
Computer Science and Information Systems 11(2):825–838 DOI: 10.2298/CSIS121225045A 

 

Fuzzy Claim Reserving In Non-Life Insurance 

Jorge de Andrés-Sánchez 

Social and Business Research Laboratory 
 Rovira i Virgili University 

Avinguda de la Universitat 1, 43204, REUS, SPAIN 
jorge.deandres@urv.cat 

Abstract. This paper develops several expressions to quantify claim provisions to 
account in financial statements of a non-life insurance company under the 
hypothesis of a fuzzy environment. Concretely, by applying the expected value of 

a fuzzy number and the more general concept of value of a fuzzy number to the 
ANOVA claim predicting model [2] we estimate claim reserves to account in 
insurer’s balance sheet and income account. 
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1. Introduction 

As Dubois and Prade [15] point out Fuzzy Sets Theory (FST) and its extensions are 

applied, basically, in the following three circumstances: gradualness, epistemic 

uncertainty and bipolarity. So, although actuarial quantitative analysis is essentially 

based on statistical methods, academics and practitioners now tend to believe that FST 

is a useful complement to statistics in the cases that require a great deal of actuarial 

subjective judgement and problems for which the information available is scarce or 

vague. An extended survey can be found in [29]. So, the Encyclopaedia of Actuarial 

Science in [13] dedicated a chapter to FST. Any case, as it is pointed out in [27], 

fuzziness does not figure as central to any science and, of course, Actuarial 

Mathematics is not an exception. 

One of the most interesting areas of FST for actuaries is Fuzzy Data Analysis (FDA). 
As Statistics, FST provides several techniques for searching and ordering the 

information contained in empirical data (e.g. for grouping elements, to find relations 

between variables, etc.). Within an actuarial context, Fuzzy Regression (FR) has been 

used intensively in several areas. In life insurance field, [1] and [22] use two different 

Fuzzy Regression (FR) methods to fit the temporal structure of interest rates whereas 

[21] develops a FR methodology to forecast mortality with a Lee-Carter model. In non-

life insurance Berry-Stölze et al. in [4] use FR to evaluate solvency requirements for 

property-liability insurers. 

In non-life claim reserving, the use of FR is motivated, basically, because of it is not 

advisable to use a wide data-base since data too far from the present can lead to 

unrealistic estimates. In this context, Andrés-Sánchez in [2] proposes a claim reserving 

method that mixes FR with the ANOVA reserving method [23], which has been used 

intensively in actuarial literature (see e.g. [8, 28]). Andrés-Sánchez’s method estimates 
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future liabilities not only as a point values but also their variability with the use of 

Fuzzy Numbers (FNs) instead of random variables.  
The fuzzy estimation of claiming costs finally needs to be transformed into a crisp 

equivalent in order, for example, to compute them in financial statements. So, [2] takes 

into account only non-discounted reserves (i.e. does not considers the profit of the assets 

that support liabilities) and uses the concept of the expected value [7]. This paper 

extends those results in two ways. Firstly, we also introduce in the analysis the expected 

profit of assets and so we obtain discounted reserves. We consider that the interest rate 

for finding the present value of future claims will be estimated subjectively by the 

actuary and so, it is a very natural to quantify that magnitude with a FN. Financial 

pricing with fuzzy parameters has been widely developed [5, 16, 20, 25]. Subsequently, 

fuzzy financial mathematics has been extended to life insurance pricing [3, 26] and non-

life insurance pricing [1, 9, 12, 23]. Secondly, to transform fuzzy liabilities into crisp 
estimates we will use the concept of value of FNs [11] which generalises the expected 

value of a FN [7]. It will allow us weighting all the possible values of fuzzy estimates of 

liabilities taking into account their actual reliability. 

The structure of the paper is as follows. In the next section we shall describe the 

aspects of fuzzy arithmetic and deffuzyfication that are used in this paper. Section 3 

exposes claim reserving prediction exposed in [2] and develops several expressions for 

the value of reserves to be accounted. Those expressions will depend on the weighting 

function used for defuzzifying and if we discount future liabilities with an interest rate. 

Subsequently we develop a numerical application. Finally, we state the most important 

conclusions of the paper.  

2. Fuzzy Numbers and related concepts 

A Fuzzy Number (FN) is a fuzzy subset a~  defined over real numbers which is normal 

(i.e. 1)( sup ~ 


xa
Xx

 ) and convex (i.e. its -cuts must be convex sets). For practical 

purposes, Triangular Fuzzy Numbers (TFNs) are widely used FNs since they are easy to 

handle arithmetically and they can be interpreted intuitively. We shall symbolise a TFN 

a~  as a~ =(a, la, ra) where a is the centre and la and ra are the left and right spreads, 

respectively. Analytically, a TFN is characterised by its membership function  xa~  

and its -cuts, a: 
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(1) 

           1,1, aa ralaaaa  (2) 
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In many actuarial analyses, it is often necessary to evaluate functions (e.g. the net 

present value of an annuity), which we shall name y=f(x1, x2, …,xn). Then, if x1,x2,…,xn 

are not crisp numbers but the FNs 1
~a , 2

~a ,…, na~ , f(·) induces the FN b
~

=

 naaaf ~,...,~,~
21 .

 Buckley and Qu in [6] demonstrate that if the function f(·) that induces 

b
~

 is increasing with respect to the first m variables, where mn, and decreasing with 

respect to the last n-m variables, then b is: 
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   nmmnmm aaaafaaaafbbb ,...,,,...,,,...,,,...,, 1111

 

(3) 

It is very usual in real insurance situations to estimate magnitudes as approximate 

quantities, for example, by means of a sentence like “the claim provisions must be 

around 2000 monetary units”. Clearly, FNs can be used to represent these magnitudes. 

However, these magnitudes also often need to be quantified with crisp values. For 

example, in our context, this will occur when the definitive amount of claim provisions 

needs to be specified in financial statements. This paper proposes using the concept of 

value of a FN by Delgado et al. in [11], but adapted in order to introduce decision 

maker’s risk aversion in the sense of Hurwitz. For a FN a~ , it will be we symbolised as 

V[ a~ ,]. If we use a decision-maker risk aversion , where 01 we obtain: 

V[ a~ , ]=           

1

0

1
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dd1  awaw  

 

(4a) 

where w() is the weighting function. In this paper, following [11], we will consider 

w()=2. Likewise, as it is done in [2], we will also consider w()=1 (there is no 

weighting). Notice that under this hypothesis, (3) is now the expected value of a FN 

(Campos and González, 1989). In this case, the value will be symbolised as EV[a~ ,].  

 Notice that the value of a FN is an additive measure, and so: 
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(4b) 

3. Fuzzy claim reserving 

3.1.  Fitting future claiming with fuzzy ANOVA 

Let us symbolise as si,j the claim cost of the insurance contracts originated in the ith 

period (i=0,1,...,n) within the jth claiming period (j=0,1,...,n). Given that the past 

claiming costs of the ith occurrence period are si,j, j=0,1,...,n-i, calculating claim 

reserves implies forecasting and adding the claim costs of future development periods: 

si,j, i=1,2,...,n; j=n-i+1, n-i+2,..., n. 
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Andrés-Sánchez in [2] extends ANOVA claim reserving method [23], to the use of 

Fuzzy Regression. ANOVA chain ladder, as classical chain ladder, supposes that si,j can 
be represented by the product Ci·pj where Ci is the total claiming cost in the ith origin 

period, whereas pj is the proportion of this cost paid in the jth development period. 

Therefore, the parameters Ci, i=0,1,...,n and pj, j=0,1,...,n can be obtained by using linear 

regression since ln si,j = ln Ci+ln pj. To introduce uncertainty[23] supposes that: 

si,j =Cipji,j (5) 

where i,j is a random variable whose mean is 1. The theoretical model (5) can be 
transformed into the following linear regression equation: 

lnsi,j = a+bi+cj+i,j , i=1,2,...,n; j=1,2,...,n    (6) 

where here, i,j, i=0,1,...,n; j=0,1,...,n-i are identical and uncorrelated distributed normal 

random variables with mean 0 and variance 2. Notice that in this model the 
incremental cost of claims si,j is a log-normal random variable, because (6) lets us 

deduce: 

jiji cba
ji es ,

,


  (7) 

Here, ea can be interpreted as the incremental claim cost in the initial origin and 

development periods (i=0, j=0). Thus, bi can be understood as the logarithmical growth 

rate of total claiming during the origin period i, (i=1,2,...,n) with respect to the initial 

origin period. Analogously, for a given origin period, cj is the logarithmical growth rate 
of the incremental cost of claims during the development period j (j=1,2,...,n) with 

respect to the cost of claims declared during the development period j=0.  

On the other hand [2] considers that the uncertainty about incremental claims is due 

to fuzziness and it is not exogenous to total claiming cost, Ci, and proportions pj, 

j=1,2,…,n. So, we will obtain an estimate of the incremental claim cost si,j by means of 

the fuzzy number jis ,
~ : 

jiji pCs ~~~
,    (8a) 

then, the linear regression model to fit is analogous to (6): 

jiji cbas ~~~~ln ,   (8b) 

Andrés-Sánchez in [2] supposes that iba
~

,~
 and jc~  are TFNs and therefore jis ,

~ln  is 

also a TFN. If we symbolise  aa rlaa ,,~  ,  
ii bbii rlbb ,,

~
 , i=1,2,...,n and 

 
jj ccjj rlcc ,,~  , j=1,2,...,n, we obtain from (6) and (8b): 

ln jis ,
~

=  
jiji ssji rls

,, lnln, ,ln =  aa rla ,,  
ii bbi rlb ,,  

jj ccj rlc ,,
 

 
jiji cbacbaji rrrlllcba  ,,  

 

(8c) 

Notice that in the fuzzy regression model (8b) a~  is the independent term whereas 

ji cb ~ ,
~

 are the coefficients of dichotomous explanatory variables, in such a way that 
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their observations are equal to one when the period in which they are located is equal to 

the parameter period, and zero in the other case. Therefore, although in the FR model 
that we use, the spreads of the estimate response are increasing with respect to the 

magnitude of the explanatory variables, this is not a problem since we are handling 

dummy independent variables. 

After fitting the model (8a)-(8c) that is done with the FR model described in [19], we 

can now predict the claiming cost of all origin periods in the development periods in 

which they are unknown. Given that the logarithm of incremental claim costs jis ,
~ln , 

i=1,2,...,n; jn-i+1 are the TFN in (8b) and that the incremental claim cost jis ,
~  is: 

jis
ji es ,

~ln
,

~   
(9a) 

Then, the -cuts of jis ,
~ , 

jis , are obtained from (2) and (3): 
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3.2. Fitting accounting value for claim reserves 

Firstly, we fit a crisp quantification for non-discounted claim reserves, i.e., without 

taking into account the return of the assets that support these reserves. In this case, we 

must obtain the value of jis ,
~ ,  ;~

, jisV  by applying (3) to (9b): 
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(10a) 

In the case where w()=2, (10a) must be integrated by parts and so: 
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(10b) 

where:

   
jijijiji cbajicbacbacbaji rrrcbaDrrrClllBlllcbaA  ;; ;

 
Likewise if w()=1 we obtain  ;~

, jisEV  in such a way that: 
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(11) 

where the parameters A, B, C and D are equal to the case (10b). Of course, in both 

cases, (10b) and (10c), if 0
ji cba lll , the first summand is simply   ji cba

e


 1  

and when 0
ji cba rrr , the second summand must be ji cba

e


 . 

The non-discounted provision corresponding to the ith origin period is obtained by 

doing: 
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
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therefore, the provision for all the occurrence periods is: 
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(13) 

From the -cuts of jis ,
~

 in (9b) we can derive the exact value for the -cuts of iORP
~

 

and ORP
~

 by applying (3): 
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(15) 

To account for the claim provision in the financial statements, we must transform 

iORP
~

 and ORP
~

 into the crisp numbers PROi
* and PRO* respectively. To do so, we 

will use the concept of value of a FN which we have described in (3) and (4). In our 

problem, to fix , we must bear in mind that actuarial decisions must be prudent, that is, 

>0.5. Given that the expected value of FN is an additive measure, we can obtain PROi
* 

and PRO* by aggregating  ;~
, jisV , i=1,2,...,n; j=n-i+1,...,n, that we have obtained in 

(10a)-(10c). Thus: 
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(16) 

Therefore, the crisp provision for all the occurrence years is: 
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(17) 

However, these developments do not take into account that the assets that support 

future liabilities produce financial returns and so, non-discounted provisions overrate 

the real value of reserves. To avoid this problem, the regulation of many countries 

allows discounting future liabilities to quantify claim reserves. We consider that the 

interest rate for finding the present value of future claims will be estimated subjectively 

by the actuary and so, it is a very natural to quantify that magnitude with a FN. This is a 
relatively common hypothesis in non-life insurance, [1, 9, 12, 23], that extend financial 

pricing with fuzzy parameters [5, 16, 20, 25] to non-life insurance pricing. 

This paper supposes a constant force of interest throughout the temporal horizon 

estimated with the TFN   rl ,,~  , that the periodicity of claiming is annual and 
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that its distribution is uniform within the year. As is pointed out in [18], this last 

hypothesis is applied in practice by supposing that the cost of claims is paid in the 
middle of the year. Therefore, the discounted value of the incremental claiming of the 

ith origin year during the jth development period will be symbolised as jisd ,
~ , 

i=1,2,...,n; jn-i+1 and it is obtained as: 

     jincbajin
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jieessd
 
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(14a) 

Then, the -cuts of jisd ,
~

 are obtained by using (2) and (3): 
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(18) 

So, the value of the discounted incremental cost of claims  ;~
, jisdV  is obtained by 

applying (3) to (14b): 
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In the case where w()=2, (15a) is also (10b) but in this case the parameters A, B, C 
and D are: 
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Likewise if w()=1 we obtain  ;~
, jisEV  and also the result is (10c) but the values 

of A, B, C and D are in (15b). 

The discounted reserve to account for the ith origin period is then: 
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(20) 

and therefore, the provision for all the occurrence years is: 



832           Jorge de Andrés-Sánchez 
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From the -cuts of jisd ,
~  in (16b) we derive the value for the -cuts of iORdP

~
 and 

ORdP
~

 with (3): 
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Finally, to fit the claim provision to account in financial statements we must 
transform the fuzzy value of the discounted reserves into the crisp values. Analogously 

to non-discounted reserves, we obtain: 
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n

inj
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*
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(24) 

Therefore, the provision for all the occurrence years is: 
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4. Numerical application 

Our numerical example is developed over the run-off triangle in Table 2 [8, p. D5.4] 

that was also used in [2]. From Table 1, we can immediately obtain the log-incremental 

payments in Table 2.  
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Table 1. Run off triangle. The amounts are the cost of the claims from the ith origin year paid at 
the jth development year (si,j, i=0,1,2,3, j=0,1,...,3-i) 

  Development year 

 i\j 0 1 2 3 

 

Origin year 

0 11073 6427 1839 766 

1 14799 9357 2344  

2 15636 10523   

3 16913    

Table 2. Run off triangle in which the quantities are lnsi,j, i=0,1,2,3, j=0,1,...,3-i 

  Development year 

 i\j 0 1 2 3 

 

Origin year 

0 9.312 8.768 7.517 6.641 

1 9.602 9.144 7.760  

2 9.657 9.261   

3 9.736    

 

Now, we develop our numerical with certain detail. 

a) First we need to fit the parameters  aa rlaa ,,~  ,  
ii bbii rlbb ,,

~
 , i=1,2,3 and 

 
jj ccjj rlcc ,,~  , j=1,2,3. Thus, following [2] we implement two steps. 

a.1) We obtain the estimates of the centres of a~ , ib
~

, i=1,2,3 and jc~ , j=1,2,3, with 

the algorithm used in [23]. See the results in Table 3.  

Table 3. Least Squares estimates for the centres of a~ , ib
~

, i=1,2,3 and jc~ , j=1,2,3 

Coefficient a’ b1’ b2’ b3’ c1’ c2’ c3’ 

Value 9.288 0.303 0.04 0.447 -0.466 -1.801 -2.647 

Standard deviation 0.040  0.043 0.050  0.066 0.043 0.050 0.066 

a.2) We fit the spreads of a~ , ib
~

, i=1,2,3 and jc~ , j=1,2,3, being the result: 

a~ =(9.288, 0.024, 0.000) 

1

~
b =(0.303, 0.000, 0.000) 

2

~
b =(0.404, 0.011, 0.016) 

3

~
b =(0.447, 0.000, 0.000) 

1
~c =(-0.466, 0.030, 0.019) 

2
~c =(-1.801, 0.006, 0.030) 
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3
~c =(-2.647, 0.000, 0.000) 

b) Now, we must evaluate (9a) to calculate the future cost of claims jis ,
~ , i=1,2,3; 

j=3-i+1,...,3. Table 4 indicates the values of α-cuts 
jis ,  for α=0, 0.5, 1. The value 

1, jis  gives us a prediction of the most feasible point estimate of the future incremental 

claim whereas the 0-cut quantifies its estimated range. Subsequently, by applying (12a) 

and (12b) to the results of Table 4 we calculate the α-cuts of provisions (see Table 5). 

Table 4. Values of 
jis ,  i=1,2,3, j=3-i+1,...,3 for the α-levels α=0, 0.5, 1. 

 
3,1s  

2,2s  
3,2s  

α=1 
[1036.86, 1036.86] [2672.95, 2672.95] [1147.35, 1147.35] 

α=0.5 
[1012.38, 1036.86] [2564.96, 2799.47] [1107.81, 1166.06] 

α=0 
[988.48, 1036.86] [2461.33, 2931.96] [1069.64, 1185.08] 

 
1,3s  

2,3s  
3,3s  

α=1 
[10611.44, 10611.44] [2791.62, 2791.62] [1198.29, 1198.29] 

α=0.5 
[10054.03, 10813.80] [2708.94, 2876.83] [1170.00, 1198.29] 

α=0 [9525.91, 11020.01] [2628.71, 2964.63] [1142.37, 1198.29] 

Table 5. Values of the reserves for the α-levels α=0, 0.5, 1. 

 PROV1α PROV2α 
PROV3α PROVα 

α=1 
[1036.86, 1036.86] [3820.30, 3820.30] [14601.35, 14601.35] [19458.51, 19458.51] 

α=0.5 
[1012.38, 1036.86] [3672.77, 3965.53] [13932.97, 14888.91] [18618.12, 19891.30] 

α=0 [988.48, 1036.86] [3530.97, 4117.05] [13296.99, 15182.94] [17816.43, 20336.84] 

 

To account non-discounted provisions in financial statements it is necessary to 

defuzzify the FNs that estimate future claiming. By using (10c), (13a) and (13b) and 

taking a risk aversion coefficient β=1, we obtain:  

 1;~
3,1sV 1036.86;  1;~

2,2sV 2759.29;  1;~
3,2sV 1159.93;  

 1;~
1,3sV 10747.63;  1;~

2,3sV 2849.29;  1;~
3,3sV 1198.29 

  1;
~

1
*

1 ORPVPRO 1036.86 

  1;
~

2
*

2 ORPVPRO 3919.21 

  1;
~

3
*

3 ORPVPRO 14795.21 

  1;
~*

iORPVPRO 19751.28 

On the other hand, by using a risk aversion coefficient β=1 but the expected value of 
claims (10c), we find: 
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 1;~
3,1sEV 1036.86;  1;~

2,2sEV  2800.46;  1;~
3,2sEV  1166.11;  

 1;~
1,3sEV  10814.44;  1;~

2,3sEV  2877.26;  1;~
3,3sEV 1198.29 

  1;
~

1
*

1 ORPEVPRO 1036.86 

  1;
~

2
*

2 ORPEVPRO 3966.58 

  1;
~

3
*

3 ORPEVPRO 14889.99 

  1;
~*

iORPEVPRO 19893.42 

c) To obtain discounted reserves, we will suppose that the actuary predicts for the 

coming years that the returns of the insurer’s investments will be approximately 3%, 

and that deviations over that value may be about 0.5%. That rate can be quantified by 

the TFN  005.0,005.0,03.0~  . Subsequently, by applying (14b) we calculate the α-

cuts of the discounted value of incremental claims (see Table 6). Likewise, the 

discounted value of reserves in Table 7 is calculated with (17a) and (17b). 

Table 6. Values of 
jids ,  i=1,2,3, j=2,3 for the α-levels α=0, 0.5, 1. 

 
3,1ds  

2,2ds  
3,2ds  

α=1 [1021.42, 1021.42] [2633.16, 2633.16] [1096.86, 1096.86] 

α=0.5 
[996.06, 1022.70] [2523.62, 2761.24] [1055.10, 1118.94] 

α=0 
[971.33, 1023.98] [2418.63, 2895.54] [1014.93, 1141.46] 

 
1,3ds  

2,3ds  
3,3ds  

α=1 
[10453.46, 10453.46] [2668.78, 2668.78] [1111.70, 1111.70] 

α=0.5 
[9891.98, 10666.13] [2580.05, 2760.57] [1078.69, 1118.67] 

α=0 
[9360.65, 10883.12] [2494.26, 2855.52] [1046.66, 1125.69] 

Table 7. Estimated values of the discounted reserves for the α-levels α=0, 0.5, 1. 

 
dPROV1α dPROV2α 

dPROV3α dPROVα 

α=1 
[1021.42, 1021.42] [3730.02, 3730.02] [14233.94, 14233.94] [18985.39, 18985.39] 

α=0.5 
[996.06, 1022.70] [3578.72, 3880.18] [13550.72, 14545.37] [18125.49, 19448.25] 

α=0 
[971.33, 1023.98] [3433.56, 4037.01] [12901.58, 14864.33] [17306.47, 19925.31] 

 
To obtain a crisp value for the discounted value of incremental claims and discounted 

provisions, we calculate jisd ,
~ , i=1,2,3; j≥3-i+1 and apply (10b) and (15b). 

Subsequently we apply (18a) and (18b), considering again that β= 1:  

 1;~
3,1sdV 1022.27;  1;~

2,2sdV 2720.62;  1;~
3,2sdV 1111.73; 

 1;~
1,3sdV 10596.68;  1;~

2,3sdV 2731.03;  1;~
3,3sdV 1116.36 
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  1;
~

1
*

1 ORdPVPRO  1022.27;  

  1;
~

2
*

2 ORdPVPRO  3832.35 

  1;
~

3
*

3 ORdPVPRO  14444.07 

  1;
~*

iORdPVPRO  19298.69 

From (10c) and (15b) we obtain  ;~
, jisdEV , i=1,2,3; j≥3-i+1. If we establish β= 1, 

those values are:  

 1;~
3,1sdEV 1022.70;  1;~

2,2sdEV  2762.27;  1;~
3,2sdEV  1119.02; 

 1;~
1,3sdEV 10666.85;  1;~

2,3sdEV  2761.10;  1;~
3,3sdEV 1118.68 

And so, we obtain the following crisp values for provisions: 

  1;
~

1
*

1 ORdPEVPRO  1022.70  

  1;
~

2
*

2 ORdPEVPRO  3881.29 

  1;
~

3
*

3 ORdPEVPRO  14546.63 

  1;
~*

iORdPEVPRO  19450.62 

5. Conclusions  

Few data must be used to adjust claim reserves. In this context we think that Fuzzy Set 

Theory is a suitable alternative to the usual statistical methods. Specifically, to quantify 

claim provisions we have used the method developed by Andrés-Sánchez in [12].  

This paper deals with the fact that fuzzy estimation of claim reserves needs to be 

transformed into a crisp equivalent in order, for example, to compute them in balance 

sheet and income account. In this paper, we propose using the concept of value of a FN 

[11] because this defuzzification method makes it possible to introduce the actuarial risk 

aversion easily and intuitively and, likewise, to graduate the weights of the values 

embedded in fuzzy quantification. In a first approach we have fitted non-discounted 
reserves, whose value overrates real present value of liabilities. So, subsequently we 

have introduced in the analysis the return of the assets that cover future claims. By using 

financial mathematics with fuzzy parameters we calculate fuzzy discounted reserves and 

propose several expressions that allow their crisp quantification. 

Any case, we think that other alternative FDA instruments like FR method [32] or 

fuzzy transforms [14] may give a viable quantitative basis to calculate claim reserves 

within the framework of Fuzzy Sets Theory. Likewise, in our opinion non-classical 

statistical methods like grey models [24] or gray correlation methods may also offer 

interesting solutions approaches to quantify claim reserves. 
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