduces design details from
an abstract level, until more concrete levels. Two main refinement processes are
distinguished: one to capture the global model, the other to detail it; we provide
through the method the guidelines to accompany these two refinement processes.
But there were a lack of assistance tools. The designers need to be assisted by tools
to guide them, to automate partially the refinements and to help in proving more
easily model properties. We illustrate the method with the landing gear system case
study and choosing the Event-B tool Rodin for illustration; we make it explicit the
tools requirements for such a general method and, we introduce a tool support to
assist the user in applying the method in combination with standard Event-B tool
such as Rodin.
Key words: Embedded control systems; Modelling method; Event-B patterns; Tool

1. Introduction

Engineering complex embedded control systems requires methods and assistance tools.
Without dedicated methods their analysis is painful, inefficient and time-consuming. More
specifically guidelines and tools are required for formal software engineering. Unlike
many other types of software, embedded systems are often developed for specific target
environments (processors, vehicles, medical devices, etc.) and very often they should run
for long times (even years), once they have been implemented in their so-called critical
environments. Therefore, embedded systems and their construction have stringent robust-
ness requirements; accordingly one have to develop them with the sake of reliability at
runtime. There are numerous models for embedded real-time systems [9]; moreover the
target environments of each embedded system do not help the construction or the expan-
sion of dedicated tools and methods. There are many works dealing with semi-formal
models extraction from requirements documents, for example in the scope of the UML
notations[10]. There are also many works around the tabular requirement engineering
method by Parnas[13]; but we are not aware of any results about the synthesis of Event-B
formal models from informal requirments as we are doing in our work.

Considering that i) the requirements for reliability and correct construction of the
models and the derived embedded systems are important concerns, and that ii) the de-

316 Pascal André, Christian Attiogbé and Arnaud Lanoix

velopment of these systems still lacks of methods to guide the developers, we are mo-
tivated to contribute to fill the gap between these needs and the state of the art. Many
researchers underline the need of methods, techniques and tools to support formal model-
ing and more especially for the Event-B approach which addresses the full software devel-
opment process: [8,3,12,23]. We have proposed in [4] a correct-by-construction method
(named Heñcher) dedicated to the construction of critical embedded control systems. This
method, based on Event-B, is intended to guide step by step the specifier or the engineer to
drive its development from requirements to concrete software, defining abstract models,
and refining them in a systematic way. The current article is an extension of that previous
work. We extend that work in two main directions: i) we extend the proposed method
with an assistance tool dedicated to help the users to apply the Heñcher method step by
step and to build quickly the preliminary Event-B models of her/his control systems. The
tool is designed as a companion tool of the already existing Event-B frameworks such as
Rodin or Atelier B for which we provide input models; ii) the Event-B models of the case
study are now totally proved using the Rodin tool.

We present in this article the main components and the background of the tool; it is
designed as an extensible standalone tool that should be compatible and integrable with
Event-B framework. The article is completely reshaped compared to [4] where more space
was given to the method and less to its illustration. Here we emphasise the application of
the method on the Landing Gear System case study.

The article is structured as follows. In Section 2 we introduce the proposed method
through its main steps. In Section 3 we present a benchmark case study, the Landing Gear
System, we illustrate the detailed application of our method on this case study, and we
emphasise issues on tool requirements. Section 4 is devoted to the proposed assistance
tool through its main components and the provided facilities; and its use to illustrate parts
of the case study. In Section 5 we draws some conclusions of this work.

2. A Glimpse of the Heñcher Method

In [4], we presented a stepwise and systematic method (named Heñcher) to construct
critical embedded control systems using Event-B. Complex systems can be constructed
by combining (see [6,7,1]) two classical approaches: 1) horizontal refinement with feature
augmentation where we have to build a global abstract model of a the whole system (a
controller and its physical environment) and 2) structural refinement (making the abstract
structures more and more concrete).

The high-level state space of any control system can be described by the elicita-
tion of the interface variables between the digital part (the controller) and the physi-
cal part (the controlled environment) of the considered system. Fig. 1 depicts a general

input

Controller

Controlled
environment

physical
state

output

aact

sense

aact

react

state

aact

stimulate

aact

monitor

Fig. 1. A generic shape for event-based model of a
control system

principle that may govern the or-
ganisation of event-based models
of control systems. The dashed
ovals are representative of the
parametric events families; They
should be replaced by the effec-
tive events related to the logic of
a specific case study.

An Event-B Assisted Method for Embedded Systems 317

Besides, the identified physical devices to be controlled should be precisely listed.
The behaviour of each one will be specified later.

We summarise here the Heñcher method (detailed in [4]); it starts from this interface
and comprises six steps for guiding the modelling and analysis of the target system. These
steps spawn the two classical Event-B structuring approaches. The horizontal process is
made of 3 steps and the vertical process is made of at least 2 steps (steps 4 and 5).
Step 1: Characterising the abstract model of a considered system.

– Step 1.1: Elicit the controller interface made of three categories of variables describ-
ing the controlled environment (input from sensors, output to actuators, and state for
monitoring). Additional internal variables represent information inside the controller.

– Step 1.2: Elicit the global properties of the system: system properties, including
safety, liveness and non-functional properties.

– Step 1.3: Start with a first abstract model and build a first Event-B abstract model.
– Step 1.4: List the events of the abstract model : sense events, monitor events and stim-

ulate events. These families of events are in compliance with the standard sense-
decision-control of any control system’s cycle. Additionally the behaviour of the phys-
ical part is described with the reaction events family.

Step 2: Extension of the previous abstract model using feature augmentation [6,7,1] to
integrate the controlled environment on the basis of the sense events family.

– Step 2.1: Introduce the physical environment and the reaction events family.
– Step 2.2: Detail the sense events family.

Step 3: Integration of the specific properties. Considering the requirements of the system,
additional specific properties are added to the global model to constrain the functioning
of the system. They may be are reachability properties or non-functional properties.
Step 4: Structural refinement of the global abstract model. New internal B events may
be added to refine the events of each family of events (sense, monitor, or stimulate). The
state space variables may be refined with more details in the invariant.
The model is more refined with the behaviour of the physical part (made of the controlled
devices); this is captured through the reaction events family.
Step 5: Decomposition into software and physical parts. We adopt the A-style decom-
position [2]. The methodological guide to achieve the decomposition is as follows: the
digital part is made with all the events defined in the sense events, the monitor events
and the stimulate events families whereas the physical environment gathers all the events
defined in the reaction events families. Each part must have an abstract view of the other.
Step 6: Refinement of the control software and the physical environment. In addition to
classical but complete refinements in Event-B, we propose some guidelines to assist the
user in applying there refinements steps.

– Step 6.1: Refining the control software. Structural refinements based on the moni-
tor events family should be used to refine the controller. The involved categories of
variables are the input variables, the state variables and the output variables.

– Step 6.2: Refining the controlled (physical) environment. Many cases can be consid-
ered depending on the system to be studied; either the physical devices are already
available, or one has to build the physical devices from the formal models, or one has
to build a part of the physical devices.

318 Pascal André, Christian Attiogbé and Arnaud Lanoix

Proposed modelling patterns When there are sub-modules, the input variables may be
spawned inside the sub-modules.

aact

k_stimulate
Module 1

inp
ut

Controller

. . .

output
aact

spawn

aact

mergek_
output[1]

k_input
[1]

k_
output[n]

k_input
[n]

aact

k_stimulate

Module n

Fig. 2. Modules redundancy

In the same way output variables may be updated by
promotion from the sub-modules if any. Therefore one
have to incorporate successively in the Event-B model
the events to set and modify the output variables; they
describe the result of the behaviour of the control part.
State automata help to catch these behaviours; then the
events of the B models encode the automata.

We give now some recurrent patterns to help in modelling the control part.

i). Composition of several redundant sub-modules: when a controller is made of several
redundant modules, it is straightforward to describe a generic module and use an
indexing function to compose several instances of such modules (see Fig. 2).

– Encasing variables inside modules: the values coming from outside one or sev-
eral modules can be systematically encased inside the modules with a dedicated
event that spawn the events.

– Promoting variables outside a module: in a symmetric way, the values going
outside a module or several modules can be systematically described using a
promotion pattern (with a dedicated event) for merging the output variables of
the internal computing modules.

ii). When the modules are not redundant, each one should be refined separately, but the
treatment we have described for the inputs and outputs variables is the same.

Fig. 3 illustrates the Event-B patterns from the most abstract model (which describes
only the interface of the controller) to the systematic decomposition into two parts: the
Controller and the physical Environment.

3. Applying the Method to the Running Case Study

The proposed method is applied on the Landing Gear (LG) case study, a benchmarking
example proposed at the ABZ’2014 conference to compare different formal methods in
terms of expressivity, performance, and ease of use. in [5].

Mechanical and hydraulic parts

doors
gears

up/down

Pilot interface

actuators

sensors

Digital Part

sensors

actuators front gear box
right gear box

left gear box

Fig. 4. Global architecture of the LG system

A prerequisite for reading this
section is the detailed specification
of this critical embedded system
given A summary of the LG system
is depicted in Fig. 4. The LG sys-
tem is in charge of manoeuvring 3
landing boxes: front, left and right.
Each landing box contains a land-
ing gear, an associated door and the
corresponding hydraulic cylinders
in charge to move gears and doors.

An Event-B Assisted Method for Embedded Systems 319

context
machine LS_0
variables
events
end

refines
refines

refines

Specify Digital
Part interface

1 Add Physical Part
abstraction2 Add Reachability

properties3

Duplicate
computing
 modules

4'

context
machine LS_i
variables
events
end

context
machine LS_j
variables
events
end

context
machine LS_m
variables
events
end

refines
context

machine LS_m
variables
events
end

context

Separate Digital
 and Physical parts

5'

context
machine DP_o
external variables
variables
external events
events
end

machine P_o
external variables
variables
external events
events
end

decomposes

context

machine DP_p
variables
events
end

context
machine DP_s
variables
events
end

Feature augmentation

structural refinem
ent

+

Fig. 3. Synoptic structure of the Heñcher method

The system is made of a controller (the digital part) and the controlled physical environ-
ment (i.e. the 3 landing gear boxes and a pilot interface) which interact via sensors and
actuators.

The sensors provide to the digital part the information on the state of its physical part;
the actuators engage the orders of the controller on the physical part. The physical devices
already exist, we will not build them; the challenge deals with the digital control part only
(see page 2 of [5]). We give the main elements resulting from the successive application
of the steps proposed in the method (Sect. 2).

3.1. Horizontal Process: Building an Abstract Global Model of the System

ha
ndle

 [1
,2,

3]

 g

ea
rs

_
loc

ke
d_

do
wn

 g

ea
rs

_
m

an
eu

ve
rin

g
an

om
aly

 ge
ner

al_
EV

 op
en

_EV

clo
se

_EV

ex
ten

d_
EV

re
tra

ct_
EV

analogical_switch[1,2,3]

gear_extended[FG,LG,RG][1,2,3]

gear_retracted[FG,LG,RG][1,2,3]

gear_shock_absorber[FG,LG,RG][1,2,3]

circuit_pressurized[1,2,3]

door_open[FG,LG,RG][1,2,3]

door_closed[FG,LG,RG][1,2,3]

greenLight
orangeLight
redLight
order
nextOGSeq
...

Digital Part

Fig. 5. The interface of the digital part

The document [5] is helpful
to identify the different vari-
ables at the interface between
the digital part and the physical
part.

320 Pascal André, Christian Attiogbé and Arnaud Lanoix

Step 1: Characterising the abstract model

Step 1.1: Elicitation and modelling of the interface variables The requirement docu-
ment listed several triplicated input variables: handle, analogical switch, gear states, doors
states· · ·
We model them with a type T RIPLE = {1,2,3} used as an index of the function variables
(see Step 1.3):

GEAR = {FG,LG,RG} analogical_switch ∈ T RIPLE→ AnalSWSTAT E
DOOR = {FD,RD,LD} handle ∈ T RIPLE→ HSTAT E
HSTAT E = {hDown,hU p} gear_extended ∈ (T RIPLE×GEAR)→ BOOL
AnalSWSTAT E = {openSW,closedSW} door_closed ∈ (T RIPLE×DOOR)→ BOOL
· · · · · ·
handle ∈ T RIPLE→ HSTAT E analogical_switch ∈ T RIPLE→ AnalSWSTAT E
gear_extended ∈ (T RIPLE×GEAR)→ BOOL door_closed ∈ (T RIPLE×DOOR)→ BOOL

The function variable handle ∈ T RIPLE → HSTAT E captures precisely the require-
ment handlei ∈ {hDown,hU p} with i ∈ {1,2,3}. The state variables are the states of the
gears, doors, anomalies, etc. They are modelled as follows:

gears_locked_down ∈ BOOL ∧ gears_maneuvering ∈ BOOL ∧ anomaly ∈ BOOL ∧·· ·

The output variables hold the values computed for various electro-valves:

general_EV ∈ BOOL ∧ close_EV ∈ BOOL ∧ open_EV ∈ BOOL ∧·· ·

The lights which indicate the position of the gears and doors to the pilot are described
as internal variables: greenLight, orangeLight, redLight. These variables are bound to the
output state variable gears_locked_down with an invariant predicate. Another internal
variable order is used to record the action of the pilot on the handle.

The LG system is controlled digitally in the normal mode until an anomaly is de-
tected. A permanent failure leads to an emergency mode where the system is controlled
analogically. Accordingly the internal boolean variable anomaly is used to denote that an
anomaly has been detected or not.

Step 1.2: Elicitation of the global properties of the LG system Most of the normal mode
requirements are safety properties. Some identified ones are gathered in Table 1.

Step 1.3: Start with a first abstract model The first Event-B abstract model resulting
from Step 1.3, gathers all the variables of the interface, their related invariants and ini-
tialisations. Event-B contexts are used to model the static part with the various sets and
definitions that we have introduced.

An Event-B Assisted Method for Embedded Systems 321

R21 We can not observe a retraction sequence (consequence of the order hU p) if the handle is
down. Using the enumerated set HSTAT E which permits only one value from two for the
variable order.

R31 The gears outgoing event occurs if doors are open locked.
R41 Opening and closing doors electro-valve are not stimulated simultaneously.
R51 It is not possible to stimulate the manoeuvring EV (opening, closure, outgoing or retraction)

without stimulating the general EV.

Table 1. Identified requirements

Step 1.4: The families of events of the abstract model A thorough analysis of the two
action sequences (outgoing sequence and retraction sequence) described in the LG system
helps us to capture the behaviour of the digital part and to derive the events. We use here
state automata to make it clear the interaction between the different components (actions
of the pilot, the controller, the orders received by the environment).

In the sense event family we have listed for example the event sense_gear to mod-
ify the input variable gear_extended listed above. In the same way, we have listed the
other events sense_door, etc. Examples of events we have identified for the control events
family are: stmlt_general_EV to stimulate the general electro valve, stmlt_door_opening,
stmlt_gear_outgoing, stop_stmlt_general_EV, stop_ stmlt_gear_outgoing, etc. Each one
modifies its related variable, for instance the event stop_stmlt_gear_outgoing sets the vari-
able extend_EV to FALSE. Examples of events we classified in the monitor events family
are: monitor_ anomaly, monitor_gears_locked_Down, monitor_ gears_manoeuvring. In the
reaction event family we have Door_openDoor_cl2cu, Gear_extend, Gear_retract, ...

Step 2: Extension of the abstract global model with the event families

We achieve many refinement steps, by feature augmentation, to integrate gradually the
variables and events related to the physical devices: the sensors, the doors and the gears.

Following Step 2.1, we define the behaviours of physical devices. For instance, the
door behaviour is first captured with a state automata; the transitions of the automata
are then described as events. For this purpose we use a transition function doorState ∈
DOOR→ DSTAT E where DSTAT E = {ClosedLocked,ClosedUnlocked,OpenUnloc-
ked} is the enumerated set of the identified door states. The set DOOR contains the three
door identifiers. The function doorState is a total function; this captures the requirement
that all the three doors are controlled via the state transition.

The starting transition of the door behaviour is enabled by the open_EV order given by
the digital part. Therefore there is a synchronisation between the digital part and the mo-
tion of the doors. We only give below the description of the starting event Door_openDoor_-
cl2cu; the other necessary events are similar.

322 Pascal André, Christian Attiogbé and Arnaud Lanoix

event Door_openDoor_cl2cu
/* Door’s Behaviour (for the three doors). The first transition of the Door Automata */
where

@g1 open_EV = T RUE // all the doors Electro Valves are on
@g2 ran(doorState) = {notOpenLocked}

then
@a1 doorState := DOOR×{notOpenNotLocked} // door is being opened

end

The following event describes an event of the control event family.

event stmlt_gear_outgoing
/* stimulate gear outgoing electro valve once the three doors are in the open position */
where

@g0 general_EV = T RUE
@g1 order = hDown
@g2 ran(handle) = {hDown}
@g4 ran(door_open) = {T RUE}
@next nextOGseq = 3
@gano anomaly = FALSE // no anomaly detected
@notretract retract_EV = FALSE

then
@a1 extend_EV := T RUE
@a2 nextOGseq := nextOGseq+ sequenceStep

end

The variable nextOGseq controls the evolution of the outgoing sequence; it indicates
in the event guards, the next step in the outgoing sequence. We note that the events in the
sense event family anticipate their real future specifications, which are related to the phys-
ical part introduced later. When we have introduced the various events families and the
related variables, it becomes clear for us that we have the complete control loop. Follow-
ing Step 2 the properties (listed in Step 1.2 above) are formalised as first order predicates,
integrated into the invariant of the abstract model and, proved along the horizontal refine-
ment. As an example, the requirement R51 is described as follows.

((open_EV = T RUE ∨ close_EV = T RUE ∨ extend_EV = T RUE ∨ retract_EV = T RUE)
⇒ general_EV = T RUE)

To sum up, the global Event-B abstract model results from a series of refinement of
contexts and machines.

Step 3: Dealing with specific properties The properties to be proved (requirements given
in pages 18-19 of the requirement document) are formalised as first order predicates inte-
grated into the invariant of the abstract model and proved along the horizontal refinement.
Most of the normal mode requirements are safety properties. Here are some of the re-
quirements captured in our case study: R22, R32, R42, R5.

R22 In a similar way we cannot observe an outgoing sequence (consequence of the order
hDown) if the handle is up.

order = hU p⇒ ran(handle) 6= {hDown}

An Event-B Assisted Method for Embedded Systems 323

R32 The gears retraction event occurs if doors are open locked
(retract_EV = T RUE⇒ ran(door_open) = {T RUE})

R42 Outgoing and retraction gears electro-valve are not stimulated simultaneously
¬(extend_EV = T RUE ∧ retract_EV = T RUE)

R51 It is not possible to stimulate the manoeuvring EV (opening, closure, outgoing or retraction)
without stimulating the general EV

((open_EV = T RUE ∨ close_EV = T RUE
∨extend_EV = T RUE ∨ retract_EV = T RUE)

⇒ general_EV = T RUE)
In this case study, reachability is another set of the specific properties. Requirement

R1 for instance needs a specific treatment presented in the sequel. We will detail this point
in Section 3.3.

3.2. Vertical Process: Building the Concrete Parts of the LG System

The vertical process includes several refinements (in Step 4) described below following
the proposed method.

Step 4: Structural refinements of the global abstract model

In the requirement document, the inner structure of the digital part is made of two
redundant computing modules. Structural refinement steps overcome the details of the
behaviour of the digital part.
a) Introducing the two computing modules with refinements Both modules have the same
interface (input and output variables) inherited from the abstract model of the digital part.
Each interface variable of a module k (where k ∈ {1,2}) is inherited from a variable
(for instance gear_extended) of the digital part of the abstract model and it is denoted
by k_gear_extended(k) where k is an index. An enumerated set CompModule = {1,2}
is used for the indexes. Therefore each interface variable of the computing modules is
specified with the following shape:

k_gear_extended ∈CompModule→ ((T RIPLE×GEAR)→ BOOL)
The binding between the two modules interface variables and those of the abstract module
is achieved via refinements where new variables and related events are introduced.
b) Spawning the inputs inside the computing modules with refinements We introduced
new events (prefixed with spawn_) to push the value of each input variable (for exam-
ple handle) at the abstract level, in the corresponding variable (for example k_handle) of
each computing module. As the inputs of the modules should be the same, an invariant
is defined in each case of variable spawning in order to guarantee the correctness of the
binding between the input variable of the digital part and the same input of the comput-
ing modules. The following event pattern spawns the variables at the interfaces of the
computing modules.

event spawn_handleDown // spawn handleDown within the k CompModules
where @g1 ran(handle) = {hDown}
then

@a1 k_handle := {1 7→ (T RIPLE× (ran(handle))),2 7→ (T RIPLE× (ran(handle)))}
end

324 Pascal André, Christian Attiogbé and Arnaud Lanoix

We have identified a reusable specification rule: a new event is introduced along with
each new k-indexed variable. This event should copy the variable at high level (the dig-
ital part) into the indexed variables at the low level. Furthermore, the existing events,
whose guards or actions involve the spawned variables, should be refined by extending
their guards and actions in order to satisfy the binding between the variables and the as-
sociated k-indexed variables. One noticeable feature in this case is that when we have a
non-deterministic event of abstract level (as for the value of the sensors), then in the re-
finement the event should be refined (not extended). This is another reusable specification
rule we have identified.

c) Merging the outputs of the computing modules with refinements As depicted in Fig. 2,
the k-indexed output variables are merged using a logical OR to set the corresponding
variable at the output of the digital part. Therefore the event that sets the variable should
be guarded by the availability of the merged value. As explained before, a binding in-
variant should be provided for each variable and the related k-indexed variable. Several
refinements are used to introduce the appropriate events.

d) Specifying the behaviour of the computing modules The two computing modules have
the same behaviour which is made of: the events that monitor the system and set accord-
ingly the state output variables and the input variables of the digital part; and the events
that give orders (control decision) to the physical part through the order output variables.
This results in the k-indexed form of the events related to the three categories of the inter-
face and internal variables.

We can stop the construction of the global model at this stage; however following the
guidelines provided in the method, it remains to perform the decomposition step in the
basis of the sense, monitor, control events families (Step 6). Fortunately, the decomposi-
tion modules of Rodin provide assistance for this purpose. In our case where the event
families structured the model, the Abrial’s style of decompostion which is based on share
variables [2] is the most appropriate. Indeed, the decomposition is precisely based on
the families of events: the reaction family should be used for a (physical) machine while
sense, monitor and control families should be used for another (software) machine.

As far as Step 5 and Step 6 are concerned, there are two main considerations: i)
if we want to use animation capabilities on the global model, the construction should
stop after the refinements of Step 5 without doing the decomposition of the Step 6 ; ii)
if we do not want to use animation capabilities, the construction may be continued with
the decomposition process in Step 6. For our illustration of the case study we experiment
with both considerations. First, in order to keep animation capabilities, we end our process
with the Step 5 ; the Step 6 was not performed for the case study, but only the digital part
is refined with the objective to build the software part; The variables and events which
are specific to the behaviour of the physical part are not refined but we keep them in the
model in order to perform animation of the global model. Second, for the experimentation
of the method, we go through decomposition in Step 6. But in this case, we have two
independent models which should evolve separately, for instance the physical part may
be replaced by a hardware and the control part refined into an executable code without
modifying any elements of the physical part inherited from the decomposition.

An Event-B Assisted Method for Embedded Systems 325

3.3. Handling the Required Properties

We classified the requirements listed in the case study document (see page 18-19 of the
requirement document) in several categories of properties to be proved for the system.

Safety: Requirements R2, R3, R4 and R5 should be considered through safety properties.
Liveness: The requirements R1 are related to liveness (reachability) properties.
Nonfunctional: The requirements R6, R7 and R8 (Failure mode requirements) are related

to nonfunctional properties: management of time constraints.

In the following we deal with liveness (reachability) properties.

Introducing the reachability property (requirement R21 and R22) This is a step of the
horizontal refinement process (with the tag 3 in Fig. 3).
Based on the idea of Lamport’s logical clocks [11], we implement a technique that cap-
tures the reachability requirement R1 given in page 13 of the requirement document. For
that purpose, we introduce the notion of control cycle; this is necessary to reason locally
on relevant events. A control cycle is a period of time during which one can observe sev-
eral events, especially a chain of events denoting an outgoing sequence or a retraction
sequence; a typical control cycle is one starting with an event which denotes the hDown
order and terminating by an event which denotes the fact that “the gears are locked down
and the doors are seen closed”; similarly, another control cycle is started when the handle
triggers an order hU p. A dedicated variable endCycle is used to control the start and the
end of each control cycle.

Assume that we have observable events that occur along the time and that denote
our events of interest1; for instance the starting of an outgoing sequence, a door closed,
a gear locked in a position, etc. Each such event can be stamped with the timestamp
of its occurrence, thus if we have the set of observed events we can define at least a
partial ordering of these events (see Fig. 6). Given a set obsEvents of events and a logical

Time

event event event

Fig. 6. Events and timestamps

clock modelled as a natural number, the occurrences of the events can be ordered by the
timestamp given by the clock. In our case two events cannot happen at the same time. We
use a partial function ldate ∈ obsEvents 7→N to record the timestamps of the events. We
can compare and reason on the timestamps of any events happening during a sequence
and specifically within the specific event sequence called control cycle.

For example, in the normal mode, we observe the event “the door is closed and the
gear extended” (named dcge) at the end of a cycle, if the event “order DOWN is given”
(named downH) occurs and is maintained (no event upH occurs). If these events have

1 These events are not to be confused with Event-B events.

326 Pascal André, Christian Attiogbé and Arnaud Lanoix

respectively the specific timestamps d j and di, then we can compare di and d j and also
examine the events which happen between di and d j. Accordingly the property R1bis of
the requirement is expressed as follows:

∀d j.(((d j ∈ N)∧ (dcge ∈ dom(ldate))∧ (d j = ldate(dcge))
∧(endCycle = T RUE)∧d j < llc)⇒

∃di.((dd ∈ N)∧ (downH ∈ dom(ldate))∧ (di = ldate(downH))∧ (di < d j)∧
∀ii.(ii ∈ N∧di≤ ii∧ ii < d j⇒ ldate∼ [{ii}] 6= {upH})))

The above property expresses that if we reach the end of a control cycle where the
door is closed and the gear extended at a given timestamp (d j), then we should have an
order hDown issued at a timestamp di less that d j and maintained between d j and di; the
outgoing sequence is not interrupted by an order hU p which would start another cycle.
Consequently we have expressed the property R11bis. Property R12bis can be expressed in
a similar manner.

To put in practice in Event-B with Rodin, we defined the set obsEvents in the context
of our machines, and the above property is included in the invariant of the abstract model.

3.4. Experimentation with Rodin and statistics

The main modelling steps of the Landing Gear System case study have been completely
achieved; that is the modelling from very abstract level to more concrete ones, the re-
finements and the decomposition into hardware and software parts. Applying a rigorous
method as we defined, was very helpful to master the complexity of the case study.

Total Auto Manual Review. Undis.
LandingSys5 567 494 73 0 0

Abstract model
Landing_DP_Ctx 0 0 0 0 0
LandingSysDP_A 109 106 3 0 0
LandingSysDP_SWITCH_A 3 3 0 0 0
LandingSysDP_DOOR_A 42 42 0 0 0
LandingSysDP_DOOR_GEAR_A 79 79 0 0 0
LandingSysDP_DOOR_GEAR_TIME_A 2 2 0 0 0

Models of the vertical refinement
LandingSysDP_DGT_R1_In 42 34 8 0 0
LandingSysDP_DGT_R2_INOUT 56 40 16 0 0
LandingSysDP_DGT_R3_DG 234 188 46 0 0

Table 2. Statistics of PO generated and proved with Rodin

The Rodin tool
is very efficient
for proving the
Event-B models;
a very high per-
centage (∼ 87%)
of proof obli-
gations was au-
tomatically dis-
charged. All the
remaining proof
obligations are
proved interac-
tively.

The specifications are available online2. The current version of the Event-B models is
deliberately partial as we chose to focus on representative events instead of being exhaus-
tive. We have used the version 3.4 of Rodin in the last experimentations; the statistics on
Proof Obligations are given in Table 2.

The proofs discharged using the interactive prover are related to the structural refine-
ment and specifically they are related to the binding invariants.

2 hencher.ls2n.fr

hencher.ls2n.fr

An Event-B Assisted Method for Embedded Systems 327

Using the Rodin tool we have modelled and refined the Landing Gear System until to
take account of the main requirements about software part, physical part and some of the
specific properties as explained in Section 3.3. After several steps of vertical refinements
we have a complete model of the Landing Gear system. For the experimentation purpose,
using the Event-B decomposition technique [22], we decompose the last model of the
system into two parts corresponding to the hardware part and the software or control part.
The so-called A-style decomposition, based on the separation of events through different
machines, and implemented as a Rodin plugin [15], was successfully used in this step.

Managing very large models requires a rigorous slicing and several small steps of
refinements. This is the reason why we have introduced many refinements, but it is still
not enough, the slicing can be of finer grain.

Moreover a good naming discipline is necessary at each level of the modelling. It
helps for traceability and to face the complexity due to the size of the model.

As far as the ProB animation tool (integrated in Rodin) is concerned, it is very helpful
to tune the Event-B models; indeed the failure in the animation gives information about
the (bad) states and accordingly the wring part of the model can be rewritten.

3.5. Tooling Concerns

During the above experimentations, we felt need assistance at different steps for different
motivations. We mention some situations where tooling would be helpful, in addition to
Rodin’s facilities, to apply the Heñcher method.

RT1 Starting the process. The first steps are often crucial when applying a method. Assis-
tance is required to answer the users’s question How to start the process?.

RT2 Incremental step-by-step refinement. The Heñcher method is tightly based on refine-
ments. To master the development process in Event-B, the recommended approach is
to proceed with small and well-defined refinement steps; that means the complexity is
not in individual refinements but in the whole refinement process; but there is a lack
of assistance tool to help developers. For instance the developer may be happy with a
highlighting of some parts of its specifications.

RT3 Pattern-based substitutions and automatic refinements for composition and physical
part refinement. This requirement needs a full development when the specifications
are in Rodin.

RT4 Team collaboration. Making it easy for several people to work simultaneously on a
project, versioning, decision traceability are all important concerns when dealing with
big Event-B projects as the one we have studied.

RT5 Overall development process management. When one should stop with a development
step? Is the current state sufficient to start the next step? there is a need of various
metrics to evaluate the quality of ongoing specifications (completeness,...).

RT6 Iterative process of model evolution. Often, one wants to modify an abstract model
(for example adding a variable or an event in the M0 machine), and has the modi-
fication be systematically propagated in the chain of the remaining models and re-
finements. The tool supporting the method should enable such a continuous model
evolution.

328 Pascal André, Christian Attiogbé and Arnaud Lanoix

RT7 Traceability of the refinement chain of a single event. During the development and
proof steps, a practical concern is to review the chain of refinement of a single event
without all the surrounding events. An assistance tool is also needed.

RT8 Securing copy-paste operations. It is often the case, to copy-paste similar events. This
is particularly true when we have systems with redundancies of several instance of
the same objects, like the gears, the doors and the sensors in our case study. Due to
unavoidable human errors, lot of time is spent fighting again undischarged proof obli-
gations. There is a need of a parameterized refactory tool that for instance rewrites an
existing event by substituting some variables with others.

We undertake the development of an assistance tool to provide the main functionalities
we have identified during experimentations. In the next section we introduce the basis of
the design of a web companion tool we have developed to address the requirements RT1
and RT2.

4. An Assistance Tool

In this section we introduce our proposed prototype tool to assist the users of the Heñcher
method. The tool is designed as a companion tool of the existing frameworks such as
Rodin or Atelier B. It helps the users to apply the Heñcher method, and to build more
quickly the preliminary Event-B models, which will be analysed in the dedicated existing
environments.

From the provided interface of a given control system the tool generates in an incre-
mental way, following the steps of the Heñcher method, the Event-B abstract models. The
tool is designed for Event-B users (specifiers/engineers). The inputs of the tool will be
provided by the users; an user-friendly graphical interface is designed for this purpose.
The tool provides the development guidelines of the Heñcher method and some skeletons
of Event-B models as output.

Generation of an Event-B models from a control system interface On the basis of
the interface between a control system and its environment as presented in Section 2, a
specifier should provide the interface variables, the list of controlled devices of its sys-
tem, the global and specific properties required by its systems. From these elements the
specifier will be assisted in building an Event-B machine M0 and then a refined one M1.
The machine M1 can be further refined until more concrete levels but one has to use the
dedicated tool (Rodin for instance).

The collected interface Let an interface made of Xs a set of the input variables, Xo a
set of the output variables, Xc a set of the control variables. In addition, let Xi be a set
of internal variables of the controller; (a part of the control variables are used for the
feedback, the internal variables are the part of the control variables used by the controller
but which are not output as feedback). According to the system at hand, the user should
define the types of each of the previous variables. That means each variable of Xs has its
type in Ts. Therefore for each family X of variables of the interface and the related set of
types TX , we have a type mapping {(σi,τi)} ⊆ X×TX .

An Event-B Assisted Method for Embedded Systems 329

Assume then three type mappings built by the user from its system requirements and
from the variables Xs, Xo, Xc and the related sets of types TXs , TXo , TXc .

4.1. An Overview and the Design of the Tool Assistant

The flowchart in Fig. 7 gives an overview of how the tool assists the user in building the
abstract model in a global process. We will then define the steps of this global process.

Start

Collect the Interface GenerateContext GenerateVariables

BuildInvariantPropertiesGenerateInitialisationsFillAndTypeCheck 1

Event list = {}

Property list = {}

True

FillAndTypeCheck 2
True

BuildSpecificProperties ProveProperties
False

GenerateEvents ProveEvent
False

Fig. 7. Flowchart of the global functioning of the tool

context Ctx0
constants

to be completed by the specifier
sets

Each element of the union TXs ∪ TXo ∪ TXc

axioms
to be completed by the specifier

end

Fig. 8. Event-B context skeleton

Stepwise building of the Event-B
model

Building the context of the model.
From the extracted sets of types TXs ,
TXo , TXc , a context Ctx0 made of the
sets coming from TXs , TXo , TXc is built.
Each carrier set of Ctx0 comes from
TXs ∪ TXo ∪ TXc (see Fig. 8).

The initial Event-B abstract model (Step 1 of the method). The skeleton of the Event-B
abstract model (M0) to build is depicted in Fig. 9.

330 Pascal André, Christian Attiogbé and Arnaud Lanoix

Machine M0
SEES Ctx0
VARIABLES

GenerateVariablesXs ∪ Xo ∪ Xc ∪ Xi
INVARIANTS

BuildInvariantProperties(Xs,Xo,Xc,Xi)
BuildSpecificProperties(Xs,Xo,Xc,Xi,Ps,Pn,Pl)

INITIALISATION

GenerateInitialisations(Xs,Xo,Xc,Xi)
END

Fig. 9. Event-B model skeleton

The functions GenerateVariables, Build-
InvariantProperties, BuildSpecificProp-
erties and GenerateInitialisationSub-
stitutions are used to compute respec-
tively the set of variables, typing in-
variants, specific invariants and de-
fault initialisations for the MO model.
They are elementary functions; most
of them traverse a set, and encode in
Event-B syntax the elements of the
sets.

The function GenerateInitialisations(Xs,Xo,Xc,Xi) works as follows: for each variable
v in Xs∪Xo∪Xc∪Xi, if Tv is a set in Ctx0 corresponding to the type of v then a substitution
v :: Tv is generated. Note that these default initialisations can be modified by the users
to meet its needs.

The global properties of the system. Considering the requirements of the given system
let Ps be the set of the safety properties, Pn be the set of non-functional properties, and
Pl be the set of liveness properties. Each property should be formalised by the user and
incorporated with the assistance tool in the model under construction.

Assistance in horizontal refinement steps

Construction of the events of the abstract model (Step 2 of the method). The current
Event-B abstract model is now extended (that means feature augmentation) with the pre-
vious family of events (sensing events, monitoring events, control events).

Machine M0
. . .
EVENTS

GenerateEvents(Es,Em,Ec)
END

Fig. 10. Event-B model M0

Let Es be the set of sensing events, Em be the set of
monitoring events, Ec be the set of control events, Ea
be a set of reaction events.

The algorithm of GenerateEvents(Es,Em,Ec) is listed
in Fig. 11s:

while (Es 6=∅)∧ (Em 6=∅)∧ (Ec 6=∅) do
Select an event e from Es and update Es (Es =Es−{e})
or
Select an event e from Em and update Em
Select an event e from Ec and update Ec
M0 = AddEvent(M0,BuildEvent(e))

end while
Fig. 11. Events construction adding algorithm

The function BuildEvent(e)
generates a skeleton for each
event name e. This skeleton
should be filled by the user.

An Event-B Assisted Method for Embedded Systems 331

The Event-B abstract model resulting from this stage should now be extended with
the specific properties identified by the user in the system requirements (they have to be
formalised by the user).

We build a web application to implement the starting sequence of the process depicted
in Fig. 7. Its application to a part of the case study is shown in Fig. 12 for the description
of variables. Other informations on the tool can be found on the dedicated website3.

Fig. 12. Interface of the web assistant to help in describing the abstract state

Adding properties to the model is a refinement process (Step 3 of the method). The
informal properties named and described by the user have to be formalised and integrated
in the abstract model. The assistance here consists in selecting for formalisation, each
property from those listed in Psby the user (see Fig. 13).

while (Ps 6=∅) do
Select a property p from Ps
Ps = Ps−{p}) // update Ps
M0 = AddProperty(M0,Formalise(p))
Prove M0

end while
Fig. 13. Properties adding algorithm

The function Formalise(p) enables
one to edit (through a popup for instance)
each involved property. In the same way,
the other specific (reachability and non
functional) properties listed in Pn are in-
tegrated into the refined model M1 using
the algorithm described in Fig. 14. Assis-
tance is provided to the user for selecting

the specific properties to be integrated into the abstract model.
3 hencher.ls2n.fr

332 Pascal André, Christian Attiogbé and Arnaud Lanoix

M1 = M0 // initially M0 is copied; then updated.
while (Pn 6=∅) do

Select a property p from Pn and update Pn
M1 = Addp(M1, f ormalise(p))

end while
Fig. 14. Additional non-functional properties

The function Formalise(p) is as
previously defined. Pn is the set of
non-functional properties.

Fig. 15 illustrates three of the requirements as listed in the web interface of the assis-
tance tool; they appear in the Rodin snapshot depicted in Fig. 16.

Fig. 15. Informal required properties listed in the assistance tool

To improve traceability between, it is better to edit directly the property in Rodin and
to use its label to tag the property in the list of the informal properties.

Fig. 16. Required properties formalised in Rodin interface

The remaining steps of the method, that is the refinement of the control software (Step
6.1 of the method) and the refinement of the controlled environment (Step 6.2) of the

An Event-B Assisted Method for Embedded Systems 333

methods should be achieved within Rodin (or a dedicated Event-B framework). However
we propose some assistance as described in the following section.

Assistance in the vertical refinement process (Step 4, 5) There is no specific tool for the
Step 4. Refining the global abstract model. This steps consists in describing the behaviour
of the devices involved in the case study. This can be done by using automata or the
appropriate models; by encoding these models in Event-B (roughly, the transitions of the
automata are encoded as Event-B events).

Decomposition into software and physical parts (Step 5). The methodological guide to
achieve the decomposition is as follows: the digital part is made with all the events defined
in the sense events (Es), the monitor events (Em) and the stimulate events (Ec) families
whereas the physical environment gathers all the events defined in the reaction events
(Ea) families.

Accordingly we systematically provide the user with the lists of the events that she/he
must select for the decomposition process. The events of the control part are computed
as: Eso f t = Es ∪ Em ∪ Ec; those of the physical part are computed as: Ephys = Ea. These
two lists are then used as the input of the decomposition plugin of Rodin.

The decomposition in Event-B consists in selecting and separating the desired events
into two machines. In our case the model Mcontrol corresponding to the control part is the
projection of M1 on Eso f t . Similarly the model Mphys corresponding to the physical part
is the projection of M1 on the list Ephys (See Fig. 17).

The Rodin tool already provides a decomposition plugin [15] that performs the pro-
jection of the provided machine according to the selected events. Therefore our assistance
tool provides to its users, the lists of events that he/she should select when using the
decomposition plugin of Rodin.

Machine Mso f t
. . .
EVENTS

events from Eso f t
END

Machine Mphys
. . .
EVENTS

events from Ephys
END

Fig. 17. Model decomposition skeleton

At this stage our tool provides much assistance to begin with the modelling in Event-B
using Rodin; but many other tool facilities are provided with the Rodin to help its users.
In the following we show how some of these tools can be used at various stages of our
proposed method to satisfy the tool requirements identified in Sect. 3.5.

4.2. Tool Requirements Handled by Existing Rodin Plugins

We have experimented with some Rodin plugins to put our method in practice. But there
are many other plugins available for Rodin to extend and complete the features of the

334 Pascal André, Christian Attiogbé and Arnaud Lanoix

Rodin. We have studied them, and in the following we report on how some of these exist-
ing plugins can help one to apply the Heñcher method by resolving some of the previously
mentioned requirements (see Section 3.5). Therefore for each of the tool requirements we
advice the available or candidate plugins.

RT2 Incremental step-by-step refinement. Our tool already provides a preliminary assis-
tance in this direction by considering the families of events to be used in each refinement
step.But more remain to be done to gain more flexibility within Event-B; there is a proto-
type plugin on Group refinement 4 which targets the simplification of the refinement links
between abstract machines and their refinements; the idea is to relax the constraints on
introducing dummy variables and their related housekeeping events that are there only to
satisfy the refinement relation.

RT3 Pattern based substitutions and automatic refinements. Some plugins propose to
add (de-)composition features into Event-B/Rodin. The Feature composition plugin [17]
enables one to merge Event-B machines and their seen contexts with the facilities to
highlight multiple declarations of variables or events and to resolve conflicting elements.

RT4 Collaboration: working in parallel, versioning, decision traceability. There exists a
plugin called "team-based development" [19] which allows Event-B models to be stored
in a SVN repository. That plugin allows to share the Event-B specifications but not the
proof effort. The Modularisation plugin 5 may also help here by allowing separate de-
velopment of part of the a global system as sub-modules and then by combining them.
Indeed, this plugin enables one to weave together modules composing a model so that
they work on the same global problem.

R5 Overall development process management. An experimental plugin named Model
critic [14] could be used to evaluate models using informal heuristics of what is typically
a bad practice in model construction. That is a first step to evaluate quality of Event-B
specifications, but it is not enough, to use it into an industrial process.

RT6 Iterative process of model evolution. We identified several plugins that can help
in fulfilling this requirement. The Refactory plugin [18] provides functionalities to re-
name the declaration and all the occurrences of an element of an Event-B model without
modifying its proof state. There is a need for applying the same principle for more com-
plex operations; for instance the insertion of event and its basic refinement through the
chain of refinements, the detection and replacement of all the occurrences of an event in
a model and trough its refinements, but with the smallest impact on the proof effort. The
Transformation patterns plugin [20] could be used to automatise the different steps of the
Heñcher method. From a given Event-B machine, we can produce a new one by applying
some "transformations" : adding new variable, new event, new invariant, finding and using
some event’s guards, ask the user to enter some missing information, etc. No information
is given about the necessary proof effort when using this plugin. The Design pattern plu-
gin [16] is dedicated to reuse former development (as a pattern) in a new development by

4 http://wiki.event-b.org/index.php/Group_refinement_plugin
5 wiki.event-b.org/index.php/Modularisation_Plug-in

http://wiki.event-b.org/index.php/Group_refinement_plugin
wiki.event-b.org/index.php/Modularisation_Plug-in

An Event-B Assisted Method for Embedded Systems 335

matching the corresponding variables and events. This results in a refined machine which
embeds the former development. The proofs of the used pattern would be reused too. The
correctness of the matching is only syntactically checked.

RT7 Traceability of the refinement chain of an event. We have not yet identified any tool
or plugin to help for this concern.

RT8 Securing copy-paste operations. We have not yet identified any tool or plugin to help
for this concern.

Issues on tool development and maintenance We are aware of the effort to be done to
face the recurrent issues on tool development and maintenance. Most of the mentioned
plugins are experimental, and insufficiently documented; they are not all based on the
same (up-to-date) versions of Rodin. Many of them are difficult to install because of the
(incompatible) required dependencies.

Accordingly, the open source policy is a solution to share the development and main-
tenance effort. We envision this solution for the tools we are developing and for the effort
to be devoted to the remaining identified requirements.

5. Conclusion

In this paper we focused on the application of the Heñcher method to the Landing Gear
Case study and paid much attention to the necessary tool support for the method. This led
to the detailed presentation of the design of a companion tool of our method. Then we
showed how the tool was used together with the Rodin tool and plugins to experiment
with the case study. This work extends substantially our previous work presented in [4]
where the proposed method Heñcher was introduced. We proposed the method Heñcher
to guide step by step the construction of embedded control systems with Event-B. We
built on the well-known structure of control systems and on the experiments of several
case studies where the Event-B was used and where some methodological guidelines
was provided [7,6,21]. We provided preliminary assessment in [4]; in this paper the case
study is dealt with more details and we covered all the steps of the proposed method.
The Landing Gear case study is representative of large systems involving the control and
the interaction between software and physical parts. Before going into the presentation
of the assistance tool that we have developed, we emphasised the motivations and the
requirements for the needed tools.

Among the identified tool requirements, we detailed a tool to assist the specifiers in
starting the modelling process, and to assist them during the development process with
Rodin. Yet our Heñcher assistance tool is a prototype developed as a standalone web
application. We experimented with Rodin but, it can be used not only for Rodin.

We have studied other available Rodin plugins that can help in putting into practice
or to implement the remaining identified tool requirements.

Apart from the development of the tools related to facilitating the reuse of existing plu-
gins (template reuse, refactoring, injection of events, etc), the short-term perspectives of
our work are to continue the development of the Heñcher tools and their experimentation

336 Pascal André, Christian Attiogbé and Arnaud Lanoix

with other large scale case studies in combination with the Rodin platform. Our exper-
iment with the Landing Gear case study which has the main features of cyber-physical
systems, will be exploited to deal with more case studies of this category. Indeed there are
other challenges to tackle in this area, such as handling real-time properties, dealing with
the construction of systems built on the basis of digital twins concepts.

The long-term perspective is the provision of a generic development pattern related to
embedded system which will make it more easier to describe requirements and properties
and get the major part of the development generated.

Acknowledgments. Thanks to Léo Cassiau, Geoffrey Desbrosses, Alexis Giraudet, Jean-Christophe
Guérin, Asma Khelifi, Ugo Mahey and Tantely Randriamaharavomanana, Master students at Uni-
versity of Nantes in 2017, who worked with us on the tools.

References

1. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge University
Press (2010)

2. Abrial, J.R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of Discrete Models:
Application to Event-B. Fundam. Inform. 77(1-2), 1–28 (2007)

3. Alkhammash, E., Butler, M.J., Fathabadi, A.S., Cîrstea, C.: Building Traceable Event-B Mod-
els from Requirements. Sci. Comput. Program. 111, 318–338 (2015), https://doi.org/10.
1016/j.scico.2015.06.002

4. André, P., Attiogbé, C., Lanoix, A.: Systematic Construction of Critical Embedded Systems
Using Event-B. In: Abdelwahed, E.H., Bellatreche, L., Benslimane, D., Golfarelli, M., Jean,
S., Méry, D., Nakamatsu, K., Ordonez, C. (eds.) New Trends in Model and Data Engineer-
ing - MEDI 2018 International Workshops, DETECT, MEDI4SG, IWCFS, REMEDY, Mar-
rakesh, Morocco, October 24-26, 2018, Proceedings. Communications in Computer and In-
formation Science, vol. 929, pp. 200–216. Springer (2018), https://doi.org/10.1007/
978-3-030-02852-7_18

5. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V., Ait Ameur,
Y., Schewe, K.D. (eds.) ABZ2014. CCIS, vol. 433, pp. 1–18. Springer International Publishing
(2014)

6. Damchoom, K., Butler, M.J.: Applying Event and Machine Decomposition to a Flash-Based
Filestore in Event-B. In: 12th Brazilian Symposium on Formal Methods, SBMF 2009. LNCS,
vol. 5902, pp. 134–152. Springer (2009)

7. Damchoom, K., Butler, M.J., Abrial, J.R.: Modelling and Proof of a Tree-Structured File Sys-
tem in Event-B and Rodin. In: 10th International Conference on Formal Engineering Methods,
ICFEM 2008. LNCS, vol. 5256, pp. 25–44. Springer (2008)

8. Hoang, T.S., Snook, C.F., Fathabadi, A.S., Butler, M.J., Ladenberger, L.: Validating and verify-
ing the requirements and design of a haemodialysismachine using the rodin toolset. Sci. Com-
put. Program. 158, 122–147 (2018), https://doi.org/10.1016/j.scico.2017.11.002

9. Jard, C., Roux, O.H. (eds.): Communicating Embedded Systems: Software and Design. Wiley-
ISTE (2009)

10. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development of embedded
software. Proceedings of the IEEE 91(1), 145–164 (Jan 2003)

11. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Commun.
ACM 21(7), 558–565 (1978)

12. Méry, D., Singh, N.K.: Formal Specification of Medical Systems by Proof-Based Refinement.
ACM Trans. Embedded Comput. Syst. 12(1), 15 (2013)

https://doi.org/10.1016/j.scico.2015.06.002
https://doi.org/10.1016/j.scico.2015.06.002
https://doi.org/10.1007/978-3-030-02852-7_18
https://doi.org/10.1007/978-3-030-02852-7_18
https://doi.org/10.1016/j.scico.2017.11.002

An Event-B Assisted Method for Embedded Systems 337

13. Parnas, D.L., Madey, J.: Functional Documents for Computer Systems. Science of Computer
Programming 25(1), 41–61 (1995), citeseer.ist.psu.edu/parnas95functional.html

14. Event-b rodin platform plug-ins: Model critic plug-in, http://wiki.event-b.org/index.
php/Model_Critic, accessed: 2019-03-14

15. Event-b rodin platform plug-ins: Decomposition plug-in, http://wiki.event-b.org/
index.php/Decomposition_Plug-in_User_Guide, accessed: 2019-03-14

16. Event-b rodin platform plug-ins: Design pattern, http://wiki.event-b.org/index.php/
Pattern, accessed: 2019-03-18

17. Event-b rodin platform plug-ins: Feature composition plug-in, http://wiki.event-b.org/
index.php/Feature_Composition_Plug-in, accessed: 2019-03-14

18. Event-b rodin platform plug-ins: Refactoring framework, http://wiki.event-b.org/
index.php/Refactoring_Framework, accessed: 2019-03-14

19. Event-b rodin platform plug-ins: Team-based development, http://wiki.event-b.org/
index.php/Team-based_development, accessed: 2019-03-11

20. Event-b rodin platform plug-ins: Transformation patterns, http://wiki.event-b.org/
index.php/Transformation_patterns, accessed: 2019-03-18

21. Satpathy, M., Ramesh, S., Snook, C.F., Singh, N.K., Butler, M.J.: A Pixed Approach to Rigor-
ous Development of Control Designs. In: 2013 IEEE International Symposium on Computer-
Aided Control System Design, CACSD 2013, Hyderabad, India, August 28-30, 2013. pp. 7–12.
IEEE (2013), https://doi.org/10.1109/CACSD.2013.6663474

22. Silva, R., Butler, M.: Shared Event Composition/Decomposition in Event-B. In: 9th Interna-
tional Symposium onFormal Methods for Components and Objects, FMCO 2010. LNCS, vol.
6957, pp. 122–141. Springer (2012)

23. Singh, N.K., Wang, H., Lawford, M., Maibaum, T.S.E., Wassyng, A.: Stepwise formal mod-
elling and reasoning of insulin infusion pump requirements. In: Duffy, V.G. (ed.) Digital
Human Modeling - Applications in Health, Safety, Ergonomics and Risk Management: Er-
gonomics and Health - 6th International Conference, DHM 2015, Held as Part of HCI Inter-
national 2015, Los Angeles, CA, USA, August 2-7, 2015, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 9185, pp. 387–398. Springer (2015), https://doi.org/10.1007/
978-3-319-21070-4_39

Pascal ANDRE received his Ph.D. from the University of Rennes I in 1995. He joined
the Faculty of Sciences of Nantes in 1996 and then, spent 4 years as assistant profes-
sor at INP-HB engineering school (Ivory Coast). He is currently Associate Professor at
the University of Nantes, France. He carries out his research activities in the Reliable
Architecture and Software (AeLoS) team, at the laboratory of digital sciences of Nantes
(LS2N). He published a series of course books on information system design in french.
His main research topics concern the use of formal methods and verification techniques
for software modelling and analysis, particularly in the context of component-based sys-
tems. He also actively work on rigorous approaches for model-driven engineering and
reverse engineering.

Christian ATTIOGBÉ received the Ph.D. degree in Computer Science from the Univer-
sity of Toulouse, Toulouse, France, in 1992. He joined the Faculty of Sciences of Nantes
in 1994 and he is currently Professor at the University of Nantes, Nantes, France. His re-
search interests include formal approaches for software modelling and analysis, correct-
by-construction using refinement, embedded-systems and heterogeneous systems mod-
elling. He published several peer-reviewed papers on these topics. He is the leader of the

citeseer.ist.psu.edu/parnas95functional.html
http://wiki.event-b.org/index.php/Model_Critic
http://wiki.event-b.org/index.php/Model_Critic
http://wiki.event-b.org/index.php/Decomposition_Plug-in_User_Guide
http://wiki.event-b.org/index.php/Decomposition_Plug-in_User_Guide
http://wiki.event-b.org/index.php/Pattern
http://wiki.event-b.org/index.php/Pattern
http://wiki.event-b.org/index.php/Feature_Composition_Plug-in
http://wiki.event-b.org/index.php/Feature_Composition_Plug-in
http://wiki.event-b.org/index.php/Refactoring_Framework
http://wiki.event-b.org/index.php/Refactoring_Framework
http://wiki.event-b.org/index.php/Team-based_development
http://wiki.event-b.org/index.php/Team-based_development
http://wiki.event-b.org/index.php/Transformation_patterns
http://wiki.event-b.org/index.php/Transformation_patterns
https://doi.org/10.1109/CACSD.2013.6663474
https://doi.org/10.1007/978-3-319-21070-4_39
https://doi.org/10.1007/978-3-319-21070-4_39

338 Pascal André, Christian Attiogbé and Arnaud Lanoix

Reliable Architecture and Software (AeLoS) team, at the laboratory of digital sciences of
Nantes (LS2N) since 2007.

Arnaud Lanoix received his Ph.D. from the University of Franche-Comté in 2005. He
spent 3 years as a post-doctorate at the LORIA lab (Nancy, University of Lorraine). He
is Associate Professor since 2008 at the Université de Nantes and carries out his research
activities in the Reliable Architecture and Software (AeLoS) team, at the laboratory of
digital sciences of Nantes (LS2N). His main research topics concern the use of formal
methods and verification techniques for software modelling and analysis, particularly in
the context of component-based systems.

Received: May 1, 2019; Accepted: September 13, 2019.

	1 Introduction
	2 A Glimpse of the Heñcher Method
	Proposed modelling patterns

	3 Applying the Method to the Running Case Study
	3.1 Horizontal Process: Building an Abstract Global Model of the System
	3.2 Vertical Process: Building the Concrete Parts of the LG System
	3.3 Handling the Required Properties
	Introducing the reachability property (requirement R21 and R22)

	3.4 Experimentation with Rodin and statistics
	3.5 Tooling Concerns

	4 An Assistance Tool
	Generation of an Event-B models from a control system interface
	The collected interface

	4.1 An Overview and the Design of the Tool Assistant
	Stepwise building of the Event-B model
	Assistance in horizontal refinement steps
	Assistance in the vertical refinement process (Step 4, 5)

	4.2 Tool Requirements Handled by Existing Rodin Plugins

	5 Conclusion

