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Abstract. This paper discusses hybrid probabilistic and fuzzy set approaches to 

propagating randomness and imprecision in risk assessment and fuzzy time 

series models. Stochastic and Computational Intelligence methods, such as 

Probability bounds analysis, Fuzzy -levels analysis, Fuzzy random vectors, 

Wavelets decomposition and Wavelets Networks are combined to capture 

different kinds of uncertainty. Their most appropriate applications are 

probabilistic risk assessments carried out in terms of probability distributions 

with imprecise parameters and stochastic processes modeled in terms of fuzzy 

time series. 
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1. Introduction: Challenges, Criticism and Rationales for a Novel 

Approach 

Two kinds of uncertainty are contrasted in this paper (ontological, vs. epistemic 

uncertainty) and several techniques are addressed in order to capture and propagate 

both of them jointly across a specific model. The most relevant areas of applications 

carried out with such hybrid approaches are presented in what follows. 

The first application area is addressed when attempting to extend the classical 

probabilistic risk assessment (PRA) modeling framework in such a way that allows 

probability distribution parameters to be imprecisely defined. Basically, PRA uses 

probability models to represent the likelihood of different risk levels in a population 

(i.e., randomness). In the standard probabilistic approach, inputs to the risk equation 

are described as random variables that can be defined mathematically by a probability 

distribution. The CDF for risk can be especially informative for illustrating the 

percentile corresponding to a particular risk level of concern. However, the presence of 

imprecision in a risk model adds another dimension to that of randomness and requires 

more comprehensive approaches to capture and represent the range within which the 

risk distribution might vary. Analytic methods for propagating the uncertainty (such as 

Probability bounds analysis, Fuzzy -levels analysis) as well as stochastic simulation 
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techniques, can be combined or integrated to reach synergy. This may lead to hybrid 

simulation frameworks, such as Fuzzy Monte Carlo, in an attempt to find the output of 

a model that has both random variables (given by probability distributions) and fuzzy 

variables for the inputs. 

The second application area is addressed when attempting to capture the inherent 

fuzzy and random nature of some stochastic processes, expressed in terms of fuzzy 

time series. Unfortunately, modeling, estimating and forecasting fuzzy time series faces 

the problem of non-invertibility of the standard Minkowski addition and multiplication 

by scalars in a fuzzy framework.  

In contrast with the case of real numbers, for some set-defined quantities, such as 

intervals and fuzzy sets, the opposite of A  is not the inverse of A  in Minkovsky 

addition (unless }{aA   is a singleton). This implies that, in general, additive 

simplification is not valid, i.e., BACBCA  )( , or ABBA  )( . 

To partially overcome this situation, the Hukuhara difference has been proposed 

instead of fuzzy subtraction, assuming that there exists a set C  for which 

C AH B  CBA  . 

Let )( p
C K  be the class of the non-empty compact convex subsets of p . An 

important property of “H” is that A H A = }0{  A )( p
C K  and 

)( BA  H B = A   BA, )( p
C K . The H-difference is unique, but it does not 

always exist. A necessary condition for A H B  to exist is that A  contains a translate 

Bc }{  of B . 

Unfortunately, even if the Hukuhara difference exists, some distortions may still 

appear when applying least squares estimation. 

Several generalizations of Hukuhara difference have been proposed in an attempt to 

obtain a more tractable way to deal with fuzzy regression analysis, assuming that fuzzy 

estimates can be still obtained from the condition of minimizing the sum of square 

residuals, expressed as a difference between two fuzzy quantities: the response of a 

system and its model based estimation.  

The standard assumption is to consider square-integrable random variables defined 

on a Hilbert space equipped with a suitable 2L -metric that allows the projection 

theorem to be still valid. However, the projection cannot be properly applied as usually 

onto a subspace, but rather onto cones (i.e., subject to some constraints), due to the lack 

of a general additive inverse in the space of fuzzy variables, which is only a semi-linear 

space. This may lead to distorted results such as obtaining fuzzy least squares estimates 

with negative spreads. 

The first and most notable generalizations of Hukuhara difference proposed in the 

context of fuzzy linear regression was that of Diamond [2], or Diamond and Körner 

[4], as the least squares solution of equation BXA  , i.e., C B H A , if and only 

if   ),( BCAd  ),(inf BXAd
X


Y

, in some 2L -type metric space ),( dY . 

When the usual Hukuhara difference B H A  exists, it coincides with the least 

squares solution defined above.  
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However, the extension of Hukuhara difference to an 2L -approximant, as proposed 

by Diamond, has some important limitations. The main criticism I can address to this 

approach is that it attempts to project the fuzzy data onto a projection cone as a whole, 

thus conserving a rigid structure and imposing constraints that are still too strong. 

Instead, I propose a suitable new method, based upon a partial decoupling principle. 

This exploits and extends an idea I introduced in 1998 (see [10]). It allows 

decomposing the monolithic fuzzy model into several more tractable crisp estimation 

sub-problems, starting from that one corresponding to modal values ( 1 ) in fuzzy 

data, and then proceeding in a decremental way for left and right  -level bounds, 

with   progressively decreasing towards 0 .  The estimates of modal values are not 

subject to any constraints, thus being obtained by applying the Hilbert space projection 

theorem directly onto the corresponding subspace. However, the estimates for the left 

and right  -level bounds can only be obtained by applying the projection theorem 

onto cones, in such a way to obtain least squares estimates without negative spreads. 

This leads to constrained quadratic programs, conveniently defined. 

When applying to fuzzy time series estimation, the proposed approach is not only 

able to help decomposing, but also to make the process invertible, by recomposing a 

non-stationary fuzzy time series from its components, such as trend, cycle, seasonality 

and the simulated residuals, all of them properly defined as LR-fuzzy sets. 

As an alternative to fuzzy estimation methods, computational intelligence 

techniques, based on wavelet decomposition and wavelet networks for nonlinear model 

fitting have been proposed to address fuzzy time series estimation and prediction. 

2. Ontological versus Epistemic Uncertainty 

Although the terms imprecision and uncertainty are often contrasted by fuzzy sets 

theorists, the latter is commonly used in a broad range of contexts with confusing 

connotations, varying from very specific to rather generic ones. According to EPA’s 

guidance [6], an essential distinction is to be made between ontological and epistemic 

uncertainty. 

Ontological uncertainty (also called randomness, variability, or aleatory / objective / 

irreducible uncertainty) arises from natural stochasticity, environmental variation 

across space or through time, genetic heterogeneity among individuals, and other 

sources of randomness.  

Although randomness can often be better characterized by further specific study, it 

is not generally reducible by empirical effort. Randomness can be translated into risk 

(i.e., probability of some adverse consequence) by the application of an appropriate 

probabilistic model. 

Epistemic uncertainty (also called subjective / reducible uncertainty) arises from 

incomplete knowledge about the world. Sources of epistemic uncertainty include 

measurement uncertainty, small sample sizes, detection limits and data censoring, 

ignorance about the details of the mechanisms and processes involved and other 

imperfections in scientific understanding. Epistemic uncertainty can in principle be 

reduced by focused empirical effort. It cannot be translated into probability, but it can 



884          Vasile Georgescu 

be used in hybrid approaches to generate bounds on probability distributions. Such 

bounds may be either crisp (e.g., probability bounds, where the interval arithmetic is 

used to propagate the imprecision regarding distribution parameters) or fuzzy (e.g., 

fuzzy randomness, where both the machineries of probability theory and fuzzy sets 

theory are combined). 

3. Hybrid Representations of Ontological and Epistemic 

Uncertainty 

3.1. Computing with Probability Bounds 

Probability bounds analysis combines probability theory and interval arithmetic to 

produce probability boxes (p-boxes), structures that allow the comprehensive 

propagation of both randomness and epistemic uncertainty through calculations in a 

rigorous way. 

If we have only partial information about the probability distribution, then we 

cannot compute the exact values F(x) of the CDF. Instead, we can circumscribe F(x) by 

a pair of functions )(xF  and )(xF , each one representing a CDF,  which bounds the 

(unknown) actual CDF. Such a pair of CDFs is called a probability bound, or a p-

bound, for short. For every x, the possible values of the probability F(x) belongs to the 

interval [ )(xF , )(xF ]. 

In computations, it is often convenient to express a p-box in terms of its inverse 

functions   and u  defined on the interval of probability levels [0,1]. The function u  

is the inverse function of the upper bound on the distribution function and   is the 

inverse function of the lower bound. These monotonic functions are bounds on the 

inverse of the unknown distribution function F  

)()()( 1 pupFp  
. 

(1) 

where p  is probability level. Note that   corresponds to F  and u  to F  . 

It is simple to compute probability bounds for many cases in which the distribution 

family is specified, but only interval estimates can be given for the parameters. For 

instance, suppose that, from previous knowledge, it is assumed that a distribution is 

normal, but the precise values of the parameters that would define this distribution are 

uncertain. If there exist bounds on   and   (mean and standard deviation), bounds 

on the distribution can be obtained by computing the envelope of all normal 

distributions that have parameters within the specified intervals. These bounds are 

)(min)();(max)( 11 pFpupFp   






. 

(2) 

where 
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]},[],,[|),{( uu   
. 

(3) 

and F  is the CDF of a normal distribution with such parameters. In principle, 

making these calculations might be a difficult task since   indexes an infinite set of 

distributions. However, in practice, finding the bounds requires computing the 

envelope over only four distributions: those corresponding to the parameter sets 

(   , ), ( u , ), (  ,u ), and ( uu  , ), as is shown in Figure 1. This simplicity 

is the result of how the family of distributions happens to be parameterized by   and 

 .  

Nevertheless, it is just as easy to find probability bounds for cases with other 

commonly used distribution families such as lognormal, uniform, exponential, Cauchy, 

and many others. 
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Fig. 1. Bounds on the CDF of a normal distribution with  = [0.482, 0.518] and  = [0.0182, 

0.0218]. The dotted line is the CDF for the normal distribution with =0.5 and =0.02. 

3.2. Fuzzy Random Variables and Processes 

I consider an extension of the probability space ];;[ PA  by the dimension of 

fuzziness, i.e., by introducing a membership scale. This enables the consideration of 

imprecise observations as fuzzy realizations Xxxx n  )~,,~()(~
1   of each 

elementary event  . The attention will be restricted to the class )(CF  of normal 

convex fuzzy sets on  , whose  -level sets are in the class )(CK  of nonempty 

compact real intervals. 

A fuzzy random variable X
~

 is the fuzzy result of the uncertain mapping 

)(:
~

 CX F , such that for each ]1,0[  and  , the  -level intervals 

   ))(sup(,))(inf()( XXX  , generated by the mapping )(:  CX K ,  
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are (compact convex) random sets. In other words, )(X  are Borel-measurable w.r.t. 

the Borel  -field generated by the topology associated with a suitable metric on 

)(CK , usually the Hausdorff metric Hd : 

 KKKK

kkkkKKd
KkKkKkKk

H









 



supsup,infinfmax

||infsup| ,|infsupmax),(

 

(4) 

The fuzzy probability distribution function )(
~

xF  of X
~

 is the set of probability 

distribution functions of all originals jX  of X
~

 with the membership values ))(( xF . 

The quantification of fuzziness by fuzzy parameters leads to the description of the 

fuzzy probability distribution function )(
~

xF  of X
~

 as a function of the fuzzy bunch 

parameter s~ . 

),~()(
~

xsFxF 
. 

(5) 

For the purposes of numerical evaluation,  -discretization is advantageously 

applied. 



]1,0[,))((

)],(),([)(|))(();(),~(













xF

xFxFxFxFxFxsF

. 

(6) 

with   ssxsFxF  |),(inf)(  and   ssxsFxF  |),(sup)( . 

With the aid of  -discretization a fuzzy random function may be formulated as a 

set of  -level sets of ordinary random functions 

   
  .]1,0[,)(

,)(),()(|)();()(
~













tX

tXtXtXtXtXtX

 

(7) 

A fuzzy random process TttX )
~

(  is defined as a family of fuzzy random 

variables tX
~

 over the space T  of the time coordinate t .  

A fuzzy time series Nttx ,...,2,1)~(   is a realization of a fuzzy random process 

TttX )
~

(  and consists of a temporally ordered sequence of fuzzy variables tx~ , 

each one assigned to each discrete observation time. 
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4. Propagating Uncertainty in Risk Assessment Models 

4.1. Propagating Randomness in Risk Models with no Parameter Uncertainty: 

One-dimensional Monte Carlo Analysis (1D MCA) 

A Monte Carlo analysis that characterizes either uncertainty or variability in each 

input variable can be described as a one-dimensional Monte Carlo analysis (1D MCA). 

In its general form, the risk equation can be expressed as a function of multiple risk 

exposure variables )( iV : Risk ),,( 1 nVVf  . 

Often the input distributions are assumed to be independent. The value of one 

variable has no relationship to the value of any other variable. In this case, a value for 

each variable (V
i
) is selected at random from a specified PDF and the corresponding 

risk is calculated. This process is repeated many times (e.g., 10,000). Each iteration of 

a Monte Carlo simulation should represent a plausible combination of input values. A 

unique risk estimate is calculated for each set of random values. Repeatedly sampling 

(V
i
) results in a frequency distribution of risk, which can be described by a PDF or a 

CDF. A sufficient number of iterations should be run to obtain numerical stability in 

percentiles of the output (e.g., risk distribution). The risk distributions derived from a 

PRA allow for inferences to be made about the likelihood or probability of risks 

occurring within a specified range of the input variables. 

More complex Monte Carlo simulations can be developed that quantify some 

dependence between one or more input distributions by using conditional distributions 

or correlation coefficients. 

4.2. Propagating Randomness and Epistemic Uncertainty Simultaneously: 

Two-dimensional Monte Carlo Analysis 

A two-dimensional Monte Carlo Analysis (2D MCA) is a term used to describe a 

model that simulates both uncertainty and randomness in one or more input variables. 

Uncertainty in the parameter estimates can be represented in a PRA model as follows. 

Consider a random input variable whose parameter estimates are affected by 

uncertainty. Assume normal PDFs can be specified for both uncertain parameters: the 

mean and the standard deviation. Uncertainty in the mean is described by the normal 

PDF with parameters (μmean=5, σmean=0.5); similarly, uncertainty in the standard 

deviation is described by the normal PDF with parameters (μSD =1, σSD =0.5). A 

variable described in this way is called a second order random variable. 

A two-dimensional Monte Carlo simulation is a nesting of two ordinary Monte 

Carlo simulations. Typically, the inner simulation represents natural variability of the 

underlying processes, while the outer simulation represents the analyst’s uncertainty 

about the particular parameters that should be used to specify inputs to the inner 
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simulation. This structure means that each iterate in the outer simulation entails an 

entire Monte Carlo simulation, which can lead to a very large computational burden. 

4.3. Probability Bounds Analysis Compared to Monte Carlo Simulation 

When one or more point estimates defined in the risk model are uncertainty, a Monte 

Carlo analyst might employ a two-dimensional Monte Carlo simulation that includes 

an uncertainty (inner) loop for each uncertain point estimate. 

In a probability bounds analysis, the same interval of possible values used in the 

Monte Carlo analyst’s uncertainty loop replaces the point estimate; however the semi-

analytic nature of the probability bounds analysis results in an exact representation of 

the stated uncertainty. As the number of times the inner loop is called in the Monte 

Carlo simulation approaches infinity, the result of the Monte Carlo analysis converges 

on the probability bounds result. 
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Fig. 2. Monte Carlo vs. Probability Bounds (see also Fig.1): uncertainty regarding the exact 

value of the parameters of a probability distribution, where  = [0.482, 0.518] and  = [0.0182, 

0.0218].  

4.4. Hybrid Approaches to Propagating Randomness and Fuzziness in Risk 

Assessment 

The idea is to find the output of a model  mn XXXXg
~

,,
~

,,, 11    that has both 

random variables nXX ,,1  , given by probabilistic distributions, and fuzzy variables 

mXX
~

,,
~

1  , for the inputs. To estimate the output of this generalized model, most 

researchers attempt to eliminate or transform one type of uncertainty to another before 

performing a simulation (e.g. possibility to probability transformation). Guyonnet et al. 

(2003) first proposed a “hybrid approach” with both fuzzy and random types of 

uncertainty without transforming one type to another. They calculated the Inf and Sup 

values of the model g  considering all the values that are located within the  cuts of 

the input fuzzy sets and suggested that minimization and maximization algorithm can 
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be used for finding Inf and Sup values of a general model. However, in their 

application, the model was a simple monotonic function, and the Inf and Sup values 

were identified directly without using minimization or maximization algorithms. 

A more tractable way to propagating both randomness and fuzziness is based on a 

fuzzy generalization of the Monte Carlo (FMC) simulation framework, which 

integrates fuzzy arithmetic method with Monte Carlo simulation to find the output of a 

model with both fuzzy and probabilistic inputs. 

0.4

0.45

0.5

0.55

0.6

0

0.2

0.4

0.6

0.8

1

0

0.5

1

XC
u
m

u
la

ti
ve

 d
is

tr
ib

u
ti
o
n

A
lp

h
a

 

Fig. 3. 3D view of fuzzy CDF resulting from the output of FMC by aggregating -CDF bounds. 

Since in FMC, fuzzy arithmetic (in -cut form) is performing for each sample set, 

the output of FMC is represented as a number of fuzzy sets with random variation. 

This randomness results from random sampling of random input parameters. The 

fuzzy CDF is used for finding the fuzzy probability of not exceeding a given threshold 

and a fuzzy quantile corresponding to a given probability. 
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Fig. 4. The fuzzy probability of not exceeding a specific threshold tX. 
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Fig. 5. A fuzzy quantile corresponding to a given probability. 

5. Propagating Randomness and Fuzziness Jointly Across Fuzzy 

Time Series Models 

The estimation technique proposed in this paper is based upon a partial decoupling 

principle, an early form of which I proposed in [10]. It allows decomposing the 

monolithic fuzzy model into several crisp models, starting from that one corresponding 

to modal values ( 1 ) in fuzzy data, and then proceeding in a decremental way  for 

left and right  -level bounds, with   progressively decreasing towards 0 .  The 

estimates of modal values are not subject to any constraints, thus being obtained by 

projecting the 1-level data directly onto the corresponding subspace. However, the 

estimates for the left and right  -level bounds can only be obtained by projecting the 

 -level data onto cones, in such a way to obtain least squares estimates without 

negative spreads. This leads to constrained quadratic programs, conveniently defined. 

5.1. Fuzzy Data: Minimum, Average and Maximum Daily Temperatures 

Registered at a Local Weather Station 

The observed sequence consists of the minimum, average and maximum daily 

temperatures registered at a local weather station. The fuzzy time series is represented 

in figure 6 and the corresponding empirical fuzzy cumulative distribution function in 

figure 7. 
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Fig. 6. Fuzzy daily temperatures over a period of two years (730 days). 

 

Fig. 7.   Empirical Fuzzy Cumulative Distribution Function (FCDF), showing the fuzzy 

probability of not exceeding a given temperature, or reversely, the fuzzy quantile corresponding 

to a given probability. 

5.2. The Fuzzy Time Series Model for Daily Temperatures, with Fuzzy Trend 

and Fuzzy Cyclical Component 

In what follows, we will exemplify some suitable methods for modelling and 

forecasting non-stationary fuzzy time series, based on the fuzzy component model, 

which decomposes the fuzzy time series into a trend component, a cyclical component 

(or, alternatively, a seasonal component) and a fuzzy residual component: 

)(~)(
~

)(
~

)(
~

tutCtTtY 
. 

 (8) 

If we restrict to the class of triangular fuzzy numbers, which are a special case of LR 

fuzzy numbers, we can decompose the fuzzy model into 3 crisp models: one model for 

the modal (average) values )(tY C
 and two models for the minimum values )(tY L

 and 

maximum values )(tY R
, respectively. 
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(9) 

Due to the properties of minimum, mean and maximum, the following order 

relations hold (implying positive spreads for )(tY , )(tT , )(tC  and )(tu ): 

)()()( tYtYtY RCL  ;                          )()()( tTtTtT RCL  ; 

)()()( tCtCtC RCL  ;                          )()()( tututu RCL  . 

(10) 

The model for the modal values is estimated without any constrains, i.e., by 

orthogonal projection of the observed values onto the appropriate subspace. The other 

two models for the minimum and maximum values are estimated subject to some non-

negativity restrictions on spreads, corresponding to the time series components: trend 

( 0ˆˆ  LC TT , 0ˆˆ  CR TT ), cyclical component ( 0ˆˆ  LC CC , 0ˆˆ  CR CC ) and 

residuals ( 0ˆˆ
11  LC uu , 0ˆˆ

11  CR uu ). This leads to constrained quadratic 

programs, i.e., to the projection of the observed values onto some cones. 

The regressors for the linear fuzzy trend are defined by the matrix: 























N

T

1

21

11



;   730N . 

 

(11) 

The simplest way for representing )(tC  as a periodic function, with 

)()( ptCtC  , is to assume harmonic functions, such as the sine or cosine: 

)/2sin( pt  and )/2cos( pt , where p (=365 in our case) is called period, its inverse 

pf /1  is called frequency, and pf /22    is the angular frequency. Thus, 

the regressors for )(tC  are combined in the matrix: 





























/3652sin(N/3652cos(N

/3652sin(2/3652cos(2

/3652sin(1/3652cos(1








C

. 

 

(12) 
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5.3. Estimating the Fuzzy Trend (De-trending) 

Step1: First, we estimate the trend corresponding to the average daily temperature, 

without any constraints, i.e., as a projection of  
CY  onto the subspace )Im(T  

generated by the columns of matrix T : 

CC YPT ˆ ,   where   TTTTP 
1

' . (13) 

Step 2: Second, we estimate the trend corresponding to the minimum daily 

temperature, as a solution of a constrained quadratic program: 
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 
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 L

trend
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L
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b
bTYbTTb

L
trend

2min

. 

(14) 

subject to:  



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
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
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uu
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ˆˆ

ˆˆ


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







LCCL
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CL
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YTYbT

TbT

ˆ

ˆ
. 

(15) 

CL TT ˆˆ   means that the left spread of the fuzzy trend must be non-negative, i.e., 

0ˆˆ  LC TT , with 
CT̂  already estimated at step 1. 

CL uu 11
ˆˆ   means that the left spread of the intermediary fuzzy residuals (after de-

trending) must be strictly positive, i.e., 0ˆˆ
11  LC uu . The reason for this is that the 

intermediary fuzzy residuals will be further decomposed into a cyclical component and 

final residuals (those obtained after removing both trend and cyclical component). At 

this step, we recommend for   a value between 1.0  and 5.0 . 

Step 3: Third, we estimate the trend corresponding to the maximum daily temperature, 

as a solution of a constrained quadratic program: 
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(16) 

subject to: 
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uuYTYbT

TTTbT
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(17) 

CR TT ˆˆ   means that the right spread of the fuzzy trend must be non-negative, i.e., 

0ˆˆ  CR TT  

0ˆˆ
11  CR uu  means that the right spread of the intermediary fuzzy residuals (after 

de-trending) must be strictly positive. 
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Fig. 8.  Fuzzy linear trend. 

 

Fig. 9.  Intermediary fuzzy residuals after detrending (the residuals are fuzzy sets in a proper 

sense – with non-negative spreads). 

5.4. Estimating the Fuzzy Cyclical Component 

The periodogram or sample spectrum shows the variation of the peak points of 

empirical daily temperature data. The maximum value of the periodogram is about 365 

days. 

Step1: First, we estimate the cyclical component corresponding to the average daily 

temperature, without any constraints, i.e., as a projection of  
Cu1
ˆ =

CC TY ˆ  (the 

intermediary residuals after de-trending) on the subspace )Im(C  generated by the 

columns of matrix C : 

CC uPC 1̂
ˆ 

,     where 
  CCCCP 

1

. 
(18) 
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Fig. 10.  Periodogram with a maximum corresponding to about 365 days (one year). 

Step 2: Second, we estimate the cyclical component corresponding to the minimum 

daily temperature, as a solution of a constrained quadratic program: 
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(20) 

CL CC ˆˆ   means that the left spread of the fuzzy cyclical component must be non-

negative, i.e., 0ˆˆ  LC CC . 

0ˆˆ
22  LC uu  means that the left spread of the final fuzzy residuals (after removing 

both trend and cyclical component) must be strictly positive. The reason for this is that 

the final fuzzy residuals will be further decomposed as a multivariate auto-regressive 

process (VAR). At this step, we recommend for   a value of about 1.0 . 

Step 3: Third, we estimate the cyclical component corresponding to the maximum 

daily temperature, as a solution of a constrained quadratic program:  
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CR CC ˆˆ   means that the right spread of the fuzzy cyclical component must be non-

negative, i.e., 0ˆˆ  CR CC  

0ˆˆ
22  CR uu  means that the right spread of the final fuzzy residuals (after 

removing both trend and cyclical component) must be strictly positive.  

 

Fig. 11.  Fuzzy cyclical component. 

 

Fig. 12.  Fuzzy residuals after removing both trend and cyclical component (the residuals are 

fuzzy sets in a proper sense – with non-negative spreads). 

5.5. Modeling and Forecasting the Fuzzy Residuals as a VAR(4) Process, after 

Removing both Trend and Cyclical Component 

The fuzzy residuals obtained after removing both trend and cyclical component can 

now be modeled as a multivariate auto-regressive process. A VAR(4) model has been 

chosen (among some other candidate models) based upon likelihood ratio tests and 

Akaike Information Criterion. This allows forecasting or simulating the residuals, 

starting from a sequence of the latest 10% observed historical temperatures. 
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Afterwards, based on the inversion property of the generalized Hukuhara difference, 

we can forecast the series of fuzzy daily temperatures by recomposing them from its 

components: trend component + cyclical component + the simulated residuals. 

 

Fig. 13.  VAR(4) model-based 730 steps ahead extrapolation of fuzzy residuals: a single 

simulation (the residuals are fuzzy sets in a proper sense – with non-negative spreads). 

 

Fig. 14.  Fuzzy residuals (left, central and right) and prediction of their mean with confidence 

interval (  ). 

 

Fig. 15.  VAR(4) model-based 730 steps ahead extrapolation of fuzzy residuals: mean of 1000 

simulations. 
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Fig. 16.  Extrapolated mean and confidence interval of  0-level left / 1-level center / 0-level 

right fuzzy residuals, after 1000 simulations. 

 

Fig. 17.  VAR(4) model-based 730 steps ahead extrapolation of fuzzy temperatures, additively 

recomposed from trend, cyclical component and simulated fuzzy residuals. 

5.6. Fuzzy Time Series Wavelet Decomposition and Nonlinear Model Fitting 

with Wavelet Networks 

Another alternative to removing disturbances from a time series is de-noising data by 

wavelet decomposition. 

The Discrete Wavelet Transform (DWT) [17] uses scaled and shifted versions of a 

mother wavelet function, usually with compact support, to form either an orthonormal 

basis (Haar wavelet, Daubechies) or a bi-orthonormal basis (Symlets, Coiflets). 

Wavelets allow cutting up data into different frequency components (called 

approximations and details), and then studying each component with a resolution 

matched to its scale. They can help de-noise inherently noisy data through wavelet 

shrinkage and thresholding methods, developed by David Donoho [5]. The idea is to 

set to zero all wavelet coefficients corresponding to details in the data set that are less 

than a particular threshold. These coefficients are used in an inverse wavelet 

transformation to reconstruct the data set. An important advantage is that the de-

noising is carried out without smoothing out the sharp structures and thus can help to 

increase the predictive performance. 
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We start with the de-trended fuzzy time series shown in figure 13. A level 5 

decomposition with Sym8 wavelets and a fixed form soft thresholding is first performed 

(see figures 18 and 19). 
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Fig. 18.  A level 5 decomposition of the average temperature time series using Sym8 wavelets: 

approximations and details. The successive approximations appear less and less noisy; however, 

they also lose progressively more high-frequency information. 
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Fig. 19.  Approximation coefficients and detail coefficients with a global threshold. 

The initially de-trended average, minimum and maximum temperature time series 

are now de-noised in turn (see figures 20, 21 and 22). 
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Fig. 20.  De-trended vs. de-trended & de-noised average temperature time series. 
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Fig. 21.  De-trended vs. de-trended & de-noised minimum temperature time series. 
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Fig. 22.  De-trended vs. de-trended & de-noised maximum temperature time series. 

However, the representations are not smooth enough, because of some weather 

turbulences that occur in certain time intervals. In order to produce smoothed 
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representations, the time series obtained after de-noising can be further fitted to some 

nonlinear approximation functions by using wavelet networks to learn them.   

Wavelet networks attempt to combine the properties of the Wavelet decomposition 

previously described, along with the learning capabilities of feedforward neural 

networks. They employ wavelets instead of sigmoidal activations functions, are trained 

with a backpropagation-like algorithm and behave as universal approximators, being 

capable of estimating almost any computable function on a compact set arbitrarily 

closely. Their rigorous mathematical foundations and better localization and 

approximation properties allow hierarchical and multi-resolution learning as well as 

transparent design of the network. Wavelet networks can be easily generalized to the 

case of multidimensional nonlinear function approximation in order to approximate 

functions in )(2
nL   and their representation can be extended with radial wavelets that 

are better suited for approximation problems of large dimensions. This results in the 

following network structure: 

bxctxddiagwxg
N

i

iii 
1

))()(()( 
. 

(23) 

where   is a radial wavelet function, 
n

id 
 are dilatation parameters, 

n
it 

 are 

translation parameters, iw  are linear weights, N  is the number of wavelets, 
nc   is the additional direct linear combination parameters (direct connection 

parameters), and b  is the bias parameter. 
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Fig. 23.  2D representation of the adjusted fuzzy cyclical component after training with wavelet 

network. 

The input space is the set }365,,2,1{ T  of discrete time values. We train the 

wavelet network three times, for each set of minimum, average and maximum daily 

temperatures in turn. Each time, the output space is the set of de-trended and de-noised 

minimum, average and maximum daily temperatures, i.e., minS , avgS  and  maxS , 

respectively. 10 wavelets in the hidden layer and 10 iterations (epochs) are used for 

training. Finally, the adjusted fuzzy cyclical component is obtained by mapping T  
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onto minS , avgS  and  maxS , i.e. minmin :)(ˆ STtS  , avgavg STtS :)(ˆ  and  

maxmax :)(ˆ STtS  , respectively. 2D and 3D representations of the adjusted fuzzy 

cyclical component after training with wavelet network, starting from the de-trended 

and de-noised data, are shown in figures 23 and 24. 
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Fig. 24.  3D representation of the adjusted fuzzy cyclical component after training with wavelet 

network. 

Finally, the fuzzy trend + fuzzy cyclical component can be re-compounded (figure 25). 
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Fig. 25.  Fuzzy trend + fuzzy cyclical component (after de-noising and adjustment). 

6. Conclusion 

Two kinds of uncertainty were contrasted in this paper (ontological, vs. epistemic 

uncertainty) and several techniques were addressed in order to capture and propagate 

both of them jointly across a specific model. The first application area is concerned 
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with extending the classical probabilistic risk assessment modeling framework in such 

a way that allows probability distribution parameters to be imprecisely defined. The 

presence of imprecision in a risk model adds another dimension to that of randomness 

and requires more comprehensive approaches to capture and represent the range within 

which the risk distribution might vary. Analytic methods for propagating the 

uncertainty (such as Probability bounds analysis, Fuzzy -levels analysis) as well as 

stochastic simulation techniques (such as Monte Carlo Analysis), can be combined or 

integrated, in an attempt to find the output of a model that has both random and fuzzy 

variables for the inputs. 

The second application area is addressed when attempting to capture the inherent 

fuzzy and random nature of some stochastic processes, expressed in terms of fuzzy 

time series. Suitable new methods for fuzzy time series estimation and prediction, 

using both the estimation theory and Computational Intelligence techniques were 

proposed. 

We combined a generalized Hukuhara difference, which allows the fuzzy estimation 

problem to be handled in some L2-type metric space, with a partial decoupling 

principle, which allows the monolithic fuzzy model to be broken in several more 

tractable crisp estimation sub-problems. This approach was proved to provide an 

efficient solution to the problem of non-invertibility of the standard Minkovsky 

addition and multiplication in a fuzzy feature space, while enabling to obtain fuzzy 

estimations in a proper sense (i.e., with non-negative spreads).  

Alternatively, wavelet decomposition, a Computational Intelligence based 

technique, has been also used to de-noising fuzzy time series. Finally, starting from the 

de-trended and de-noised time series, wavelet networks have been employed as 

universal approximators to adjust the fuzzy cyclical component and thus to produce 

smoothed representations of the fuzzy time series components 
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