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Abstract. This paper presents a novel alignment approach for imperfect 

speech and the corresponding transcription. The algorithm gets started 
with multi-stage sentence boundary detection in audio, followed by a 
dynamic programming based search, to find the optimal alignment and 
detect the mismatches at sentence level. Experiments show promising 
performance, compared to the traditional forced alignment approach. 
The proposed algorithm has already been applied in preparing 
multimedia content for an online English training platform. 
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1. Introduction 

The motivation of this research comes from a content producing module of an 
English tutor platform [1], which tests and evaluates learners' spoken English 
level as a foreign language. To perform pronunciation analysis, it is necessary 
to have the time-aligned word/phoneme transcriptions with audio data. In fact, 
time-aligned labels can be used not only in the area of language training [11] 
[3], they are also required by audio/video indexing techniques applied in 
search engines [15] [4] [5]. Moreover, as a fundamental task in speech 
processing, it could be useful in model training for Automatic Speech 
Recognition (ASR) systems [21]. Though aligning speech with its 
corresponding text might seem a solved problem [8], situation could be 
difficult if the transcription does not match the media, as the decoder is forced 
to accept the input transcription. Unfortunately, audio files and their 
transcriptions are not fully-matched in many cases. Alignment of audio and 
text with imperfections has applications in subtitling, spoken books and etc. 
For example, a dialogue script often includes speaker names which are not 
uttered in audio to make it more readable, and broadcast/TV news scripts 
sometimes skip speech from interviewees. Manually scanning the 
discrepancies is a tedious and time-consuming work that requires skill. 

Recently, alternate approaches have been investigated to align the speech 
with its approximate text. Moreno et al [10] developed a recursive method to 
progressively reduce the forced alignment process with a gradually restricting 
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dictionary and language model. A similar approach has been presented in [7] 
for human generated transcriptions of audio files. These techniques are based 
on the methodology of comparing ASR result with the approximate transcript. 
However, the recognition quality highly depends on the acoustic model, and 
thus could be severely degraded without speaker adaption and appropriate 
model training. In contrast, most Viterbi-based forced alignment algorithms 
give satisfactory result, even the acoustic environment of the input speech is 
quite different from the one used for model training. Another limitation of 
Moreno's approach is that the anchor selector is difficult to handle repeated 
words, phrases and sentences, which are widely used in language tutor. In 
this case, some recognized anchors can become ambiguous in the original 
text, and cause alignment errors. Experiment in section 4 indicates that the 
performance of this approach is relatively low on teaching materials and 
online courses, even for perfect matched audio and text.  

Other authors have included HMM garbage models to allow for text/speech 
skips and substitutions [12], which works well in discovering and correcting 
low level (word/phrase) errors, where most parts are matched. The approach 
presented in this paper focuses more on detecting the insertion and deletion 
errors at sentence/paragraph level. We convert the alignment problem into a 
series of overlapping sub-problems, which are solved recursively by a 
dynamic programming algorithm. The algorithm has been implemented in a 
content producing system, processing speeches from varied sources, such as 
news, online courses, lectures and etc. 

The rest of the paper is organized as follows. Section 2 introduces the 
methodology of sentence boundary detection. Section 3 focuses on the 
dynamic alignment algorithm and the pruning policy. Section 4 gives some 
preliminary experiment results and section 5 concludes the paper. 

2. Pre-processing 

Input audio and text are required to be segmented into small (e.g. sentence) 
unit. Transcript can be segmented by using the maximum entropy approach 
[2], which is one of the state-of-the-art natural language processing 
techniques. Speech sentence boundary detection is much more challenging, 
since typical cues in text (e.g. headers, paragraphs, punctuation and etc.) are 
absent in utterances [17]. Quite a few jobs have been done in automatic 
detection of prosodic boundaries in speech [20] [16]. We use a multi-stage 
pre-processing approach to find the approximate sentential boundaries, as 
shown in Fig. 1. 
1. The source audio file provided by user often contains non-speech parts, 

e.g. lectures with prelude and epilogue music are very common in 
multimedia courses. Firstly, these non-speech clips are separated and 
removed. Different strategies have been investigated for speech/non-
speech detection during the last decade [9]. And our previous research [19] 
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also proposed a fuzzy logic based approach that combines different 
features to label the boundaries of voice segments. 

2. Pauses detection on speech can typically be done with a high accuracy off-
line VAD algorithm. Numerous solutions have been reported to achieve 
precise detection results [13]. The method we used in this system is based 
on the Order Statistics Filtering Sub-Band Spectral Entropy [6], which 
measures the sub-band spectrum divergence between speech and 
background noise. Long-term speech features [14] can also be considered 
as contextual information to estimate the threshold more precisely and 
benefits for detecting speech presence in noisy environments. 

3. Finally, boundaries detected by the VAD algorithm need to be filtered to get 
the prosodic boundaries. It has been studied in previous research that a 
sentence boundary is often marked by some combination of a long pause, 
a preceding final low boundary tone, and a pitch range reset [18]. 
Therefore, pause information can be important cues to eliminate inner-
sentence boundaries. 

 

Fig. 1. 3-stage sentence boundary detection 

Sentence segmentation is a very difficult problem in spontaneous speech 
such as lectures, and thus addressed by many works recently. It is easily 
possible that sentential boundary detection based on prosodic cues can 
produce errors causing split or concatenated sentences within this pre-
processing stage. An algorithm designed for correcting these errors (including 
false alarms and missed alarms) is presented in the following section. 
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3. Dynamic Alignment 

Let s(i,j) and t(m,n) denote the utterance and transcript whose boundaries are 
positioned at i, j and m, n, where i ≤ j and m ≤ n. We are going to find the most 

feasible sentential matches between the text and audio, i.e.  

   
1 ,1

argmax , , ,
i j N m n M

s i j t m n
     

  (1) 

where M and N are the number of segments in speech and text, s(i,j)↔t(m,n) 
measures the likelihood of the alignment. 

3.1. Dynamic programming 

If the audio and text are presented in order, the problem can be broken up 
into stages with an alignment required at each stage. Let the ordered pair 
(h,k) denotes a hypothetic alignment for s(0,h)↔t(0,k). To find the best 
solution at stage (h,k), it is necessary to go through all the possible matches 
in previous stages, and see how to make an alignment for the remainder. 
Denoted by F(h,k) as the maximum similarity accumulation at stage (h,k), we 
have the following induction:  
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where ε is the width of search beam. P(i,j,m,n) computes the acoustic 
likelihood of the alignment for s(i,j)↔t(m,n), which indicates the strength of 
belief that how much they are matched. 

3.2. Alignment function 

Fig. 2 presents the alignment result of an utterance and its corresponding 
transcript, where the value of P is computed as follows: 
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where fi and fj are the start/end frame indices of the utterance s(i,j), fbs and fbe  
define the boundaries frame indices, ωb and ωc specify the weights of the 
boundaries and internal parts respectively, and Acc is the normalized acoustic 
score.  
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Acoustic score value indicates the likelihood that a speech segment 
represents a particular symbol according to the statistical models. However, 
the value depends on the length of the segment, and thus needs to be 
normalized for a particular segment, which simply entails dividing the score by 
the number of frames contained in the segment. Acc thus represents the 
average log likelihood per frame for the given segment, and can be used to 
compare speech segments of different lengths (typically different phones) to 
determine which segments fit better. In addition, P needs to be distinguishable 
between the fully-matched (e.g. s(1,2)↔t(0,1)) and partially-matched pairs 
(e.g. s(0,2)↔t(0,1)), and thus weights are at boundaries to guide the solver 
towards the global optimal solution. 

 

Fig. 2. An example of dynamic alignment.  s(0,1) is unuttered and t(1,2) is 

untranscribed 

3.3. Sentential Boundary Correction 

As discussed earlier, speeches (e.s.p. unprepared speech or conversational 
speech) often contains pauses due to speech errors, false starts, train-of-
thought gaps and etc, which causes false and missed alarms in sentential 
boundaries detection in pre-processing stage. However, it is possible to 
correct most of these errors by scanning and comparing the forced alignment 
results. 

False alarm 

We compare the alignment results of successive speeches upon the same 
text (w1,…,wN), i.e. from P(i, i+1, m, n) to P(i, i+L, m, n), where L is a pre-
defined value to control the size of the search window, as shown in Fig. 3(a). 
When a monotonically increasing is detected, i.e. 

   , 1, , , , ,P i i m n P i i L m n     (4) 

which indicates that alignments are stably improved by extending the speech, 
we then remove the last Lt inner boundaries, where 0 ≤ Lt < L is a threshold. 

P t(0,1) t(0,2) t(0,3) t(1,2) t(1,3) t(2,3) 

s(0,1) 0 0 0 0 0 0 

s(0,2) 516 0 0 507 0 508 

s(0,3) 159 171 0 143 161 152 

s(1,2) 640 0 0 0 0 0 

s(1,3) 280 293 0 266 289 279 

s(2,3) 0 0 0 0 0 667 
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Missed alarm 

Fig. 3(b) shows an example of the missed alarm detection. Our forced 
alignment engine uses a generic speech model (garbage model) to absorb 
the out-of-vocabulary words, thus the notable detected silence at the end of 
the utterance indicates the existence of a text-skip, and in this case, a new 
sentence boundary should be inserted at the end of word wN. 

 

Fig. 3. Sentential boundary correction. (a) false alarm. (b) missed alarm 

3.4. Pruning strategy 

Pruning strategies are applied to eliminate most unlikely search hypotheses. 
A letter-to-sound algorithm can be used to predict the length of a sentence, by 
simply counting the number of words and phones. This could be helpful to 
avoid attempts on most impossible alignments. If continuous confidence score 
descents are detected on two utterances upon the same text, e.g. P(1,2,0,1) 
and P(1,3,0,1) in Fig. 2, we then eliminate any successor, by setting P to 0. 
Due to the antithesis of this problem, another pruning rule can be applied in 
text domain, as stated below, where γ* are pre-defined thresholds. 

     

     

    

1

2

, , , , 1, , , , , 0,

, , , , , , 1 , , , 0,

0 ,0 , 1, , 1, .

P i j m n P i j m n P i x m n

P i j m n P i j m n P i j m y

i j N m n M x j M y n N





    

    

         

 (5) 

Moreover, to accelerate the solving speed, we save those P and F we have 
already computed. If we need to solve the same problem later, we then 
retrieve and reuse our already-computed values. 

4. Experiment and Discussion 

Alignment performance was evaluated on a data set collected from lectures 
(15%, speeches and interviews), multimedia courses (65%, English teaching 

(a) 
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materials for K-12 students), broadcasting/television news (20%, live news 
and BBC/VOA special programs). Table. 1 summarizes the experimental data 
set, where each type of data is a composition of clips that are fully-matched 
(CP), and clips that contains mismatched parts (CI), to test the robustness 
and compatibility of the proposed algorithm.  

Table 1. Data set and comparison exepriment results. 

types clips 
sentences 

P/I 
length 
(min.) 

F.A A.A 
D.A 

Ɛ = 1 Ɛ = 2 

lectures 
P 37/- 7 37(100%) 30(81%) 33(90%) 34(92%) 

I 38/14 9 33(63%) 39(75%) 45(86%) 48(92%) 

news 
P 32/- 10 32(100%) 28(88%) 26(81%) 28(88%) 

I 39/16 11 28(50%) 39(71%) 47(74%) 47(74%) 

courses 
P 80/- 29 80(100%) 61(76%) 69(86%) 73(91%) 

I 49/44 37 54(58%) 69(74%) 73(78%) 77(83%) 

 
Fig. 4 shows the sentence boundary detection results, where false alerts 

were the major source of errors for the pure VAD algorithm (stage 1). 
Richness of such errors is related to the corpus we chose, as many of the 
speeches are designed for teaching and thus contains long inner-sentence 
pauses. The existence of missed boundary error often related to the variability 
in the user speaking state, e.s.p. when the user tends to speed up the speech 
at the end of a sentence. Pause (stage 2) and pitch (stage 3) information are 
helpful to reduce the false alarm rate. And the VAD correction algorithm 
(Section 3.3) also provides a sustained improvement in both sentence 
boundary hit rate and false alarm rate over the 3-stage sentence boundary 
detection algorithm. 

 

Fig. 4. Results of sentence boundary detection 

The acoustic score in P is achieved with a basic speaker independent 
recognizer tuned to run in the forced alignment mode. An alignment of a 
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speech-text pair s(i,j)↔t(m,n) is defined as successful, when the normalized 
confidence score of exceeds a threshold, i.e. P(i,j,m,n)>T, where T is a pre-
defined value to guarantee that there is no alignment flaws. 

As shown in Table. 1, we found that the anchor-based algorithm (A.A) may 
fail to give the expected result for fully-matched test cases, when the news 
and lectures are record in a noisy environment. In particular, the performance 
of A.A. degrades seriously on those clips designed for teaching and learning, 
due to a large amount of repeat words and phrases. For speech and text that 
are not well-matched, our approach significantly increases the ratio of 
successful alignment, compared to the traditional forced alignment. 

An examination of the results shows that most failures are caused by the 
consecutive mismatches. Performance highly depends on the quality of the 
sources, e.s.p. the ratio of the mismatched parts, and ε a trade-off between 
accuracy and speed. Better results can be achieved by setting a wider search 
beam, e.g. changing ε from 1 to 2 will increase the correct alignment radio, it 
will however direct the algorithm to try more possibilities and slow down the 
alignment process. In general, on each stage, the number of search paths C 
and width of search beam follows: 

2 2C     (6) 

Pruning policies limits the range of alignments and removes most infeasible 
searches, and it can reduce the amount of computation, as shown in Fig 5. 

 

Fig. 5. Results of pruning. ε = 1, evaluated on a P4 2.4GHz computer with 2G RAM 

installed 

5. Conclusion 

We introduced an approach for the temporal alignment of speech with 
imperfect transcripts, based on the acoustic likelihood marked chunks of 



A Dynamic Alignment Algorithm for Imperfect Speech and Transcript 

ComSIS Vol. 7, No. 1, Special Issue, February 2010 83 

speech signals, that are associated with partitioned audio segments, and a 
word level symbol sequence given in the erroneous transcription. In this 
paper, speech and text are first segmented into units, which are then aligned 
with a dynamic alignment algorithm. The proposed algorithm has been 
implemented and validated by an easy-to-use content producing tool for 
preparing multimedia content for English training. The experiment result 
shows an increase of the correct matching ratio, in particular for those clips 
whose speech and transcription are not well-matched, compared to the 
traditional forced alignment approach.  

Though most speech and text are presented in order, a limitation of the 
algorithm is it is not efficient for the re-ordering of phrases or sentences in 
transcription. Future investigations also include launching ASR on only the 
mismatched parts, using the idea described in [10] in conjunction to correct 
the errors and accelerate the detection speed. 
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