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Abstract. To date, researches on agent multi-issue negotiation are mostly
based on linear utility functions. However, the relationship between utilities
and resources is usually saturated nonlinear. To this end, we expand lin-
ear utility functions to nonlinear cases according to the law of diminishing
marginal utility. Furthermore, we propose a negotiation model on multiple
divisible resources with two phases to realize Pareto optimal results. The
computational complexity of the proposed algorithm is polynomial order.
Experimental results show that the optimized efficiency of the proposed
algorithm is distinctly higher than prior work.
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1. Introduction

Allocation of multiple divisible resources under incomplete information is always
an interesting problem where negotiation is one of essential approaches, such
as the work of Luo et al [1], Saha et al [2], Chevaleyre et al [3], Fatima et al [5].
They proposed Pareto optimal negotiation, envy-free negotiation, and welfare
optimal negotiation in their researches. In our past work [6–8], we also studied
some problems of multi-issue negotiation.

However, prior researches mostly did not take explicit utility functions, or di-
rectly regarded resources as agents’ utilities. Therefore, only linear utility func-
tions were considered. However, there are much cases where utility functions
are nonlinear. For example, $100 will produce lots of utilities if an agent has
not a bean, while $100 will produce few utilities if that agent has a capital of
a hundred million dollars. The utilities of autonomous agents are some kinds
of subjective belief, and resources are objective things, i.e. resources generally
have firing effect on utilities.

So the relationship between utilities and resources is usually saturated non-
linear just as indicated by Wooldridge [9]. Furthermore, the relationship should
follow the law of diminishing marginal utility according to microeconomics, i.e.
the increments of utilities decrease along with the increments of resources. Re-
cently, some researches gradually paid more attention to nonlinear utility func-
tions such as [11,12,21–24].
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We try to expand linear utility functions to nonlinear cases in this paper. This
work is motivated by the sigmoid function of artificial neuron of artificial neural
network. In particular, we propose an improved nonlinear utility function to de-
scribe the relationship between utilities and resources. The proposed function
not only follows the law of diminishing marginal utility, but also is consistent with
the assumption of Wooldridge et al.

Sequentially, we bring forward a negotiation model on multiple divisible re-
sources. In particular, we firstly take resources as indivisible units and reach
a preliminary agreement using strict alternation in the first phase. Information
about the preferences and firing rate of the opponent is also obtained at the
same time. Subsequently, we divide resources using a greedy algorithm in the
second phase and realize Pareto optimal results.

The first contribution of this paper is the proposal of a new utility function
which follows the law of diminishing marginal utility while it is mostly ignored
by previous work. Moreover, in the first phase of negotiation, strict alternation
provides not only a preliminary agreement but also some useful information
for agents. Therefore, history information is not necessarily required. Secondly,
this model can generate Pareto optimal results for all negotiation agents. The
computational complexity of the proposed algorithm is polynomial order and it
is usually lower than that of Fatima et al. Experimental results show that the
optimized efficiency of the proposed algorithm has an advantage over the work
of Fatima et al. The application of this work includes many similar domains
such as allocation of band width, allocation of computational resources, and
allocation of business etc.

The rest of this paper is organized as follows. Section 2 describes the basic
notions about negotiation scenes and utility functions. We propose a negotia-
tion model and a feasible optimal algorithm in section 3. Section 4 discusses
negotiation with complete information, and section 5 discusses negotiation un-
der incomplete information. Experimental settings and results are provided in
section 6. Background and related work is provided in section 7. Conclusions
are drawn in the last section.

2. Basic Notions

In this section, we describe some basic notions about negotiation such as nego-
tiation scenes, information states of agents, a nonlinear utility function, marginal
utility function, and the ratio of marginal utility function. We also present some
useful properties of the proposed nonlinear utility function.

2.1. Negotiation Scenes

We improve the negotiation scenes of Fatima et al [5] where agent a and b
negotiate over m (m ≥ 2) divisible resources (issues). We assume that the m
resources are independent each other. We let agent a firstly make a bid for
instance, and agent b is taken as the opponent.
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Definition 1. Negotiation scenes

N = 〈a, b, R,m, n, ρ, t〉 (1)

where, N denotes a negotiation scene. a, b denote agents who are partic-
ipating the negotiation. R = {r1, r2, . . . , rm} denotes divisible resources to be
allocated. they also can be regarded as issues of negotiation. m denotes the
number of resources to be allocated. n denotes the deadline of negotiation,
namely the maximum turn of negotiation is n. ρ = {ρ1, ρ2, . . . , ρm} denotes dis-
count factors of resources (0 ≤ ρi ≤ 1). t ∈ N denotes the current turn of
negotiation. N denotes natural number.

Definition 2. Information state of agents

Ia = 〈ka, xa, Cb, Pb〉 (2)

Where, Ia is the information state of agent a. ka = {k1a, k
2
a, . . . , k

m
a } denotes

resources/issues preferences of agent a. In which, kia denotes the preference of
agent a for ri. We assume that kia ∈ [0, 1],

∑m
i=1 k

i
a = 1. In this paper, we assume

that the preference of agent is invariable along with the quantity of resources
allocated. It is a fixed factor for the agent initially. xa = {x1

a, x
2
a, . . . , x

m
a } denotes

the proportion of resources allocated to agent a. In which, xi
a ∈ [0, 1] denotes

the proportion of resource ri allocated to agent a. Cb = {C1
b , C

2
b , . . . , C

l
b} de-

notes l possible types of agent b known by agent a in advance. The type of
agent b is known by agent a if negotiation is in complete information environ-
ment. Pb = {P 1

b , P
2
b , . . . , P

l
b}, in which, P i

b denotes the probability of case that
agent b is type Ci

b.

2.2. A Nonlinear Utility Function

There are various researches on nonlinear utility functions of negotiation re-
cently. Some of researches focused on general nonlinear utility function and did
not give practical nonlinear utility function, some of researches took Bell function
such as [12]. Most of researches did not provide any rules to select nonlinear
utility functions synthetically. To this end, we present these rules illustrated as
follows.

Most models in economics and finances assume a non-decreasing utility
function with diminishing marginal utility. While Arrow-Pratt’s definition of abso-
lute risk aversion is related to concave utility functions which implies decreasing
marginal utility.

Rule 1. The utility function should be separable, cumulative, and continuous.
Such a function should satisfy the demand of negotiation on multiple divisible
resources.

Rule 2. The utility function should be bounded. That is to say that the utility
of agent would not increase infinitely.

Rule 3. The utility function should be monotonously nondecreasing. It means
that agent hope to get more resources, no matter how much he has obtained.
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Fig. 1. Relationship between utilities and resources

Rule 4. The utility function should be a concave function. It means that the
increment of utility is monotonously non-increasing.

Rule 5. The utility function should follow the property of Arrow-Pratt absolute
risk aversion. When an agent has more of one resource, he would confront
more risk about this resource.

Due to the above five rules of utility function, we are motivated by the sig-
moid function of artificial neuron. The relationship between utilities and re-
sources(money) indicated by Woodridge is absolutely suitable for sigmoid func-
tion. So we propose an improved nonlinear utility function through revising sig-
moid function illustrated in Fig. 1.

Definition 3. An improved nonlinear utility function

ui
a = kia(1− e−λax

i

a) (3)

where, ui
a denotes the nonlinear utility of agent a for resource ri. λa ∈ (0, inf)

denotes the firing rate of resources to the utilities of agent a. It shows the impact
factor of resource to utility. For simplicity, we assume that λa is same to all
resources of agent a.

The more λa is, the faster ui
a increases. Especially, ui

a is a step function
when λa → inf. The utility of agent a can not obtain kia even if all of ri are
allocated to it when λa < 4 because agent a can not be satisfied by the existing
resource.

The proposed utility function is different from the prior functions. In particular,
when λa ≤ 1, the utility function is just approximately linear. Therefor, the prior
work of Fatima et al is a particular one of our nonlinear utility function when λ is
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small. So our proposed utility function is more general and common, including
linear and nonlinear cases concurrently.

Definition 4. The total utilities of agents

Ua =

m∑

i=1

ui
a(ρi)

t−1 (4)

Ua denotes the total utilities of agent a for all resources. t denotes the current
turn of negotiation. ui

a denotes the utilities of agent a for resource ri which is
defined in definition 3.

Definition 5. Marginal utility function of agents in nonlinear domain

dui
a

dxi
a

=
d(kia(1− e−λax

i

a))

dxi
a

= kiaλae
−λax

i

a (5)

It is shown that the marginal utility in nonlinear domain is related to not only
the preferences of agents, i.e. kia, but also the firing rate of resources to the
utilities of agent a, i.e. λa, as well as the quantity of resources allocated to
agent a, i.e. xi

a.
If we take linear utility function, ui

a = kiax
i
a, then the marginal utility is as

follows.
Definition 6. Marginal utility function of agents in linear domain

dui
a

dxi
a

=
d(kiax

i
a)

dxi
a

= kia (6)

So the marginal utility of linear function is kia.
Definition 7. The ratio of marginal utility function

θi =
(ui

b)
′

(ui
a)

′
(7)

where, θi denotes the ratio of the marginal utility function of agent b to that
of agent a.

If we use a greedy algorithm to generate counter-offer, agent a wishes to
maximize its own utilities after satisfying the requirement of agent b’s utilities. It
divides the m pies such that it reserves the maximum possible shares for those
resources where θi is low, and gives to agent b the maximum possible shares
for those resources where θi is high. Thus, agent a would begin by giving agent
b the maximum possible shares for the resource with the highest θi. It then does
the same for the resource with the next highest θi and repeat this process until
utility requirement of agent b is satisfied. Therefore, the remainders of resources
are allocated to agent a to maximize agent a’s utilities. In this way, not only
the requirement of agent b’s utilities is quickly realized, but also the maximum
utilities of agent a is obtained.

Assumption 1. If the proportion of ri allocated to agent a is xi
a, then the

proportion of ri allocated to agent b is (1−xi
a). The higher the value of θi is, the

earlier the resource ri is allocated to agent b.
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Fig. 2. The relationship among θi and xi
a, λa, λb

θi =
kibλbe

−λbx
i

b

kiaλae−λaxi
a

=
kibλbe

−λb(1−xi

a
)

kiaλae−λaxi
a

=
kibλbe

−λb

kiaλa
e(λa+λb)x

i

a (8)

According to greedy algorithm, agent a should always choose the highest θi
at point xi

a, whenever kib/k
i
a is. Particularly, the choice of resource is depended

on xi
a, as well as kia, k

i
b, λa, λb. In a word, the only criteria is θi. End.

Theorem 1. The value of θi of nonlinear utility function is related to not only
kia, kib, but also λa, λb and the quantity of resources allocated to agent a, i.e. xi

a.
Proof: see formula (8). End.
The relationship among the value of θi and xi

a, λa, λb is illustrated in Fig. 2.
When λa = λb ≤ 0.3, the value of θi is approximately invariable, no matter how
much xi

a is.

Theorem 2. The value of θi of linear utility function is ki

b

ki
a

.
Proof: Due to
dui

a

dxi
a

=
d(ki

a
xi

a
)

dxi
a

= kia, θi =
(ui

b
)′

(ui
a
)′ =

ki

b

ki
a

. End.

We can find that the work of Fatima where ki

b

ki
a

is adopted is just the rank of
θi of linear utility function.

2.3. Properties of the Proposed Nonlinear Utility Function

The proposed utility function follows the following properties which are impor-
tant for micro-economics. The utility function is bounded, is a concave function,
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follows the law of diminishing marginal utility, and displays increasing absolute
risk aversion according to Arrow-Pratt [10].

Property 1. ui
a ∈ [0, kia) is bounded.

Proof : Known λa > 0, xi
a ≥ 0, ui

a is minimal when xi
a = 0, ui

a = kia(1− e0) =
0, while ui

a is maximal when xi
a = 1, ui

a = kia(1− e− inf) → kia if λa → inf. End .
Property 2. ui

a follows the law of diminishing marginal utility.
Proof : Known λa > 0, xi

a ≥ 0, (ui
a)

′ = kiaλae
−λax

i

a ≥ 0. It shows that ui
a

is monotonously nondecreasing. Particularly, ui
a is monotonously increasing if

kia > 0 ∧ λa > 0.
(ui

a)
′′ = (kiaλae

−λax
i

a)′ = −kia(λa)
2(1 − e−λax

i

a) ≤ 0 is monotonously non-
increasing. Particularly, ui

a is monotonously decreasing if kia > 0∧ λa > 0. End .
Property 3. ui

a is a concave function.
Proof : Known λa > 0, xi

a ≥ 0, (ui
a)

′ = kiaλae
−λax

i

a ≥ 0. (ui
a)

′′ = (kiaλae
−λax

i

a)′ =

−kia(λa)
2(1 − e−λax

i

a) ≤ 0, so ui
a is a concave function. End .

Property 4. ui
a displays increasing absolute risk aversion.

Proof : The Arrow-Pratt measure is an attribute of a utility function. If we de-
note a utility function by u(x). The Arrow-Pratt measure of absolute risk aversion
is defined by:

γ(x) = −u′′(x)/u′(x).

So γ(xi
a) =

ki

a
(λa)

2(1−e−λax
i
a )

ki
a
λae

−λaxi
a

= λa(e
λax

i

a − 1). We know that γ(xi
a) also in-

creases when xi
a increases. It means that the risk aversion of agent a increases

when xi
a increases. Therefore, ui

a displays increasing absolute risk aversion.
Therefore, when agent a possesses lots of this resource, he prefers to reject
rather than accept it. End .

3. Negotiation Model

In this section, we first discuss the proposed greedy algorithm for generating
optimal proposals. Sequentially, we discuss the conditions of acceptance for
offers.

3.1. Generating Optimal Proposals

Fatima et al [5] used a greedy algorithm to realize a Pareto optimal result. Just
like knapsack problem, the greedy algorithm ranks kib/k

i
a. Actually, agent a in-

deed ranks θi which is linear because (ui
a)

′ = (kiax
i
a)

′ = kia. However, the utility
function in this paper is nonlinear so that it may be difficult to choose resources.

We propose an improved greedy algorithm to obtain Pareto optimal solutions
with nonlinear utility functions.

max
∑m

i=1 u
i
a

s.t.
∑m

i=1 u
i
b = U I

b

(9)

where, U I
b denotes the sum of agent b’s utilities that must be satisfied when

agent a uses a greedy algorithm.
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Fig. 3. The relationship between θi and xi
a

According to the above explanation, the choice of resource is depended on
θi. So we should always choose the biggest θi and try to satisfy the requirement
of agent b’s utilities. Because the value of θi is depended on xi

a, so the biggest
θi will change among different resources.

Example 1. For example, if m = 2, n = 2, k1a = 0.4, k2a = 0.6, k1b = 0.5, k2b =
0.5, λa = 2, λb = 3, then when x1

a = 0.7, x2
a = 0.4, θ1 = 3.09 > θ2 = 0.46, when

x1
a = 0.4, x2

a = 0.8, θ1 = 0.69 < θ2 = 3.40. So we find that the biggest θi changes
from resource 1 to resource 2 when the quantity of resources changes. More
examples are illustrated in table 1.

Table 1. The change of the biggest θi along with xi
a

x1

a x2

a θ1 θ2 The biggest θi
0.7 0.4 3.09 0.46 θ1
0.4 0.8 0.69 3.4 θ2
0.4 0.2 0.69 0.17 θ1

The proposed approach draws horizontal line in Fig. 3 from the top to the
bottom. It means that the value of θi decreases from the biggest one until agent
b is satisfied. The value of abscissa of the point of intersection with the line of
θi is xi

a, and (1 − xi
a) of the resource is allocated to agent b. Agent a occupies

all the remainders of this resource, as long as agent b is satisfied. According to
the greedy algorithm, agent a can obtain its Pareto optimal results.
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The process of optimization is illustrated in algorithm 1, in which, ω is the
amount of pieces of each resource divided by two agents, χ is the initial value
of θi, ι is the step size of θi decreasing, uI

b is the initial utility of agent b, δ is a
toleration of θi’s error. up

b(i) is the optimal utilities of agent b, while up
a(i) is the

optimal utilities of agent a, ra(i) is the the share of resource i allocated to agent
a.

Algorithm 1
Set x = 0 : 0.01 : 1; s = (λb/λa)(kb/ka)e−b;

1. up
b(i) := 0, (i = 1, ...,m);

2. while Σm
i=1u

p
b(i) < uI

b //satisfying agent b’s utility
3. for i = 1 : m //m resources
4. j := ω + 1 //each resource is divided into ω pieces
5. while abs(θi(j)− χ) > δ
6. j := j − 1;
7. end while
8. up

a(i) := ui
a(j);u

p
b(i) := ui

b(j); ra(i) := (j − 1)/ω;
9. end for
10. χ := χ− ι
11. end while
12. Up

a := Σm
i=1u

p
a(i);U

p
b := Σm

i=1u
p
b(i);

Theorem 3. Pareto optimal results can be obtained by algorithm 1.
Proof : Because algorithm 1 is based on the greedy algorithm, the utility of

agent a is optimal without decreasing the utilities of agent b. According to the
definition, algorithm 1 can realize Pareto optimal of agents. End .

Theorem 4. The computational complexity of algorithm 1 is O(ωmη), η =
χ/ι.

Proof : Agent b will obtain all of resources in the worst case. Thus the inner
nesting of ’While’ cycle should be done ω times, ’For’ cycle should be done
m times, and the outer ’While’ cycle should be done η times. Therefore, the
computational complexity of algorithm 1 is O(ωmη). End .

Property 5. The computational complexity of algorithm 1 is usually lower
than that of Fatima et al.

Proof : The computational complexity of the work of Fatima et al is O(mπ̂l3t(h−
t/2)), where t = min(2l − 1, h), h is the maximum turn of negotiation. Thus it
is O(mπ̂l3(2l − 1)(h − l + 0.5)) i.e. O(mπ̂l4h) when h ≥ (2l − 1) → t = 2l − 1.
It is O(mπ̂l3h2) when h < (2l − 1) → t = h. The computational complexity
of algorithm 1 is O(ωmη). If we control the size of ω and η, the computational
complexity of algorithm 1 is usually lower than that of Fatima et al. End .

3.2. Conditions of Acceptance for Offers

There are two conditions of acceptance for offers. One is that the utility of the
current offer that the offering agent received is not smaller than that of the next
his own counter-offer. Another is that the offering agent can not optimize the
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utility of own without decreasing the utility of the opponent, i.e. the current offer
is a Pareto optimal offer.

Assumption 2. Conditions of acceptance for offers
Rule 6. The utility of the current offer that the offering agent received is not

smaller than that of the next his counter-offer.
Rule 7. The offering agent can not optimize the utility of own without de-

creasing the utility of the opponent.

4. Negotiation with Complete Information

We assume that agent a and b know each other and the public information such
as R,m, n, ρ is known by the two agents. We take the package deal procedure
for this negotiation, then we can derive from the work of Fatima et al [5] that
an agreement takes place at t = 1 for the package deal procedure, and the
time taken to determine an equilibrium offer for t = 1 is O(mn), where m is the
number of resources and n is the deadline. We also know that the package deal
procedure generates a Pareto optimal outcome.

We discuss the process of negotiation with complete information as follows.
If negotiation reaches the deadline, then the agent whose turn it is takes every-
thing and leaves nothing for its opponent. We then consider the preceding time
periods (t < n), the offering agent will propose a counter-offer using greedy al-
gorithm. Due to the complete information, each agent should consider the pos-
sibility of acceptance of the opponent. Furthermore, because of the discount
of resources, each agent will not waste any time in order to avoid the loss of
utility. Everyone knows that any more turn of negotiation means a loss of utility
for both agents. So an agreement takes place at t = 1 for the package deal
procedure.

So if agent b is the offering agent at t = n turn, then agent b will take ev-
erything and leave nothing for agent a. It means that the utilities of agent b is
ρn−1

∑
ui
b0, where ui

b0 = kib(1 − e−λb). At t = n − 2 turn, agent a uses greedy
algorithm to generate optimal offer. This offer should maximize the utilities of
agent a, as long as satisfying the requirement of agent b’ utility, i.e. ρn−1

∑
ui
b0.

So we can obtain the followings.
ρn−1

∑
ui
b0 = ρn−2

∑
ui
b,

⇒ ρ
∑

ui
b0 =

∑
ui
b,

⇒ ρ
∑

kib(1 − e−λb) =
∑

kib(1 − e−λbx
i

b),
⇒ ρ(1− e−λb) =

∑
kib(1 − e−λbx

i

b),
Now we can use a greedy algorithm to generate xi

b, x
i
a. Because of complete

information, agent b can not find a better outcome than this offer. So this offer
is the offer at t = 1 turn for agent a.

If agent a is the offering agent at t = n turn, then we can use a similar way
to generate optimal offer at t = 1 turn.

Example 2. if m = 2, n = 2, k1a = 0.4, k2a = 0.6, k1b = 0.5, k2b = 0.5, λa =
2, λb = 3, ρ1 = ρ2 = 0.5, then

At t = 2 turn, agent b will take everything, then the utility of agent b is
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ρ(k1b (1 − e−λb) + k2b (1 − e−λb)) = 0.5 ∗ (0.5 ∗ (1 − e−3) + 0.5 ∗ (1 − e−3)) =
0.5 ∗ (1− e−3) = 0.475.

Now we take greedy algorithm to compute xi
b, where

U I
b = ρ(

∑
kib(1 − e−λb)) = ρ(k1b (1− e−λb) + k2b (1 − e−λb)).

We find that ρ(1− e−λb) =
∑

kib(1− e−λbx
i

b),
⇒ 0.5(1− e−3) = 0.5(1− e−3x1

b ) + 0.5(1− e−3x2

b ),
⇒ e−3x1

b + e−3x2

b = 1+ e−3, where θ1 = θ2.
So we can find that x1

b = 0.258, x2
b = 0.177 using the proposed greedy algo-

rithm. Here θ1 = 3.81 = θ2, u
1
b = 0.2694, u2

b = 0.206, u1
a = 0.31, u2

a = 0.48. So
u1
b + u2

b = 0.475 = ρ(k1b (1− e−λb) + k2b (1 − e−λb)).

Table 2. The offer of negotiation with complete information

Turn x1

a x2

a x1

b x2

b u1

a u2

a u1

b u2

b Ua Ub θ1 θ2

2 0 0 1 1 0 0 0.475 0.475 0 0.475 0.093 0.062
1 0.742 0.823 0.258 0.177 0.309 0.484 0.269 0.206 0.79 0.475 3.81 3.81

5. Negotiation under Incomplete Information

We propose a negotiation model with two phases. There are two aims in the
first phase. We use the strict alteration [2] where resources are taken as indi-
visible units and two agents alter to choose one resource to reach a preliminary
agreement. At the same time, we can obtain some useful information about the
opponent’s preferences reasoned by two rules derived from the strict alteration.
Sequentially, we take resources as divisible units and make tradeoff between
two agents to get a Pareto optimal result in the second phase.

5.1. The First Phase

We cite the approach of strict alteration [2] in the first phase. Each agent will
always choose the resource with the biggest preference in the remainder re-
sources.

First phase:
Step 1: A random device chooses one of the two agents and

marks this agent as s. Denote the set of resources yet to be
negotiated by G. Initially, G = R.

Step 2: Now, s will choose one of the remaining resources
r ∈ G, r is allocated to s.

Step 3: Mark the other agent as s and update G to G−{r}.
If |G| >= 1 return to Step 2, otherwise stop.

If agent a is the first agent to choose resources and m is assumed to be
even, then the following sequences are obtained. x1

a, x
2
a, . . . , x

m/2
a &x1

b , x
2
b , . . . , x

m/2
b

(if m is odd, x(m+1)/2
a is added).
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We can obtain a preliminary agreement in the first phase. Two agents allo-
cate all resources where each resource is regarded as indivisible one. At the
same time, this agreement is the base of the second phase where a greedy
algorithm runs.

Through analyzing the above two sequences, agent a can obtain some use-
ful information of agent b. Particularly, two rules of preferences of agent b can
be obtained.

Agent a and b rank the resources with the preference. The resource with
biggest preference of agent a is denoted by r1a, the resource with the ith big
preference of agent a is denoted by ria. The same is done for agent b. So agent
a and b can obtain the following sequence.

r1a, r
2
a, . . . , r

m
a and x1

b , x
2
b , . . . , x

m
b

Example 3. For example, we assume that agent a and b alter to choose 6
resources {r1, r2, r3, r4, r5, r6}. We assume the following 4 cases illustrated in
table 3. Furthermore, the results of choices of agent a and b are illustrated in
table 4.

Table 3. The rank of the resources

Cases r1a r2a r3a r4a r5a r6a r1b r2b r3b r4b r5b r6b
Case 1 r1 r2 r3 r4 r5 r6 r6 r5 r4 r3 r2 r1
Case 2 r1 r2 r3 r4 r5 r6 r1 r2 r3 r4 r5 r6
Case 3 r1 r2 r3 r4 r5 r6 r2 r1 r3 r4 r5 r6
Case 4 r1 r2 r3 r6 r5 r4 r1 r3 r5 r4 r2 r6

Table 4. The results of choices of agent a and b

Cases x1

a x2

a x3

a x1

b x2

b x3

b

Case 1 r6b r5b r4b r1b r2b r3b
Case 2 r1b r3b r5b r2b r4b r6b
Case 3 r2b r3b r5b r1b r4b r6b
Case 4 r1b r5b r6b r2b r3b r4b

Rule 8. xi
b may be rib to r2ib .

Rule 9. xi
a may be rib to xm

b .
Agent a should always choose the resource remained with the biggest ria,

no matter whether it is that of agent b. whether agent a has chosen agent b’s
expected resource is the key problem because agent a always be ahead of
agent b and can affect agent b’s selection. Three cases exist according to the
relationship between agent a and agent b.

If two agents do not conflict with each other anytime, i.e. agent a and b can
always choose the expected resources. So xi

b should always be rib, and xi
a may
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be r
m/2
b to xm

b . Let’s see case 1, x1
b is r1b , x2

b is r2b , and x3
b is r3b . While x1

a is r6b ,
x2
a is r5b , x3

a is r4b .
If two agents conflict with each other all along, i.e. agent b can not choose

the expected resources all the while. What agent a chooses is the expected
resource of agent b. It means that xi

a should be rib to r2i−1
b . What agent b can

choose is chosen by agent a. So agent b can only choose r2ib . So xi
b should

always be r2ib . Let’s see case 2, x1
a is r1b , x2

a is r3b , x3
a is r5b . So agent b can only

choose the next resource, then x1
b is r2b , x2

b is r4b , and x3
b is r6b .

If two agents partly conflict with each other, then xi
b may be in {rib . . . r2ib },

and xi
a may be in {rib . . .xm

b }. Let’s see case 4, x1
a is r1b , x2

a is r5b , x3
a is r6b . So x1

b

is r2b , x2
b is r3b , and x3

b is r4b .
Example 4. Let’s consider such a setting, agent a and b negotiate on four

divisible resources R = {r1, r2, r3, r4}. Agent b is well known to be one of three
possible classes of the opponents whose preferences and λb are shown in the
followings.

Table 5. Information state of agents(P b
=< 0.5, 0.3, 0.2 >)

Items r1 r2 r3 r4 λ Rank of resources
ka 0.4 0.25 0.15 0.2 2 r1 � r2 � r4 � r3

k
C1

b
0.2 0.3 0.15 0.35 2.5 r4 � r2 � r1 � r3

k
C2

b
0.4 0.25 0.15 0.2 2 r1 � r2 � r4 � r3

k
C3

b
0.1 0.4 0.3 0.2 3 r2 � r3 � r4 � r1

ka =< 0.4, 0.25, 0.15, 0.2 >, λa = 2; kC1

b =< 0.2, 0.3, 0.15, 0.35 >, λC1

b = 2.5;
kC2

b =< 0.4, 0.25, 0.15, 0.2 >, λC2

b = 2; kC3

b =< 0.1, 0.4, 0.3, 0.2 >, λC3

b = 3;
P b =< 0.5, 0.3, 0.2 >.

Where, kCi

b denotes the preference vector when agent b is Ci class, λCi

b

denotes the firing rate when agent b is Ci class.
If < x1

a = r1, x
1
b = r4, x

2
a = r2, x

2
b = r3 > is obtained through the approach

of strict alternation in the first phase. We can reason that only kC1

b satisfies the
fact that r4 is ranked as the first or second order of agent b. Therefore agent
b must be C1 class. The approach is generally feasible when there are a few
classes of agents.

Therefore, agent b obtains all of r3&r4 in the first phase through the ap-
proach of strict alternation. The initial utilities of agent b are 0.45896 while those
of agent a are 0.56203. End .

Alternatively, if agent b firstly chooses resources and < x1
b = r4, x

1
a =

r1, x
2
b = r2, x

2
a = r3 > is obtained. We also obtain that only kC1

b satisfies the
fact r4 is ranked as the first order. Therefore agent b must be C1 class. Agent b
obtains all of r4&r2 in the first phase of negotiation trough the approach of strict
alternation.

Based on the above rules, we can obtain some useful information which will
help us in the next phase. If there is only one possible class, then agent b must
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Table 6. Strict alteration of the first phase

The first agent to offer x1

b x1

a x2

b x2

a k
Ci

b
ra rb UI

a UI

b

a r1 r4 r2 r3 k
C1

b
r1&r2 r3&r4 0.56203 0.45896

b r4 r1 r2 r3 k
C1

b
r1&r3 r2&r4 0.47557 0.59664

be it; Otherwise, we can take advantage of probability of opponents to select
the type with the maximal probability. So not only preliminary agreement but
also preferences and firing rate of opponents can be obtained in the first phase.

5.2. The Second Phase

After phase 1, we can obtain a preliminary agreement and some useful infor-
mation. Sequentially, we enter the second phase to obtain a Pareto optimal
result.

Based on the agreement of phase 1, if agent b’s utility requirement is sat-
isfied, then agent b should give this offer to agent a. Otherwise agent b should
firstly satisfy its own requirement and give its new offer to agent a.

When agent a receives an offer from agent b, it should compute its own
utility using algorithm 1. If agent a’s utility requirement can be satisfied by this
offer, then agent a should send agent b the new offer. Because the new offer
would satisfy agent b’s requirement, agent b should accept this new offer and
negotiation succeeds. If agent a’s utility requirement can not be satisfied by
this offer, then agent a would not consider the requirement of agent b and only
satisfies its own utility requirement, then it provides agent b the new offer based
on its own preferences and utility function.

When agent b receives an offer from agent a, it should compute its own
utility. If agent b’s utility requirement can be satisfied by the counter-offer, agent
b will accept the counter-offer. Negotiation succeeds. If it is not, then return to
the beginning step of ”Otherwise”.

We give the following flow to understand the above operations.
Second phase :
Step 1: Set the result of the first phase as the initial

allocation of resources. Choose one of the two agents and mark
it as a, the other agent is marked as b.

Step 2: If agent b’s utility requirement can be satisfied
in the first phase, then agent b gives the allocation of the
first phase to agent a.

Step 3: Else agent b provides the offer based on its own
preferences and utility function, where its utility requirement
can be satisfied. end if

Step 4: agent a receives the offer from agent b, then to
compute its utility using algorithm 1.

Step 5: If agent a’s utility requirement can be satisfied
by this offer of algorithm 1, then agent a gives the optimal
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counter-offer to agent b. Agent b should accept the counter-offer
because its own utility requirement can be satisfied. Negotiation
succeeds.

Step 6: Else agent a provides the offer based on its own
preferences and utility function, where its utility requirement
can be satisfied.

Step 7: If agent b’s utility requirement can be satisfied
by the counter-offer, agent b will accept the counter-offer.
Negotiation succeeds.

Step 8: Else go to step 3.

6. Experimental Evaluation

6.1. Optimal Performance of Algorithm 1

Recall example 4, agent a and b negotiate on 4 resources using this model.
After the first phase, agent a obtained the following optimal results by algorithm
1.

Table 7. The results of experiments where agent a firstly chooses resources

Utility agent a agent b x

r1 0.33647 0.036254 0.92
r2 0.19077 0.15102 0.72
r3 0.11784 0.065594 0.77
r4 0.14439 0.2077 0.64
Initial sum 0.56203 0.45896 1,1,0,0
Optimal sum 0.78948 0.46057 0.92,0.72,0.77,0.64

After optimizing in the second phase of negotiation, agent b obtains 0.92
proportion of r1, 0.72 proportion of r2, 0.77 proportion of r3, 0.64 proportion
of r4. Sequentially, the optimal utility of agent b is 0.46057 and that of agent a
is 0.78948 through the second phase. Experimental results show that the utili-
ties of agent a significantly excel the preliminary agreement without decreasing
the utilities of agent b. We practically improve the utilities of agent a by 40.5%
(0.78948:0.56203)and that of agent b by 0.35% (0.46057:0.45896). The results
of experiments are shown in Table 7.

Alternatively, if agent b firstly chooses resources. We improve the utilities of
agent a by 53.8% (0.73155:0.47557) and that of agent b by 0.9% (0.60193:0.59664).
Experimental results are shown in Table 8.

6.2. Influence of λa and λb

If we change the value of λa and λb from 0.2 to 20, we get the results illustrated
in Fig. 5, where Uo

a denotes the optimized utilities of agent a. Uo
b denotes the
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Utility of Agent a
Utility of Agent b
proportion of resources to Agent a

Fig. 4. Optimized results of algorithm 1

Table 8. The results of experiments where agent b firstly chooses resources

Utility agent a agent b x

r1 0.31924 0.078694 0.8
r2 0.1747 0.18964 0.6
r3 0.10829 0.089015 0.64
r4 0.12931 0.24458 0.52
Initial sum 0.47557 0.59664 1,0,1,0
Optimal sum 0.73155 0.60193 0.8,0.6,0.64,0.52

optimized utilities of agent b. Uo
a&b denotes the optimized utilities of agent a and

agent b.
We can find that when the value of λa = λb is small, the effect of optimization

is mainly on agent a. If λa = λb < 4, few effect is added on agent b. If λa = λb >
5, the utilities of agent a are nearly saturated. At the same time, the utility of
agent b is optimized greatly. So the effect of optimization is perfect. However, if
λa = λb > 10, the utilities of agent a and b are both nearly saturated. So the
effect of optimization is not well.

6.3. Influence of Different δ1 and δ2

If we change δ1 from 0.0001 to 0.05, the results of experiments are shown in
Fig. 6. In which, ai denotes the initial utilities (not optimized) of agent a, ao
denotes the optimized utilities of agent a, bi denotes the initial utilities of agent
a, bo denotes the optimized utilities of agent b.
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Fig. 5. Influence of different λa = λb to the utilities of agent a and b

We can find that the optimal utilities of agent b becomes bigger, that of agent
a becomes smaller, and the social welfare of optimal utility of agent a and b
becomes also bigger.

6.4. Influence of Various Kinds of Agents

If various kinds of agents participate the negotiation, we can get the average
optimized efficiency in a small range. We take 18 various kinds of agents and
these results are illustrated in Fig. 7, where U I

a denotes the initial utilities of
agent a, Uo

a denotes the optimized utilities of agent a, U I
b denotes the initial

utilities of agent b, Uo
b denotes the optimized utilities of agent b.

We can find that the average utilities of agent a is improved by 59.56%. The
average utilities of agent b is improved by 0.85%. The average utilities of agent
a and b is improved by 28.95%.

The utilities of agent a and b is usually bigger than 1 because the parameter
λ is enough big and the firing rate is enough high and it realizes the result of
win-win.

6.5. Comparison With Linear Utility Functions

If we compare the optimized results of nonlinear utility functions with those of
linear utility functions, we can find that the former is higher than the latter. The
reason may be that the former considers not only the preferences of agents,
but also the quantity of resources. Thus the former is more possible to get
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Fig. 6. Influence of different δ1 to the utilities of agent a and b

more utilities than the latter. Table 8 and 9 show the comparison of optimized
efficiency among the work of Fatima, Faratin and ours. We can discover the
above conclusion from these tables. More results of comparison are illustrated
in section 6.6.

Table 9. Comparison of the results of optimization between linear utility function
and nonlinear utility function where agent a firstly chooses resources

Utility agent a agent b Sum of agent a&b Percent of optimization
Initial 0.56203 0.45896 1.02099 -
Optimization of Fatima 0.7092 0.45896 1.16816 14.41444
Optimization of Faratin 0.56203 0.635564 1.197594 17.29733
Optimization of ours 0.78948 0.46057 1.25005 22.43509

6.6. Comparison With the Work of Fatima

We compare experimental results of algorithm of Fatima et al and that of algo-
rithm 1. The result is illustrated in Fig. 8, where U I

a denotes the initial utilities of
agent a, Uo

a denotes the optimized utilities of agent a using the algorithm of this
paper, U I

aF denotes the initial utilities of agent b using the algorithm of Fatima et
al, Uo

aF denotes the optimized utilities of agent a using the algorithm of Fatima
et al.
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Table 10. Comparison of the result of optimization between linear utility function
and nonlinear utility function where agent b firstly chooses resources

Utility agent a agent b Sum of agent a&b Percent of optimization
Initial 0.47557 0.59664 1.07221 -
Optimization of Fatima 0.594467 0.59664 1.191107 11.08893
Optimization of Faratin 0.47557 0.72443 1.2 11.91837
Optimization of ours 0.73155 0.60193 1.33348 24.36743

There are 18 cases if agent a and b are different kinds and alternatively
firstly choose resources in the first phase. The average initial utilities of agent
a in all 18 cases using algorithm 1 is 0.529661 and that of optimized utilities is
0.822555, therefore algorithm 1 improves utilities of agent a by 59.56%. While
using methods of Fatima et al, these data are 0.580556, 0.583611, 0.55% re-
spectively. Experimental results show algorithm 1 takes an advantage over the
work of Fatima et al.

7. Background and Related Work

In recent years, researches on agent multi-issue negotiation with incomplete
information attract more and more attention. Generally speaking, there are si-
multaneous procedure, sequential procedure, and package deal procedure ap-
proaches. However, only package deal procedure can ensure Pareto optimal
solution indicated by Fatima et al [5]. Therefore, we only introduce the approach
of package deal procedure to ensure Pareto optimal results in this paper.
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Fig. 8. Comparison with the work of Fatima in the utilities of agent a

Negotiation on multiple resources is always a challenging task. Dunne et
al [15] study automatic contract negotiation in e-commerce and e-trading envi-
ronments, they consider the computational complexity of a number of natural
decision problems of one-resource-at-a-time to construct a mutually beneficial
optimal reallocation by trading resources. An et al [13] present a proportional
resource allocation mechanism and give a game theoretical analysis of the op-
timal strategies with incomplete information. Saha et al [2] present a protocol
for negotiation on multiple indivisible resources which can be used by rational
agents to reach efficient outcomes through searching negotiation tree. Cheva-
leyre et al [3] try to balance efficiency and fairness requirements to set up a
distributed negotiation framework which will allow a group of agents to reach
an allocation of goods that is both efficient and envy-free. Lin et al [18] conduct
experiments on the allocation of circumstance of work and the World Health
Organization Framework Convention on Tobacco Control. However, all of these
existed researches have not given clear utility function, instead, utility value is
given in advance or resources are directly taken as utilities. Unfortunately, there
are many cases where the utility function is nonlinear. As well as Wooldridge [9]
points out utility is not money but it is a useful analogy and he gives a typical
relationship between utility and money like saturated nonlinear function.

A number of researches are dedicated to coping with incomplete informa-
tion by learning preferences of opponents. Luo et al [1, 19] learns preferences
of opponents based on knowledge models and through ”default then adjust”
approach. Lin et al [18] determine kinds of agents through offers in the process
of negotiation based on the approach of naive Bayes class. The principle of
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our work is similar with the approach of Lin et al that we determine types of
opponents by reasoning from the information obtained in the first phase.

A Pareto optimal result is another important aim in multi-issue negotiation
and some effective researches are done recently. Faratin et al [16] propose to
maximize the utilities of opponents based on the same utilities of oneself to
improve acceptive possibility of opponents. While Fatima et al [5] propose a
similar approach to maximize the utilities of oneself based on the same utilities
of opponent. The approach of our work is similar with that of Fatima et al but
different from the definition and the treatment of utility functions.

Nonlinear utility functions were focused in the past years. Fatima et al [22]
analyze bilateral multi-issue negotiation involving nonlinear utility functions.They
show that it is possible to reach Pareto-optimal agreements by negotiating all
the issues together, and that finding an equilibrium is not computationally easy
if the agents’ utility functions are nonlinear. They investigate two solutions: ap-
proximating nonlinear utility spaces with linear functions, and using a simulta-
neous procedure where the issues are discussed in parallel but independently
of each other. They show that the equilibrium solution can be computed in poly-
nomial time. However, their work is focused on symmetric negotiations where
the agent’s preferences are identically distributed, and the utility functions are
separable in nonlinear polynomials of a single variable.

Vazirani et al [11] investigated some issues of computational complexity on
market equilibrium under separable, piecewise-linear, concave utilities. They
consider Fisher and Arrow-Debreu markets under additively separable, piecewise-
linear, concave utility functions and obtain the following results. For both market
models, if an equilibrium exists, there is one that is rational and can be writ-
ten using polynomially many bits. There is no simple necessary and sufficient
condition for the existence of an equilibrium. Under standard (mild) sufficient
conditions, the problem of finding an exact equilibrium is in PPAD for both mar-
ket models. Finally, they prove that under these sufficient conditions, finding an
equilibrium for Fisher markets is PPAD-hard.

Complex nonmonotonic preference spaces were investigated by various re-
searchers such as Ito et al. [21], Marsa-Maestre et al. [23,24], Lopez-Carmona
et al. [12], where Lopez-Carmona et al. proposed a region-based automated
multi-issue negotiation protocol (RBNP), which is built upon a recursive non-
mediated bargaining mechanism. The non-monotonic negotiation scenarios are
created using an aggregation of Bell functions. In contrast to prior researches,
which usually assume that agents have relatively simple preferences on the
issues (e.g., can be characterized by strictly concave utility functions), they
make a more general assumption that the preference of each agent can be
non-monotonic and non-differentiable.

8. Conclusions

This paper proposed an improved nonlinear utility function motivated by firing
function of artificial neuron of artificial neural network. The proposed utility func-
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tion follows the law of diminishing marginal utility. The negotiation model pre-
sented in this paper can deal with the instances of incomplete information, and
Pareto optimal solutions will be obtained as a result. Experimental results show
that the efficiency of optimal approach has an advantage over prior work.

The future work may improve the first phase of negotiation to reach a more
rational preliminary agreement. A new optimal approach is also required to
maximize the utilities of two agents, as well as maximizing the utilities of agent
a.
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