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Abstract. In order to address the insufficient training data problem, many 
active semi-supervised algorithms have been proposed. The self-labeled 
training data in semi-supervised learning may contain much noise due to 
the insufficient training data. Such noise may snowball themselves in the 
following learning process and thus hurt the generalization ability of the 
final hypothesis. Extremely few labeled training data in sparsely labeled 
text classification aggravate such situation. If such noise could be 
identified and removed by some strategy, the performance of the active 
semi-supervised algorithms should be improved. However, such useful 
techniques of identifying and removing noise have been seldom explored 
in existing active semi-supervised algorithms. In this paper, we propose 
an active semi-supervised framework with data editing (we call it ASSDE) 
to improve sparsely labeled text classification. A data editing technique is 
used to identify and remove noise introduced by semi-supervised 
labeling. We carry out the data editing technique by fully utilizing the 
advantage of active learning, which is novel according to our knowledge. 
The fusion of active learning with data editing makes ASSDE more robust 
to the sparsity and the distribution bias of the training data. It further 
simplifies the design of semi-supervised learning which makes ASSDE 
more efficient. Extensive experimental study on several real-world text 
data sets shows the encouraging results of the proposed framework for 
sparsely labeled text classification, compared with several state-of-the-art 
methods. 

Keywords: sparsely labeled text classification; active learning; 
semi-supervised learning; data editing 
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1. Introduction 

Automatic text classification is of great importance due to the large volume of 
text documents in many real-world applications. The goal of automatic text 
classification is to automatically assign documents to a number of predefined 
categories. A supervised classification model often needs a very large number 
of training data to enable the classifier’s reliable performance. As we know, 
manually labeling the training data for a machine learning algorithm is a tedious 
and time-consuming process, and even unpractical (e.g., online web-page 
recommendation). Correspondingly, one important challenge for automatic text 
classification is how to reduce the number of labeled documents that are 
required for building a reliable text classifier. 

In order to reduce the effort involved in acquiring labeled examples, there are 
two major strategies, active learning and semi-supervised learning. The aim of 
active learning is to select most informative unlabeled examples for manually 
labeling so that a good classifier can be learned with significantly fewer labeled 
examples. Active learning has been extensively studied in machine learning for 
many years and has already been employed for text classification in the past 
[1-3]. Semi-supervised learning tries to learn a classification model from the 
mixture of labeled and unlabeled instances, which also has been employed for 
text classification [4-5]. The fusion of active learning with semi-supervised 
learning can further bring advantage, thus several combination algorithms have 
been proposed for text classification [6-7].  

Sparsely labeled classification is a special form of classification in which only 
very few labeled instances are available. It exists in many real-world 
applications such as content-based image retrieval, online web-page 
recommendation, object identification and text classification, where the 
abundant unlabeled instances are available but the labeled ones are fairly 
expensive to obtain. The sparsity of training data often leads to severe 
distribution bias between the training data and the unlabeled data (we call it 
training data bias). It is very difficult to learn a weak useful hypothesis with the 
extremely few labeled instances. Existing semi-supervised learning and active 
learning algorithms, which often need quite a number of labeled instances to 
learn an initial weak useful predictor for further learning, cannot perform well for 
sparsely labeled text classification [8]. 

Due to the poor performance of the initially learned hypothesis based on the 
very few training data, it is unavoidable to contain much noise in the 
self-labeled instances. Extremely few labeled training data in sparsely labeled 
text classification aggravate such situation. If such noise could not be identified 
and removed from the new training data set, they may snowball themselves in 
the following learning process and thus hurt the generalization ability of the final 
hypothesis. On the other hand, if such noise could be identified and removed by 
some strategy, the performance of the active semi-supervised algorithms 
should be improved. However, such useful techniques of identifying and 
removing noise have been seldom explored in existing active semi-supervised 
algorithms, especially using the advantage of active learning to do this. This is 
one motivation of this work. 
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In this paper, we propose an active semi-supervised framework with data 
editing (we call it ASSDE) to improve sparsely labeled text classification. 
ASSDE conducts in a self-training style process. In order to efficiently integrate 
active learning, we extend the standard self-training by substituting ensemble 
classifiers for its single classifier. Furthermore, we introduce a data editing 
technique into ASSDE by fully utilizing the advantage of active learning. Data 
editing technique is used to identify and remove the noise contained in 
self-labeled instances. ASSDE iterates the steps of self-labeling, active labeling 
and data editing until satisfying some stopping criteria.  

The main contributions of this paper may be summarized as follows: 
—  We propose an active semi-supervised framework with data editing 

which is more effective and efficient for sparsely labeled text 
classification compared with state-of-the-art algorithms. 

—  We carry out a data editing technique to identify and remove the noise 
contained in self-labeled instances by fully utilizing the advantage of 
active learning, which is novel and incurs very little computation 
complexity while improving the classification accuracy. 

—  We propose a novel parameter ensemble strategy to extend the standard 
self-training algorithm in order to efficiently integrate active learning while 
incurring less computation complexity. 

—  We empirically demonstrate that data editing can simplify the design of 
semi-supervised learning for efficiency reason, while not degrading the 
performance. 

—  We conduct extensive experiments on three benchmark real-world text 
data sets to evaluate its performance with different parameters. 

The rest of this paper is organized as follows. We discuss some of the 
related work in Section 2. Section 3 describes the algorithm in detail. Section 4 
presents the results of the experiments. A short conclusion and future work are 
presented in Section 5. 

2. Related Work 

A variety of algorithms for text classification have been proposed [1-14], 
including supervised methods, semi-supervised methods, active methods and 
the combinations. In the following, we only focus on the study and techniques 
related to sparsely labeled text classification.  

There are several techniques which are beneficial to sparsely labeled text 
classification. These techniques includes: 1) semi-supervised learning and 
active learning, 2) transfer learning [12-13], 3) feature extension with semantic 
concepts [14], 4) clustering aided methods [15-17], 5) data editing [18]. 
Semi-supervised learning and active learning are two common used 
techniques to address the problem of insufficient training data. However, they 
often need quite a number of training data to train a weak useful predictor for 
further learning. In sparsely labeled classification, it is very challenging, if not 
impossible, to generate such weak useful predictor, which makes existing 
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semi-supervised and active learning algorithms cannot be applied. The second 
technique beneficial to sparsely labeled text classification is transfer learning. It 
refers to the problem of retaining and applying the knowledge learned in one or 
more tasks to efficiently develop an effective hypothesis for a new task. 
Transfer learning techniques can be used to improve sparsely labeled 
classification by transferring the useful knowledge for the problem. The third 
technique beneficial to sparsely labeled text classification is to utilize the world 
knowledge (e.g. Wiki, WordNet). By using the world knowledge, the feature 
representation of an instance is enhanced by semantic concepts which can 
weaken the feature sparsity in some degree. Clustering aided methods 
beneficial to sparsely labeled classification including both expanding the 
training data from unlabeled data [15] and augmenting the data set with new 
features [17]. Another technique beneficial to sparsely labeled text 
classification is data editing. It can be explored to indentify and remove the 
noise contained in self-labeled instances. In this paper, we address the 
problem of sparsely labeled text classification by active semi-supervised 
learning with data editing. 

In sparsely labeled classification, the generalization ability of the hypothesis 
learned on the initial training data is often very poor. Thus there may contain 
much noise in the self-labeled instances. In self-training style algorithms, the 
early introduced noise by semi-supervised learning may snowball themselves, 
which often makes the final hypothesis of very poor performance. If such noise 
could be identified and removed by exploring some useful techniques, the 
classification accuracy should be improved. Data editing technique could be 
used for this end. In conventional studies, data editing aims to remove noisy 
instances from the original training data set with the goal to improve 
classification accuracy by producing smooth decision boundaries. A new 
self-training style algorithm, SETRED, is proposed in [19] by introducing a data 
editing technique to the self-training process to filter out the noise in the 
self-labeled instances. SETRED outperforms the standard self-training, which 
indicates that the performance of semi-supervised learning can be further 
improved by introducing proper data editing technique. This paper shows that it 
is encouraging to fuse active learning with data editing to identify and remove 
the noise in the self-labeled instances. It incurs very little computation 
complexity while improving the classification accuracy. 

Although sparsely labeled text classification is a very significant problem in 
many real-world applications, there have been very limited researches on it. A 
clustering based classification method, CBC [15], is one such work. It combines 
transductive support vector machines (TSVM) with k-means and iterates these 
two steps alternatively. Although clustering can help to overcome the sparsity 
and the training data bias, CBC has a very high computation complexity 
because both TSVM and k-means are very time-consuming for sparsely 
labeled high dimensional text classification. Based on kernel canonical 
component analysis, OLTV (learning with One Labeled example and Two 
Views) [20] and ALESLE (Active Learning with Extremely Sparse Labeled 
Examples) [21] algorithms have been proposed for sparsely labeled 
classification. While OLTV works in semi-supervised setting, ALESLE works in 
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active setting. OLTV and ALESLE require two sufficient views, which is not 
practical for many real-world applications.  

Phan et al. 2008 [22] propose a general framework for building classifiers 
that deal with short and sparse text & Web segments by making the most of 
hidden topics discovered from large-scale data collections. This framework can 
be viewed as a semi-supervised learning technique, but it is flexible in that the 
universal data are not necessary to have the same format as the labeled 
training or future unseen data. Cai et al. 2003 [23] propose a framework for text 
categorization which attempts to analyze topics from both training and test data 
using probabilistic latent semantic analysis (PLSA) and uses both the original 
data and resulting topics to train two different weak classifiers for boosting. Xu 
et al 2008 [24] propose a web-assisted text categorization framework which 
automatically identifies important keywords from the available labeled 
documents to form the queries and then uses search engines to retrieve from 
the Web a multitude of relevant documents. These retrieved documents are 
then exploited by a semi- supervised framework. 

3. ASSDE Framework 

3.1. Problem Description and Notation 

Let D=L∪U denote the set of instances in a p-dimensional Euclidean space R
p
, 

where L={<xi,yi>}1≤i≤l is the set of labeled instances and U={xi}l+1≤i≤l+u the set of 
unlabeled ones. Here yi is the class label of instance xi and l<<u. This paper 
only considers single-label classification that exact one label should be 
assigned to each instance in D.  The set of classes is denoted by C={cr}1≤r≤|C| 

and |C| is the cardinality of C and r is an integer. Each instance in L has been 
labeled or assigned to one class in C, while the class label of each instance in U 
is unknown and needs to be determined. 

3.2. ASSDE Framework 

The aim of this work is to improve sparsely labeled text classification by 
introducing data editing technique into active semi-supervised framework. As 
we know, one of the problems of semi-supervised learning is its learning 
efficiency. To make the framework more efficient, we also expect to simplify the 
design of semi-supervised learning by fully utilizing the advantage brought by 
the fusion of active learning with data editing. We show empirically that data 
editing can make up for the deficiency of simplifying the design of 
semi-supervised learning. Table 1 gives the Pseudo-code description of 
ASSDE. 
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Table 1. Pseudo-code describing ASSDE algorithm 

Algorithm: ASSDE 
Input: the labeled set L, the unlabeled set U, cpNum, MaxcpIter, n 

Output: the full labeled set D=L∪U 
Progress: 
  Offline: 

     Computing distance matrix(   ) 
  Online: 
     hi   Learn(L),i=1,2,... 
     Iter=0 

                     
    Repeat until no data in U can be put into SP or     
       (SP,CP)=partition(U,h1,h2,…)             

                         
                  

                
        If Iter<maxcpIter 

                            

                  

                 
          hi   Learn(L),i=1,2,...          
          SL=recheck(SL,h1,h2,…)  
          Iter= Iter+1 
        End 

       hi   Learn(L∪SL),i=1,2,...  
 End 
 If     then for each instance in U, 
    c=majority voting(h1,h2,…) 
 End 

 
ASSDE works as follows. Firstly ensemble classifiers are trained on the 

initial training data set L. The trained ensemble classifiers are used to predict 
the label of each instance in U. According to the labels predicted by the 
ensemble classifiers, instances in U are partitioned into two sets, that is, 
contention points set CP and consistent points set SP. CP contains the 
instances whose labels predicted by the ensemble classifiers are inconsistent, 
while SP consists of the instances which have consistent predicted labels. 

Secondly, n most confident examples, say    , are selected from SP and 

labeled with their predicted labels. Then cpNum instances, say   , from CP are 
selected by a batch mode active learning algorithm for manually labeling. Due 
to the small size of L, the generalization ability of the hypothesis learned by 

ensemble learning may be poor. Consequently,     may contain much noise 
which will hurt the generalization ability of the final hypothesis with the 
accumulation of such noise in the following self-training processes. Therefore, 
we employ a data editing technique to identify and remove the noise. We use 
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the ensemble classifiers retrained on      to predict the labels of self-labeled 

instances in    . For each instance in    , if the newly predicted label is 

inconsistent with its current label, then it will be removed from     and thrown 
into unlabeled data set U again. Now the training data set consists of instances 
with ground-truth labels and self-labeled instances (denoted by SL).  

ASSDE conducts in a self-training style process in which the steps of 
self-labeling, active labeling and data editing are iterated alternatively. After the 
completion of active learning, all the self-labeled instances labeled in former 
iterations will be rechecked again. ASSDE iterates the self-training style 
process until almost all the unlabeled instances are labeled with high 
confidence. If there is any instance in U, we use the majority voting strategy to 
label it.  

3.3. Ensemble Strategy 

Several useful ensemble techniques have been proposed, such as the 
well-known training data resampling [25] and input feature resampling [26]. 
However, we only use a simple ensemble strategy (we construct the ensemble 
classifiers using k-nearest neighbor (kNN) with different k parameter) in 
ASSDE for two main reasons. One reason is that the well-known ensemble 
techniques are either not suitable for sparsely labeled text classification or 
incurring large computation/storage complexity. Intuition and empirical 
experiments indicate that training data resampling technique is not suitable for 
sparsely labeled case, since it may further aggravate the sparsity of training 
data for each component classifier. Input feature resampling technique may be 
helpful, but it can increase the computation and storage complexity because we 
have to compute the nearest neighbors of an instance for each component 
classifier and store the corresponding distance matrix. Furthermore, our 
empirical experiments with FASBIR (Filtered Attribute Subspace based 
Bagging with Injected Randomness) [27] also indicate that ensemble learning 
itself can hardly address the sparsely labeled classification problem well. 
Based on this fact, the aim of ensemble strategy in ASSDE is to make efficient 
integration of active learning and the overall efficiency. This is the next reason 
that we use a simple ensemble strategy in ASSDE. 

From table 1 we can see that the efficiency of ASSDE is mainly determined 
by the ensemble part. In order to improve the efficiency of ASSDE, we can 
simplify the design of ensemble part while not greatly degrading the overall 
accuracy. We use kNN as the base learner and construct the ensemble 
classifiers using kNN with different k parameter. The component classifiers are 
trained in parallel training style. Therefore it can generate the ensemble 
predictions by only computing the maximal k nearest neighbors for an instance 
and it only needs to store one distance/similarity matrix for all ensemble 
classifiers. Our ensemble strategy only has the similar computation and 
storage complexity with that of one kNN with the maximal k parameter in the 
component classifiers. This is the main reason that we select kNN as the base 
classifier and use the simple ensemble strategy. We can also compute the 
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distance/similarity matrix beforehand to further make the online learning and 
classifying procedures efficient, which make kNN an efficient base classifier for 
algorithms conducted in iterated mode.  

3.4. Batch Mode Active Learning 

The key of batch mode active learning (BMAL) is to ensure the selected 
instances of both informativeness and diversity. BMAL method [3] based on 
farthest-first traversal (we call it BMAL_FFT) is based on the intuition that for 
two examples, the larger the distance between them, the smaller redundancy 
the information they provide.  

BMAL_FFT works as follows. First, it selects an instance x from CP randomly 
or according to its uncertainty for the learning model, and adds x to query set Q. 
Then it selects the next instance xi according to equation (2) and adds xi to Q. 
BMAL_FFT repeats the above selection procedure until the needed number of 
instances has been selected. 

                                                          (1) 

                  
                                            (2) 

BMAL_FFT is a global search method which may be not efficient for very 
large-scale text classification problem. In this paper, BMAL_FFT selects 
instances from CP set, which has a much smaller search space and whose 
instances are more informative than the whole unlabeled data set U. 

3.5. Data Editing Strategy 

The sparsity of training data in sparsely labeled classification often makes the 
generalization ability of the initial hypothesis very poor. There may contain 
much noise in the self-labeled data set SL because the classifiers may 
incorrectly assign labels to some unlabeled instances. Such noise may 
accumulate in the following iterations which will hurt the generalization ability of 
the final hypothesis. It is obvious that if the mislabeled instances in SL could be 
identified and removed, especially in the early iterations, the learned 
hypothesis is expected to be better. This is the basis that we introduce data 
editing technique into the proposed framework to identify and remove the 
mislabeled instances.  

After each active learning process, the training data with ground-truth labels 
increase. In general terms, the classifiers trained on the enlarged training data 
set will generate more accurate hypothesis. It may be helpful using this 
hypothesis to identify the noise contained in the self-labeled data set labeled by 
former less accurate hypotheses. Our data editing strategy is based on this 
intuition. It works as follows. After each active learning process, the ensemble 

classifiers are retrained on the enlarged training data set     . Then they are 
used to predict the label of each instance in SL. If any inconsistency exists 
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between the newly predicted label and its current label for an instance, the 
instance will be removed from SL and added to U again.  

In ASSDE, the introduction of data editing technique provides many chances 
for self-labeled instances to mend their ways, which is different from the 
traditional semi-supervised learning. Furthermore, we carry out data editing 
technique by fully utilizing the advantage of active learning, which incurs very 
little computation complexity while improving the classification accuracy. This is 
novel in active semi-supervised learning community, according to our 
knowledge.  

We think that data editing technique should be very useful especially in 
sparsely labeled text classification since the extremely few labeled training data 
make the mislabeling unavoidable. Data editing technique makes the mistakes 
made in earlier stages not as severe as that in traditional semi-supervised 
learning algorithms.  Based on this fact, we can simplify the design of the 
module that determines the algorithm’s overall efficiency, and use data editing 
technique to make up for the deficiency. In ASSDE, we design the ensemble 
strategy just based on this mind. 

4. Experiments 

4.1. Data Sets 

For a consistent evaluation, we conduct our empirical experiments on three 
benchmark data sets, 20NewsGroups, Reuters-21578 and email spam filtering 
data set. The details of data sets are given in table 2. 

20 Newsgroups is one famous Web-related data collection. From the original 
20 Newsgroups data set, same-2, consisting of 2 very similar newsgroups 
(comp.windows.x, comp.os.ms -windows), and diff-2, consisting of 2 very 
different newsgroups(alt.atheism and comp.windows.x), are used to evaluate 
the performance of the algorithms on data sets with different separability. 
Same-2 and diff-2 both contain 2000 instances, 1000 for each class. We use 
Rainbow software

1
 to preprocess the data (removing stop words and words 

whose document frequency less than 3, stemming) and we get 7765 and 8599 
unique terms for same-2 and diff-2, respectively. Then terms are weighted with 
their TFIDF (Term Frequency-Inverse Document Frequency) values. 

The Reuters-21578 corpus contains Reuters news articles from 1987. We 
only show the experimental results of train1.svm in LWE

2
 (Locally Weighted 

Ensemble framework) since the algorithms have the similar performance on 
other Reuters data sets. Train1.svm contains 1239 documents(two class) and 
6889 unique terms. 

                                                   
1
 http://www.cs.cmu.edu/~mccallum/bow/ 

2
 http://ews.uiuc.edu/~jinggao3/kdd08transfer 
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The email spam data set, released by ECML/PKDD 2006 discovery 
challenge, contains a training set of publicly available messages and three set 
of email messages from individual users as test sets. The algorithms have 
similar performance on different email spam data sets in LWE

2
, therefore we 

only show the experimental results of test1.svm for the limited space. test1.svm 
contains 2500 messages and 83636 unique terms. 

Table 2.The details of data sets  

Data sets #classes #total instances #features 
#training instances 

for each class 

same-2 2 2000 7765 5 

diff-2 2 2000 8599 5 

Reuters 2 1239 6889 5 

Spam 2 2500 83636 5 

4.2. Performance Evaluation 

Macro_F1 is used as the performance measurement. F1 metric is defined as 
                where P and R are precision and recall for a particular 
class. F1 metric takes into account both the precision and the recall, thus is a 
more comprehensive metric than either precision or recall when separately 
considered. 

Macro_F1 is a measurement which evaluates the overall performance of the 

classification model. Macro_F1 is defined in equ. (3), where   
  is the F1 value 

of class i. 

            
 

   
   

    
                                            (3) 

4.3. Experimental Results and Analysis 

In ASSDE, one important parameter is n, which affects both the effectiveness 
and efficiency of the proposed method. cpNum and MaxcpIter are pairwise 
parameters which also affect the effectiveness and efficiency of the proposed 
method. In the following, we mainly conduct experiments with respect to 
parameters n, cpNum and MaxcpIter, to study their influence on the 
performance of the proposed method. At the same time, we conduct 
experiments with several degenerated variants of ASSDE to see the 
contribution of each component technique. Furthermore, we compare our 
method with those of several state-of-the-art algorithms both in effectiveness 
and in efficiency.  

In the following experiments, the ensemble size is 3 and we set k=1, 3, 5 for 
the three component kNN classifiers in ASSDE and its degenerated variants. 
We use random strategy to select the first instance in the batch mode active 
learning. We conduct each experiment 40 runs and the average results are 



Active Semi-supervised Framework with Data Editing 

ComSIS Vol. 9, No. 4, Special Issue, December 2012                            1523 

given. In each run, the algorithms perform on the same randomly chosen 
training data set which has 5 positive labeled instances and 5 negative labeled 
instances. The runtime given below for all algorithms is the average online time. 

Robustness with different parameter n. Since ASSDE integrates several 
techniques, its two degenerated variants can be easily derived. First, if only 
ensemble learning and self-training are employed, then EnST (ensemble style 
self-training) algorithm is obtained. That is, EnST algorithm substitutes 
ensemble classifiers for one base classifier in standard self-training. Second, if 
EnST algorithm is augmented by active learning (BMAL_FFT), then AcEnST 
algorithm is obtained. Note that, although ASSDE integrates ensemble 
learning, active learning and data editing together, we can only obtain its two 
degenerated variants, EnST and AcEnST. This is because of the dependent 
relationships among the component techniques in ASSDE. From table 1 we 
can find that active learning is based on the ensemble learning and data editing 
is based on the active learning.  

In this subsection, we conduct experiments for ASSDE and its degenerated 
variants with different parameter n in order to see the contribution of each 
component technique and the robustness of the algorithms with parameter n. 
The standard self-training algorithm (ST) is taken as the baseline and it also 
refers to kNN as its base classifier. Here we set cpNum=30, MaxcpIter=6 for 
algorithms with batch mode active learning. 

Figures 1, 2, 3, and 4 give the Macro_F1 performance with different 
parameter n for all algorithms on four data sets. For the standard self-training 
(ST) algorithm, we only give the performance with k=3 since it has similar 
performance with k=3 and k=5, but it performs relatively worse with k=1.  

Figure 1 presents the Macro_F1 performance of the algorithms with different 
parameter n on same-2. It could be found that ASSDE significantly outperforms 
the other three algorithms, which verify the usefulness of the fusion of active 
semi-supervised learning with data editing technique. Furthermore, ASSDE is 
more robust than the other three algorithms to parameter n. EnST outperforms 
ST slightly with most parameter n, which accords with our former analysis that 
the simple ensemble strategy in ASSDE is designed to make efficient 
integration of active learning and to achieve overall efficiency while without 
degrading the performance. AcEnST outperforms EnST with all parameter n, 
which verify the usefulness of active learning. Note that, ASSDE performs 
better with larger values of parameter n, which makes it very efficient since 
larger n means lower computation complexity (less iterations). 

Figure 1 also shows that the algorithms except ASSDE perform better with 
the increase of parameter n first, then worse with the increase of parameter n. 
We think this is due to the paradox that larger parameter n makes larger 
training data set available for retraining the classifiers in next iteration which is 
very useful for sparsely labeled classification especially in the earlier iterations, 
but larger parameter n also means that more noise may be introduced into 
training data set which will hurt the learning results in the following iterations. 
Therefore there should be a balance point on which the classification model 
achieves its best performance. Different algorithms achieve this balance point 
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with different parameter n. For example, ST achieves its balance point with 
about n=250, EnST and AcEnST with about n=150. It seems that data editing 
technique could delay such balance point (with the increase of n) by identifying 
and removing the noise contained in self-labeled training data. 

 

Fig.1. Macro_F1 performance with different parameter n on same-2 

Figure 2 presents the Macro_F1 performance of the algorithms with different 
parameter n on diff-2. From figure 2 it could be found that ASSDE outperforms 
the other three algorithms with all parameter n and it is very robust to parameter 
n. EnST and ST perform similarly. AcEnST outperforms EnST and ST, and it 
achieves the best performance with n=5. For ST and EnST, there also exists 
the balance point phenomenon. ST achieves its best performance with about 
n=80, EnST with about n=60. The results in figure 2 also accords with our 
analysis in former sections. 

Figure 3 gives the Macro_F1 performance of the algorithms with different 
parameter n on Reuters. ASSDE outperforms the other three algorithms with all 
parameter n and it is more robust to parameter n. EnST is outperformed by ST 
with small n, but it outperforms ST when n>80. AcEnST outperforms ST and 
EnST with all parameter n and its performance degrades with the increase of n 
when n>30. ASSDE achieves its best performance with about n=80, ST with 
about n=15, EnST with about n=10, and AcEnST with about n=20. From the 
balance point of the four algorithms, we can see that ASSDE is most efficient 
for its least iterations, which must benefit from data editing technique. 
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Fig.2. Macro_F1 performance with different parameter n on diff-2 

 

 

Fig.3. Macro_F1 performance with different parameter n on Reuters 

Figure 4 presents the Macro_F1 performance of the algorithms with different 
parameter n on Spam data set. It could be found that ASSDE outperforms ST 
and EnST with all parameter n, and outperforms AcEnST when n>60. ASSDE 
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three algorithms. EnST performs slightly better than ST with almost all 
parameter n. AcEnST significantly outperforms ST and EnST with all parameter 
n. It seems that active learning plays a leading role for performance 
improvement in ASSDE on Spam data set. ASSDE achieves its best 
performance with about n=200, AcEnST with about n=25 or n=40, EnST with 
about n=80, and ST with about n=100. 

In general, from figures 1 to 4, we can conclude that active learning in 
ASSDE is always beneficial to improve the overall performance, and that data 
editing technique plays a key role in the robustness and improving the 
performance for ASSDE. Furthermore, data editing technique makes ASSDE 
more efficient since it can make ASSDE achieve its best performance with 
larger values of n (correspondingly less iterations). It seems that data editing 
technique brings larger advantage for data set of lower separability (e.g. 
same-2). This may be due to the fact that there should be more noise in 
self-labeled instances for data set of lower separability. Thus data editing 
technique can greatly improve the overall performance by identify and remove 
such noise contained in self-labeled training data. This accords with our 
intuition. 

 

Fig.4. Macro_F1 performance with different parameter n on Spam 
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Robustness with cpNum & MaxcpIter. Parameters of cpNum and 
MaxcpIter determine the amount of manual effort involved. In general, for an 
active learning algorithm, the more the manual effort involved, the better the 
performance it achieves. The aim of active learning is to reduce the effort 
involved without degrading the performance. In ASSDE, the performance will 
be improved with the increase of the product of cpNum and MaxcpIter, which is 
more intuitive. Therefore we only conduct experiments in the case of 
cpNum*MaxcpIter=constant, while cpNum and MaxcpIter may take different 
values.  

The following experiments are also conducted on the basic training data set 
which contains 5 training data for each class and is sampled at random in each 
run. We test the performance of ASSDE with cpNum=10, 20, 30, 60 and 90, 
correspondingly MaxcpIter=18, 9, 6, 3, and 2. Since the iterations of ASSDE 
are determined by parameter n, the iterations may be less than MaxcpIter with 
larger value of parameter n. That is, in the following experiments, ASSDE can 
at most actively label 180 instances in each run. We set n=300. 

Figure 5 shows the performance of ASSDE with cpNum on four data sets. In 
the case of cpNum* MaxcpIter=constant, the performance declines slightly with 
the increase of cpNum, and at the same time the runtime also declines (please 
see figure 6). We think this is because that the redundancy among the actively 
selected instances increases with the increase of cpNum. In general, 
cpNum=30 (correspondingly MaxcpIter=6) is best for ASSDE when considering 
both the effectiveness and the efficiency on the four data sets. 

 

 

Fig.5. Performance with cpNum on four data sets 
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Fig.6. Runtime with cpNum on four data sets 

Performance Comparison. To evaluate the performance of ASSDE with 
the increase of labeled training data, we conduct the following experiments to 
compare the performance of ASSDE, Support Vector Machines (SVM, one of 
the most successful supervised algorithm) and TSVM (one of the most 
successful semi-supervised algorithm) with different labeling rate. We set 
n=300, cpNum=30 and MaxcpIter=6 for ASSDE. Since the iterations of ASSDE 
are determined by parameter n, in the following experiments, ASSDE can at 
most actively label (selected by active learning and labeled manually by an 
expert) 180 instances in each run. 

For fair comparison between the active algorithm (e.g. ASSDE) and 
non-active algorithm (e.g. SVM and TSVM), we conduct experiments with two 
training data sets, that is, the basic training data set (5 training data for each 
class) for all three algorithms and the extended training data set (basic training 
data set extended with cpNum*MaxcpIter randomly selected training data) for 
SVM (denoted as SVM*) and TSVM (denoted as TSVM*). The SVMlight 
package

3
 is used in our experiments for the implementation of SVM and TSVM 

using default configurations.  
Since ASSDE performs very well on diff-2 and Spam (see figures 2 and 4), 

there is very little room for it to improve performance with the increase of 
training data size. Therefore, we only conduct the experiments on same-2 and 
Reuters. For each figure, the x-axis represents the number of training data in 
each class in basic training data set. Figures 7 and 8 give the performance 
comparison results. 

                                                   
3
 http://svmlight.joachims.org/ 
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Fig.7. Performance comparison on same-2 

From figure 7, we can see that ASSDE outperforms other algorithms when 
training data are less than 40 (4%) on same-2. From figure 8, we can see that 
ASSDE outperforms other algorithms with all training data size on Reuters. 
Compared with other algorithms, ASSDE performs better and more robust for 
sparsely labeled text classification.  

 

Fig.8. Performance comparison on Reuters 
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5. Conclusion 

In this paper, an active semi-supervised framework with data editing is 
proposed to improve the performance of sparsely labeled text classification. 
The aim of data editing in ASSDE is to identify and remove the noise contained 
in self-labeled training data and thus to improve the overall performance. Our 
basic consideration is to implement data editing technique by fully utilizing the 
advantage of active learning in order to incur less computation complexity while 
improving the accuracy. At the same time, we expect to simplify the design of 
key component which determines ASSDE’s efficiency and use data editing to 
make up for the deficiency. Therefore we use a very simple but efficient 
ensemble strategy in ASSDE. Extensive experiments on four text data sets 
show that data editing is a very useful technique for improving the performance 
of sparsely labeled text classification, and it makes the algorithm more efficient. 
This accords with our expectation. 

For future work, we will explore more suitable active learning and data editing 
techniques which may further improve the performance of sparsely labeled text 
classification. More efficient and effective ensemble strategy for sparsely 
labeled text classification will be another research direction. Moreover, we will 
further explore new techniques to cope with the training data sparsity and 
training data bias for sparsely labeled text classification, e.g. semantic feature 
extension and clustering aided techniques. 
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