
UDC 005.8:518.876.3, DOI:10.2298/CSIS090608017L

A Hybrid Variable Neighborhood Search

Algorithm for Solving Multi-Objective Flexible Job

Shop Problems 1

Jun-qing Li
1
, Quan-ke Pan

1
, and Sheng-xian Xie

1

1
College of Computer Science, Liaocheng University

Liaocheng, 252059, People’s Republic of China
{Lijunqing, qkpan, xsx}@lcu.edu.cn

Abstract. In this paper, we propose a novel hybrid variable
neighborhood search algorithm combining with the genetic algorithm
(VNS+GA) for solving the multi-objective flexible job shop scheduling
problems (FJSPs) to minimize the makespan, the total workload of all
machines, and the workload of the busiest machine. Firstly, a mix of two
machine assignment rules and two operation sequencing rules are
developed to create high quality initial solutions. Secondly, two adaptive
mutation rules are used in the hybrid algorithm to produce effective
perturbations in machine assignment component. Thirdly, a speed-up
local search method based on public critical blocks theory is proposed to
produce perturbation in operation sequencing component. Simulation
results based on the well-known benchmarks and statistical performance
comparisons are provided. It is concluded that the proposed VNS+GA
algorithm is superior to the three existing algorithms, i.e., AL+CGA
algorithm, PSO+SA algorithm and PSO+TS algorithm, in terms of
searching quality and efficiency.

Keywords: Flexible Job Shop Scheduling Problem; Multi-objective;
Genetic Algorithm; Variable Neighborhood Search.

1. Introduction

The job-shop scheduling problem (JSP) is one of the most popular scheduling
models existing in practice, which has been proven to be among the hardest
combinatorial optimization problems [1, 2] and has got more and more
research focus in recent years. The Flexible job-shop problem (FJSP), an
extension of the classical JSP, is harder than the latter because the addition of
assignment of a suitable machine from a set of candidate machines for each
operation.

The FJSP recently has captured the interests of many researchers. The first
paper about solving the FJSP was proposed by Brucker and Schlie (Brucker &
Schlie, 1990) [3], which gives a simple FJSP model with only two jobs and

Jun-qing Li, Quan-ke Pan, and Sheng-xian Xie

ComSIS Vol. 7, No. 4, December 2010 908

each operation performed on each machine with the same processing time.
The first author with the hierarchical idea to solve the FJSPs was Brandimarte
(Brandimarte, 1993) [4], who solved the first stage with some existing
dispatching rules and the second stage with tabu search heuristic algorithms.
Kacem (Kacem, Hammadi & Borne, 2002) [5] solved the two stage problems
with the genetic algorithm (GA). Gao (Gao & Gen et al., 2006) [6] used
bottleneck shifting method in genetic algorithm for solving the FJSP.
Saidi-mehrabad (Saidi-mehrabad, 2007) [7] gave a detailed solution with tabu
search method. Li et al. (2009) [8] presented a hybrid particle swarm
optimization (PSO) combining with a fast neighborhood structure algorithm for
the problem.

The research on the multi-objective FJSP is much less than the
mono-objective FJSP. Kacem et al. (2002a, 2002b) [5, 9] developed an
effective evolutionary algorithm controlled by an assigned model based on the
approach of localization (AL). Xia and Wu (2005) [10] presented a practical
hierarchical solution approach by making use of PSO to assign operations on
machines and simulated annealing (SA) algorithm to schedule operations on
each machine. Zhang et al. (2009) [11] developed a hybrid algorithm
combining PSO with tabu search (TS) algorithm. Most of the above algorithms
solved the multi-objective FJSP problem by transforming it to a mono-objective
one through giving each objective a different weight.

In this paper, we propose a novel hybrid variable neighborhood search
algorithm combining with the genetic algorithm (VNS+GA) for solving the
multi-objective FJSP problems to minimize the makespan, total workload of all
machines, and workload of the busiest machine. In the hybrid algorithm, the
three objectives are also combined into a single objective by assigning each
objective a different weight. GA is used to produce a swarm of candidate
solutions, whereas VNS is introduced to obtained more optimal solutions
around the given candidate solutions. A mix of two machine assignment rules
and two operation sequencing rules are developed to create high quality initial
solutions. To produce effective perturbations in the machine assignment
module, two adaptive mutation rules are used in the hybrid algorithm. A
speed-up local search method based on public critical blocks theory is
proposed to produce perturbation in operation sequencing component.

The rest of this paper is organized as follows: In section 2, we briefly
describe the problem formulation. Then, the framework of our hybrid algorithm
is presented in Section 3. The GA for perturbation in machine assignment
component is introduced in Section 4. Section 5 illustrates the VNS approach
for local searching in operation sequencing component. Section 6 shows the
experimental results compared with other algorithms. Finally, Section 7 gives
the conclusion of our works.

A Hybrid Variable Neighborhood Search Algorithm for Solving Multi-Objective
Flexible Job Shop Problems

ComSIS Vol. 7, No. 4, December 2010 909

2. Problem formulation

FJSP is an extension of the classical JSP; therefore, we can formulate the

FJSP based on the JSP. Consider a set of n jobs, denoted as },....,{ 21 nJJJJ ,

each job)1(niJi in J has a pre-defined number of operations, and

should be operated on a selected machine from a machine set

named },....,{ 21 mMMMM . The main different between FJSP and JSP lies in

two aspects: first, in the classical JSP problem, with n jobs and m machines,
there are mn operations, whereas in FJSP, given n jobs and m machines,

the number of operations may large or small than mn ; second, in the

classical JSP, an operation should be operated on a pre-defined machine,
whereas in FJSP, an operation can be operated by a set of machines.
Therefore, FJSP is harder than JSP. There are two kinds of FJSP problems,
i.e., T-FJSP (Total Flexible Job-shop Scheduling Problem) and P-FJSP
(Partial Flexible Job-shop Scheduling Problem) [8, 9]. For the T-FJSP, each
job can be operated on every machine from the set M, whereas for the P-FJSP,
there is an additional problem constraint, that is, one operation of a job can be

processed by a sub set of machines MM ' .
In this paper, the following objectives are to be minimized:

(1) Mc . Maximal completion time of all machines, i.e., the makespan;

(2) Tw . Total workload of all machines;

(3) Mw . Workload of the critical machine or the busiest machine.

The weighted sum of the above three objective values is taken as the
objective function in this study:

F(c) = 1w × Mc + 2w × Tw + 3w × Mw

Where, 1w , 2w , 3w represent the weight assigned to the objective

Mc , Tw and Mw , respectively.

The following assumptions are given in this study [8-11]:
(1) Each machine can perform at most one operation at any time and can not

be interrupted during its work.
(2) Each operation can not be interrupted during its performance.
(3) Setting up time of machines and move time between operations are

negligible.
(4) Jobs are independent from each other.
(5) Machines are independent from each other.

Some useful notations are given as follows:

 Let J = niiJ 1}{ , indexed i, be as set of n jobs to be scheduled.

 Let mkkMM 1}{ , indexed k, be a set of m machines.

 Each job iJ can be operated on a given set of machines iM .

 The jiO , represents the jth operation of iJ .

Jun-qing Li, Quan-ke Pan, and Sheng-xian Xie

ComSIS Vol. 7, No. 4, December 2010 910

 The set of candidate machines waiting for processing
jiO ,
is denoted

as MM k .

 kjip ,, represents the processing time of jiO , operated on the kth

machine.
 Two sub-problems of the FJSP: T-FJSP and P-FJSP.

hiMOMFJSPP

hiMOMFJSPT
FJSP

hi

hi

,;)(if,

,;)(if,

,

,

 Decision variables

otherwise,0

operationtheforselectedismachineif,1 ,

,,

hi

khi

Ok
x

hic , : completion time of the operation hiO , .

The formulation of the multi-objective FJSP in this study is then given in
Fig.1.

}{maxmin ,
1 ini

ni
M cc

(1)

}{maxmin

1 1

,,
1

n

i

n

h

khi
mk

M

i

pw (2)

m

k

n

i

n

h

khikhiT

i

xpw

1 1 1

,,,,min (3)

s.t. khikhihihi xpcc ,,,,1,, , kinh i ,;,....,2
(4)

)(,,
,

,,1
hiOMk khi hix

(5)

hiMOM hi ,,)(,
(6)

khix khi ,,},1,0{,, (7)

hic hi ,,0,
(8)

Fig. 1. Problem formulation of the multi-objective FJSP

Equation (4) ensures the operation precedence constraints. Equation (5)
guarantees that for each operation one and only one machine must be
selected from the set of available machines. Inequity (6) indicates that the set
of available machines for each operation come from the given machine set M .

A Hybrid Variable Neighborhood Search Algorithm for Solving Multi-Objective
Flexible Job Shop Problems

ComSIS Vol. 7, No. 4, December 2010 911

3. Framework of the Hybrid Algorithm

In this study, we propose a hybrid variable neighborhood search algorithm
combining with the genetic algorithm (VNS+GA) for solving the multi-objective
FJSPs. The detail steps of the VNS+GA algorithm are listed as follows.

Step1. Initialization

Step1.1: Set up parameters.

Step1.2: Produce machine assignment component for each chromosome

in the population Cpop.

Step1.3: Produce operation sequencing component for each chromosome

in the population Cpop.

Step1.4: Evaluate each chromosome, and then obtain the best solution

bestC .

Step1.5: if stop criteria is satisfied, then go to Step 4; otherwise, go to Step

2.

Step2: Perturbation in machine assignment component

Step2.1: Produce sizeP child chromosomes by applying crossover

operation.

 For i=0 to sizeP

 (1) Generate a random number r, if selectpr , then randomly select

one parent chromosome in the population Cpop denoted as P1, and

select the current best solution bestC as P2. Otherwise, select two

parent chromosomes in the population Cpop at random denoted as

P1 and P2, respectively.

 (2) Produce two child chromosomes denoted as C1 and C2 by

applying crossover function with probability cp on the two parent

chromosomes P1 and P2.

 (3) Evaluate the two child chromosomes; if one chromosome from

the two child chromosomes denoted as beC which is better

than bestC , then replace bestC by beC .

(4) Select the best solution from the four chromosomes (i.e., P1, P2,

C1 and C2), and then insert it into a temp population Tpop.

 End for

Step2.2: Produce sizeP child chromosomes by applying mutation

operation.

 For i=0 to sizeP

 (1) Select the ith chromosome in population Tpop as the parent

chromosome PP1.

 (2) Produce a child chromosome denoted as CC1 by applying

mutation operation with probability c
mp on the selected parent

Jun-qing Li, Quan-ke Pan, and Sheng-xian Xie

ComSIS Vol. 7, No. 4, December 2010 912

chromosomes PP1.

 (3) Evaluate the child chromosome CC1; if CC1 is better than bestC ,

and then replace bestC by CC1.

(4) Insert the best solution among CC1 and PP1 into Tpop.

End for

 Step2.3: Select sizeP better chromosomes in Tpop

(1) Sequence all sizeP2 chromosomes from population Tpop in

descending order on chromosome fitness, that is, the

chromosome with optimal fitness value will appear at the relative

top position.

(2) Select the top sizeP chromosomes as the current population Cpop

for next generation.

Step3: Perturbation in operation sequencing component

 For the current best solution bestC , operate the following steps:

Step3.1: Get all critical operations.

Step3.2: Get all public critical operations.

Step3.3: Get all public critical blocks.
Step3.4: Use the function effectiveNeighbor() to search the best neighbor

solution of the current best solution. If the former is more optimal

than the latter, then replace the current best solution bestC by the

new neighbor solution. Then go to step 1.5.

Step4: Output the current best solution bestC and stop.

4. Machine assignment algorithm: the genetic algorithm

4.1. Genetic Algorithm

Genetic Algorithm (GA), proposed by J. Holland in 1975 [12, 13], has been
used to solve optimization problems in recent years [13]. The GA is based on
the genetic process of biological organisms. Several key factors including
populations, crossover functions, mutation functions, evolution approaches
and stop criterion are important for the efficiency of the GA. The main steps for
the process of GA can be described as follows [13].

Step1: Let k=0. Randomly produce N chromosomes as the initial

population)(kp .

Step2: Evaluate each chromosome in the population and get the fitness value
of every solution.

Step3: If stop criterion is satisfied, then output the best solution; otherwise
operate steps 4-8.

A Hybrid Variable Neighborhood Search Algorithm for Solving Multi-Objective
Flexible Job Shop Problems

ComSIS Vol. 7, No. 4, December 2010 913

Step4: Let m=0.

Step5: Then, select two chromosomes in the population)(kp using certain

selection rules, which are named 1p and 2p , respectively.

Step6: Randomly produce a real number]1,0[, if cp , where cp is

crossover probability, then apply given crossover function on the two
selected parent chromosomes. The resulted two chromosomes are

selected as two temp chromosomes, namely 1t and 2t , respectively.

Otherwise, the two parent chromosomes will be selected as the two

temp chromosomes 1t and 2t , respectively.

Step7: Randomly produce a real number]1,0[, if mp , where mp is

mutation probability, then apply given mutation function on 1t and 2t

respectively. The two resulted chromosomes will be inserted into the

new population)1(kp .

Step8: Let m=m+2. If m<N, then go back to step 5. Otherwise, let k=k+1, and
then go back to step 2.

4.2. Encoding

The FJSP problems involve two decision stages, i.e., machine assignment
stage and operation sequencing stage. Therefore, a solution consists of two

parts of vectors,)}(),....,2(),1({ 1111 AAAA (machine assignment vector) and

operation sequencing vector)}(),....,2(),1({ 2222 AAAA , where equals to

the operation number. iiA 1),(1 represents the corresponding selected

machine for each operation. Fig. 2 shows an example of a machine
assignment vector. For example, it can be seen from Fig. 2 that the operation
O11 is performed on machine M4, O12 is performed on machine M3, and so on.
An operation sequencing vector is shown in Fig. 3, which tells us the operation
sequence as follows.

3213231222311121 OOOOOOOO

position 1 2 3 4 5 6 7 8

operation O1

1
O1

2
O1

3
O2

1
O2

2
O2

3
O3

1
O3

2

machine 4 3 2 1 2 1 2 3

Fig. 2. Machine assignment vector example

position 1 2 3 4 5 6 7 8

operation 2 1 3 2 1 2 1 3

Fig. 3. Operation sequencing vector example

Jun-qing Li, Quan-ke Pan, and Sheng-xian Xie

ComSIS Vol. 7, No. 4, December 2010 914

4.3. Initialization of Machine assignment component

Following are two approaches for the initialization of machine assignment
component:

 Random rule, denoted as MSa. For each operation iJ , a random

selected machine from a set of candidate machines, denoted as Mi, will be
placed in position i in the machine assignment component.
 Local minimum processing time rule, denoted as MSb. Table 1 gives an

example about the steps of this rule, the example data come from [14]. For
operations of the same job, finding the minimum processing time, fixing the
assignment, and then adding this processing time to every other entry in the
same column.

4.4. Crossover operation

Given two parent chromosomes 1p and 2p in Fig. 4. The steps of the

crossover operator are as follows.

Step1: Generate two random numbers 1r and 2r ,)1(,2 21 rr , where

equals the number of operations.

Step2: Select the subsection between 1r and 2r of one parent chromosome

such as 2p .

Step3: Produce a temporary vector named 1c by copying the selected

subsection into the corresponding position.

Step4: Copy the corresponding operation from 1p into the unfixed position.

Fig. 4. Crossover operator

4 24 4321p1

4 24 2132p2 3

1

4 2134 1 2 1c1

r1 r2

A Hybrid Variable Neighborhood Search Algorithm for Solving Multi-Objective
Flexible Job Shop Problems

ComSIS Vol. 7, No. 4, December 2010 915

4.5. Mutation operation

Mutation operation is very important in GA with aim to produce population
diversity. In order to obtain population diversity as well as population
convergence, two mutation-operation rules are proposed as follows.

 Random rule denoted as 1 . (1) randomly select an operation with

more than two candidate machines, denoted Os; (2) randomly select a
machine from Machines(Os) different with the current machine; (3)
replace the current machine by the selected machine at the position
Os.

 Last Processing rule denoted as 2 . (1) record the last release time for

each machine; (2) create a vector Mlp including all machines with last
release time equals the current makespan; (3) get all public critical
operations; (4) for each machine Mold in Mlp, firstly, find a public critical
operation Os which is processed on Mold, secondly, select a candidate
machine for processing Os which is not in Mlp, denoted Ms; (5) replace
the current machine Mold by the selected machine Ms at position Os.

5. Operation sequencing algorithm: variable neighborhood
search algorithm

5.1. Initialization of the operation sequencing component

Once the machine assignment component is fixed, we should consider how to
sequence the operations on each machine, i.e., to determine the start time of
every operation. In this section, we should consider two issues: the operation
precedence constraint of the same job and the objective of the problem. In our
hybrid algorithm, the operation sequence is obtained through a mix of following
two different approaches:
 Random rule, denoted as OSa. OSa is the naive and direct approach for

sequencing operations. The advantage of this approach is its simplicity.
The disadvantage is also obvious too, that is, it can easily produce idle
time interval and make the finding solution process more time
consuming.

 Most Work Remaining (MWR) denoted as OSb. This approach selects
the operation with the most remaining work for each machine. The
operation precedence constraint of the same job must be considered at
the same time.

Jun-qing Li, Quan-ke Pan, and Sheng-xian Xie

ComSIS Vol. 7, No. 4, December 2010 916

5.2. Public critical block theory

The critical problem of local searching is how to design an effective
neighborhood around a given solution. The promising neighborhood is based
on the concept of critical path, which was firstly proposed by Adams [15] in
solving JSP problems.

The feasible schedules of FJSP problems can be represented with a
disjunctive graph G= (N, A, E), where N is the node set, A is the conjunctive
arc set, and E is the disjunctive arc set. The number aside the node indicates
the processing time of this operation on the assigned machine. Each arc in A
represents the operation precedence constraint. The dashed arcs (E)
correspond to pairs of operations to be performed on the same machine. For
example, given a chromosome {1,2,2,3,2,3,3,1 | 1,1,4,2,3,3,2,4}, Fig. 5 shows
the disjunctive graph for a feasible solution of the example chromosome.

If G has more than one critical path, noted ,1, nciCPi where nc

represents the number of critical path. Those critical operations belonging to all
nc critical paths are called public critical operations. A public critical block is a
maximal sequence of adjacent public critical operations processed on the
same machine. Fig. 6 shows the Gantt chart for the feasible solution of the
above chromosome example. In the example solution, there are six public

operations, i.e. },,,,,{ 223231211211 OOOOOO , whereas there are three public

critical blocks, i.e. },{},,,{},{ 223231211211 OOOOOO .

6

43

6

4

5

44

O11

S T

O12

O42

O21
O22

O41

O31
O32

Fig. 5. The disjunctive graph for the example chromosome

A Hybrid Variable Neighborhood Search Algorithm for Solving Multi-Objective
Flexible Job Shop Problems

ComSIS Vol. 7, No. 4, December 2010 917

M1

M3

M2

O11

O21

O41

O31

O22O32

t
O42

O12

public critical operations

Fig. 6. The Gantt chart for the example chromosome

To develop neighborhood structure based on the public critical block theory,
we give some notations as follows.
 JPi, JSi, MPi, MSi indicates the immediate job predecessor, job successor,

machine predecessor and machine successor of the operation iJ ,

repectively.
 λu: the critical path with operation u in it.
 Oλu: those operations in the same critical path λ which has operation u in

it.

uOPR

: those operations belonging to the operation set Oλu and be

operated before operation u.

),(vuL : the length of the longest path from the operation u to v.

Next, we give three theorems about the neighborhood structure based on
public critical path theory.

Theorem 1. If G has more than one critical path, and two operations u and v
are critical operations but not public critical operations, then moving u or v
cannot yield a better solution.

Proof. First, if there exists a public critical operation in
uOPR

, denoted as kO .

The path subsection from kO to u is called sub(u). Because the operationu is

not a public critical operation, there exists an operation 'u with the processing

time interval crossover with the processing time interval of u . Therefore, 'u is

in another critical path but not a public critical operation either. The path

subsection from kO to 'u is called sub('u). The movement in sub(u) does

not affect the length of sub('u). So, the start time of kO will not change and the

makespan of the solution will not be improved. Second, if there does not exist

any operation in
uOPR

, which means that the public critical operations are all

operated after u . The first public critical operation after u denoted as kO .

There exists another critical operation 'u which is before kO and with the

processing time crossed over with u . We name the critical path subsection

Jun-qing Li, Quan-ke Pan, and Sheng-xian Xie

ComSIS Vol. 7, No. 4, December 2010 918

from u to kO sub(u), and the critical path subsection from 'u to kO

sub('u). The movement in sub(u) also cannot affect the length of the sub('u),

and useless for improvement of the makespan.
Theorem 2. If two public critical operations u and v to be performed on the

same machine, v is the block rear and),(),(TJSLTvL u , then inserting u right

after v yields an acyclic complete selection.
This theorem derives the idea that if two following conditions are satisfied:

(1) there is no directed path from JSu to v in G; (2) the complete time of v is not
after the complete time of the immediate job successor of u. Then, inserting u
right after v can produce a feasible solution as shown in Fig 7. The proof is
analogous to the proof of the theorem 1 in [16].

Theorem 3. If two public critical operations u and v to be performed on the

same machine, u is the block head and
vJPvu pJPLpuL),0(),0(, then

inserting v right before u yields an acyclic complete selection.
This theorem derives the idea that if two following conditions are satisfied:

(1) there is no directed path from JPv to u in G; (2) the complete time of u is not
before the complete time of the immediate job predecessor of v. Then,
inserting v right before u can produce a feasible solution as shown in Fig 8.
The proof is analogous to the proof of the theorem 2 in [16].

u v

JSu

inserting u just after v

uv

JSu

Fig. 7. A chart for inserting the inner operations just after the block rear

u v

JPv

inserting v just before u

uv

JPv

Fig. 8. A chart for inserting the inner operations just before the block head

A Hybrid Variable Neighborhood Search Algorithm for Solving Multi-Objective
Flexible Job Shop Problems

ComSIS Vol. 7, No. 4, December 2010 919

5.3. Effective neighborhood structure

The makespan of a solution equals the length of its critical path, in other words,
the makespan cannot be reduced while maintaining the current critical paths.
The right direction of the local search is to identify and break the entire existent
critical paths one by one in order to get a better solution.

The first successful critical path neighborhood structure for the classical JSP
was introduced by Van Laarhoven et al [17], and is often denoted by N1. The
N1 neighborhood is generated by swapping any adjacent pair of critical
operations on the same machine. Dell Amico and Trubian [18], Nowicki &
Smutnicki [19] and Balas & Vazacopoulos [20] proposed N4, N5 and N6
respectively. The N4 neighborhood is developed by moving an internal
operation to the very beginning of its block or the very end of its block. The N5
neighborhood is created by swapping the first two or the last two operations in
a block. The N6 neighborhood is produced by moving an operation to the
beginning of the block or to the end of the block. In this study, we extend the
critical path neighborhood structure for solving the FJSP, and propose some
novel neighborhood structures based on the public critical blocks theory.

For discuss conveniently, we give two neighborhood categories as follows:
Definition 1: Insert neighborhood
First, randomly select two different positions i and 'i in a feasible schedule

chromosome, and then delete the ith operation and insert it before or after
position 'i .

Definition 2: Swap neighborhood
First, randomly select two different positions i and 'i in a feasible schedule

chromosome, and then swap the two operations at the selected position.
Based on the public critical block theory and the block structure listed above,

we give an effective local search operator as shown in Fig. 9.

Procedure effectiveNeighbor()
Input: a set named pb including all public critical blocks
Output: an optimal neighbor solution

for i=0 to pb.size()

][ipbpbt

if tpb contains more than two public critical operations, then

 k← the number of public critical operations in tpb

 u←]0[tpb //block head

 v←]1[kpbt //block rear

Step1: Insert structures
 for j=0 to k-1

 q←][jpbt

 Step1.1: if (JPvvq pJPLpqL),0(),0() then

 Insert v right before q

Jun-qing Li, Quan-ke Pan, and Sheng-xian Xie

ComSIS Vol. 7, No. 4, December 2010 920

][ipbpbt

 q←][jpbt

 Step1.2: if (),(),(TJSLTvL q) then

 Insert q right after v

][ipbpbt

 q←][jpbt

 Step1.3: if (JPqqu pJPLpuL),0(),0() then

 Insert q right before u

][ipbpbt

 q←][jpbt

 Step1.4: if (),(),(TJSLTqL u) then

 Insert u right after q

][ipbpbt

 end for
Step2: Swap structures

Step2.1: Swap]0[tpb with]1[tpb

][ipbpbt

Step2.2: Swap]2[kpbt with]1[kpbt

 end for
 Evaluate each neighbor solution produced by the above two steps.
 If the new solution is better than the current solution, then replace

the current solution with the new one.
 Output the current optimal solution.

Fig. 9. Pseudo-code of effectiveNeighbor()

6. Experimental results

This section describes the computational experiments to evaluate the
performance of the proposed algorithm. For this purpose, we made a detail
comparison with three existing algorithms, i.e., AL+CGA algorithm [9],
PSO+SA algorithm [10] and PSO+TS algorithm [11]. The test samples come
from [5]. The dimensions of the problems range from 4 jobs 5 machines to 15
jobs 10 machines. The current instantiation was implemented in C++ on a
Pentium IV 1.8GHz with 512M memory.

6.1. Setting parameters

Each instance can be characterized by the following parameters: number of
jobs (n), number of machines (m), and the number of operations (numop _).

A Hybrid Variable Neighborhood Search Algorithm for Solving Multi-Objective
Flexible Job Shop Problems

ComSIS Vol. 7, No. 4, December 2010 921

Followings are the detail parameters value:
 Population size Psize: 1000;

 Maximum number of generations maxgen : mn ;

 Maximum number of iteration with no improvement of the best solution

during the local search maxiter : 2/_ numop ;

 Crossover probability for the machine assignment component: 45%;

 Minima mutation probability min
mp : 40%;

 Maxima mutation probability max
mp : 95%;

 Current mutation probability at t generation c
mp :

)()(minmax

max

min
mmm

c
m pp

gen

t
pp

 Probability for selection between the best chromosome and a random

one as a parent chromosome for crossover selectp :

)2.08.0()(8.0
max

gen

t
pselect

 Rate of initial assignments with MSa: 20%;
 Rate of initial assignments with MSb: 80%;
 Rate of initial assignments with OSa: 20%;
 Rate of initial assignments with OSb: 80%;

 Rate of initial assignments with 1 : 50%;

 Rate of initial assignments with 2 : 50%;

6.2. Results of the Kacem instances

The test instances come from the five Kacem instances [5] (i.e. problem

54 , 88 , 710 , 1010 and 101 5). The five tables from Table 2 to

Table 5 show the comparison results for the five problems. Some notations are
given as follows: The column labeled ‘AL + CGA’ refers to Kacem’s method [9]
and the column labeled ‘PSO + SA’ refers to the algorithm proposed by Xia
and Wu [10]. The column labeled ‘PSO+TS’ shows the results from the hybrid
algorithm developed by Zhang et al. [11]. Figs 10 to 14 show the optimal
solutions obtained by our approach in the form of Gantt chart. The pair of
number (in the form of [job, operation]) inside the blocks is the operation to be
processed on the corresponding machine. The two numbers just below the
block represent the start time and end time of the operation, respectively.

Problem 54

This is an instance of total flexibility, in which 4 jobs with 12 operations are to
be performed on 5 machines. The obtained solutions by our hybrid algorithm
are characterized by the following values:

Jun-qing Li, Quan-ke Pan, and Sheng-xian Xie

ComSIS Vol. 7, No. 4, December 2010 922

Solution 1: Mc =12, Tw =32, Mw =8

Solution 2: Mc =11, Tw =32, Mw =10

Solution 3: Mc =11, Tw =34, Mw =9

0 2 4 6 8 10 12

M1

M2

M3

M4

M5

(2,1)

0 2

(4,1)

2 3

(2,3)

7 11

(1,2)

1 5

(1,3)

5 10

(3,1)

0 6

(3,2)

6 8

(1,1)

0 1

(4,2)

3 4

(3,3)

8 10

(3,4)

10 11

(2,2)

2 7

Fig. 10. The obtained optimal solution of instance 1 (4 jobs 12 operations 5 machines:
F1(c) =11, F2(c) =34 F3(c) =9)

Table 2. Comparison of results on problem 4 5 with 12 operations

 AL+CGA PSO+TS VNS+GA

Mc 16 11 11 11 12

Tw 34 32 32 34 32

Mw 10 10 10 9 8

It can be seen from Table 2 that the VNS+GA algorithm dominate the

AL+CGA algorithm in solving the problem 54 . Our approach can obtain

richer optimal solutions than the PSO+TS algorithm. Fig. 10 shows the
obtained Solution 3 in the form of Gantt chart.

A Hybrid Variable Neighborhood Search Algorithm for Solving Multi-Objective
Flexible Job Shop Problems

ComSIS Vol. 7, No. 4, December 2010 923

Problem 88

This is an instance of partial flexibility, in which 8 jobs with 27 operations are to
be performed on 8 machines. The obtained solutions by our hybrid algorithm
are characterized by the following values:

Solution 1: Mc =14, Tw =77, Mw =12

Solution 2: Mc =15, Tw =75, Mw =12

Solution 3: Mc =16, Tw =73, Mw =13

0 5 10 15

M1

M2

M3

M4

M5

M6

M7

M8

(5,1)

0 3

(8,1)

3 5

(3,3)

7 8

(4,1)

0 1

(8,2)

5 9

(6,3)

9 14

(6,1)

0 1

(7,1)

1 3

(2,1)

3 6

(4,3)

6 8

(8,4)

11 14

(1,1)

0 3

(3,2)

3 7

(2,2)

7 9

(7,3)

10 13

(1,2)

3 6

(2,4)

10 14

(4,2)

1 6

(1,3)

6 8

(5,3)

9 11

(3,1)

0 2

(5,2)

3 9

(2,3)

9 10

(5,4)

11 14

(6,2)

1 5

(7,2)

5 10

(8,3)

10 11

Fig. 11. The obtained optimal solution of instance 2 (8 jobs/27 operations /8 machines:
F1(c) =14, F2(c) =77 F3(c) =12)

Table 3. Comparison of results on problem 8 8 with 27 operations

 AL+CGA PSO+SA PSO+TS HTSA

Mc 15 16 15 16 14 15
1

4

1

6

1

5

Tw 79 75 75 73 77 75
7

7

7

3

7

5

Mw 13 13 12 13 12 12
1

2

1

3

1

2

Jun-qing Li, Quan-ke Pan, and Sheng-xian Xie

ComSIS Vol. 7, No. 4, December 2010 924

It can be seen from Table 3 that the VNS+GA algorithm dominate the
AL+CGA algorithm. The hybrid algorithm can obtain richer optimal solutions
than both the PSO+TS algorithm and the PSO+SA algorithm. Fig. 11 shows
the obtained Solution 1 in the form of Gantt chart.

Problem 710

This is an instance of total flexibility, in which 10 jobs with 29 operations are to
be performed on 7 machines. The obtained solutions by our hybrid algorithm
are characterized by the following values:

Solution 1: Mc =11, Tw =62, Mw =10

Solution 2: Mc =11, Tw =61, Mw =11

Fig. 12 shows the obtained Solution 2 in the form of Gantt chart.

0 2 4 6 8 10 12

M1

M2

M3

M4

M5

M6

M7

(1,1)

0 1

(4,1)

1 3

(5,2)

3 5

(2,2)

5 7

(10,3)

8 9

(4,3)

10 11

(5,1)

0 1

(10,1)

1 5

(5,3)

5 6

(9,2)

6 8

(8,3)

9 11

(6,1)

0 4

(6,2)

4 5

(6,3)

5 7

(8,1)

0 1

(8,2)

1 9

(4,2)

9 10

(9,1)

0 4

(3,3)

7 9

(1,2)

1 2

(1,3)

2 6

(3,2)

6 7

(10,2)

7 8

(7,3)

9 10

(2,1)

0 3

(3,1)

3 4

(7,1)

4 6

(7,2)

6 9

(9,3)

9 11

Fig. 12. The obtained optimal solution of instance 3 (10 jobs/29 operations /7
machines: F1(c) =11, F2(c) =61 F3(c) =11)

Problem 1010

This is an instance of total flexibility, in which 10 jobs with 30 operations are to
be performed on 10 machines. The obtained solutions by our hybrid algorithm
are characterized by the following values:

Solution 1: Mc =7, Tw =43, Mw =5

Solution 2: Mc =7, Tw =42, Mw =6

A Hybrid Variable Neighborhood Search Algorithm for Solving Multi-Objective
Flexible Job Shop Problems

ComSIS Vol. 7, No. 4, December 2010 925

Solution 3: Mc =8, Tw =42, Mw =5

It can be seen from Table 4 that the VNS+GA algorithm dominate the above
three algorithms and can also obtain richer optimal solutions. Fig. 13 shows
the obtained Solution 2 in the form of Gantt chart.

0 1 2 3 4 5 6 7 8

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

(1,1)

0 1

(2,1)

1 3

(7,1)

3 4

(8,2)

2 5

(8,3)

5 7

(1,2)

1 2

(4,2)

2 5

(7,2)

5 6

(1,3)

2 3

(2,2)

3 4

(10,2)

4 5

(4,3)

5 6

(5,3)

6 7

(8,1)

0 2

(6,1)

0 2

(9,1)

2 3

(10,1)

3 4

(9,3)

4 5

(7,3)

6 7

(4,1)

0 1

(9,2)

3 4

(3,3)

4 5

(10,3)

5 7

(3,2)

1 2

(5,1)

0 2

(6,2)

2 4

(5,2)

4 5

(6,3)

5 6

(3,1)

0 1

(2,3)

4 6

Fig. 13. The obtained optimal solution of instance 4 (10 jobs/30 operations/10
machines: F1(c) =7, F2(c) =42 F3(c) =6)

Table 4. Comparison of results on problem 10 10 with 30 operations

 AL+CGA PSO+SA PSO+TS HTSA

Mc 7 7 7 7 8 7

Tw
45 44

43
42 42 4

3

Mw 5 6 6 6 5 5

Problem 1015

This is an instance of total flexibility, in which 15 jobs with 56 operations are to
be performed on 10 machines. The obtained solutions by our hybrid algorithm

Jun-qing Li, Quan-ke Pan, and Sheng-xian Xie

ComSIS Vol. 7, No. 4, December 2010 926

are characterized by the following values:

Solution 1: Mc =11, Tw =92, Mw =11

Solution 2: Mc =12, Tw =91, Mw =11

It can be seen from Table 5 that the VNS+GA algorithm dominate both the
AL+CGA and the PSO+TS algorithms and can also obtain richer optimal
solutions than the PSO+SA algorithm. Fig. 14 shows the obtained Solution 2 in
the form of Gantt chart.

Table 5. Comparison of results on problem 15 10 with 56 operations

 AL+CGA PSO+SA PSO+TS HTSA

Mc 23 24 12 11 11 12

Tw 95 91 91 93 92 91

Mw 11 11 11 11 11 11

0 2 4 6 8 10 12

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

(1,1)

0 1

(14,1)

1 3

(15,1)

3 5

(1,2)

5 6

(7,1)

6 7

(6,2)

7 8

(8,4)

8 9

(3,1)

0 1

(13,1)

1 3

(6,1)

3 4

(3,3)

4 6

(7,2)

7 8

(10,4)

8 10

(13,4)

10 12

(2,2)

1 3

(9,2)

3 5

(15,2)

5 7

(1,3)

7 8

(15,3)

8 10

(2,1)

0 1

(8,3)

3 5

(2,4)

6 7

(3,4)

7 8

(5,4)

8 10

(4,1)

0 1

(4,2)

1 2

(12,2)

2 6

(14,4)

7 9

(15,4)

10 12

(5,2)

1 3

(11,2)

3 4

(4,3)

4 5

(1,4)

8 12

(8,1)

0 1

(11,1)

1 2

(5,3)

3 5

(9,3)

5 9

(11,4)

9 10

(12,4)

10 12

(12,1)

0 2

(8,2)

2 3

(10,2)

3 5

(14,3)

5 7

(5,1)

0 1

(3,2)

1 2

(14,2)

3 5

(11,3)

5 7

(12,3)

7 9

(9,1)

0 1

(10,1)

1 2

(13,2)

3 5

(2,3)

5 6

(10,3)

6 7

(13,3)

7 9

(4,4)

9 10

(9,4)

10 12

Fig. 14. The obtained optimal solution of instance 5 (15 jobs/56 operations/10
machines: F1(c) =12, F2(c) =91 F3(c) =11)

From the above comparison with other three existing algorithm for solving

the five Kacem instances, we can conclude that our algorithm either obtain
superior solutions or can obtain richer non-dominate solutions than the other

A Hybrid Variable Neighborhood Search Algorithm for Solving Multi-Objective
Flexible Job Shop Problems

ComSIS Vol. 7, No. 4, December 2010 927

approaches, especially for solving large scale instances.

7. Conclusions

Flexible job shop scheduling problem is very important in both fields of
combinatorial optimization and engineering management. Most literature focus
on proposing hybrid algorithms for solving mono-objective FJSPs. The
research on the multi-objective FJSP is much less than the mono-objective
FJSP. Kacem proposed a hybrid algorithm named AL+CGA combining GA
and approach of localization. Xia and Wu presented a hybrid algorithm named
PSO+SA which making use of PSO for solving the assignment sub problem
and SA for solving the routing sub problem. Zhang et al. developed a hybrid
algorithm named PSO+TS for the multi-objective FJSPs with the same three
objectives. In this paper, we introduce a novel algorithm named VNS+GA
combining VNS and GA for solving the multi-objective FJSPs to minimize the
makespan, the total workload, and the workload of the busiest machine. There
are mainly three contributions in the hybrid algorithm. Firstly, a mix of two
machine assignment rules and two operation sequencing rules are developed
in the initialization stage to produce enough high quality initial solutions.
Secondly, an adaptive mutation rules are introduced for considering both
population diversity and convergence speed in perturbation in the machine
assignment component. Thirdly, a speed-up variable neighbor search operator
based on public critical block theory was investigated. The new local searching
approach makes the search space dwindled deeply and produces high quality
neighbor solutions in very short time. Experimental results compared with the
three existing algorithms (i.e., AL+CGA algorithm, PSO+SA algorithm and
PSO+TS algorithm) show that our hybrid algorithm can either obtain superior
solutions or obtain richer non-dominated solutions than the other algorithms,
especially for larger scale instances.

The future work is to extend the initial solution rules and the public critical
block method for solving other combinatorial problems. In addition, we will
develop other heuristic algorithms with the public critical block neighborhood
structure for solving the multi-objective FJSPs.

Acknowledgments. This research is partially supported by National Science
Foundation of China under Grants 60874075, 70871065, Open Research Foundation
from State Key Laboratory of Digital Manufacturing Equipment and Technology
(Huazhong University of Science and Technology), Science Research and
Development of Provincial Department of Public Education of Shandong under Grant
J08LJ20, J09LG29, J08LJ59, and Soft Science Foundation of Shandong under Grant
2009RKB125.

Jun-qing Li, Quan-ke Pan, and Sheng-xian Xie

ComSIS Vol. 7, No. 4, December 2010 928

References

1. Jain A.S., Meeran S.: Deterministic job-shop scheduling: Past, present and future,

European Journal of Operation Research, Vol. 113, No. 2, 390-434. (1998)
2. Garey M.R., Johnson D.S., Sethi R.: The Complexity of Flowshop and Job shop

Scheduling, Mathematics of Operations Research, Vol. 1, No. 2, 117-129. (1976)
3. Bruker P., Schlie R.: Job-shop scheduling with multi-purpose machines, Computing,

Vol. 45, No. 4, 369-375. (1990)
4. Brandimarte P.: Routing and scheduling in a flexible job shop by tabu search,

Annals of Operations Research, Vol. 22, 158-183. (1993)
5. Kacem I., Hammadi S., Borne P.: Pareto-optimality approach for flexible job-shop

scheduling problems: hybridization of evolutionary algorithms and fuzzy logic,
Mathematics and Computers in Simulation, Vol. 60, No.3, 245-276. (2002a)

6. Gao L., Peng C.Y., Zhou C., Li P.G.: Solving flexible job shop scheduling problem
using general particle swarm optimization, In Proceedings of the 36th CIE
Conference on Computers & Industrial Engineering, Kaohsiung, Taiwan,
3018-3027. (2006)

7. Saidi-mehrabad M., Fattahi P.: Flexible job shop scheduling with tabu search
algorithms, International Journal of Advanced Manufacturing Technology, Vol. 32,
No. 5-6, 563-570. (2007)

8. Li J.Q., Pan Q.K., Xie S.X., Li H., Jia B.X., Zhao C.S.: An effective hybrid particle
swarm optimization algorithm for flexible job-shop scheduling problem. MASAUM
Journal of Computing, Vol. 1, No. 1, 69-74. (2009)

9. Kacem I., Hammadi S., Borne P.: Approach by localization and multi-objective
evolutionary optimization for flexible job-shop scheduling problems, IEEE
Transactions on Systems, Man and Cybernetics, Part C, Vol. 32, No. 1, 408-419.
(2002b)

10. Xia W.J., Wu Z.M.: An effective hybrid optimization approach for multi-objective
flexible job-shop scheduling problems, Computers and Industrial Engineering, Vol.
48, No. 2, 409-425. (2005)

11. Zhang G.H., Shao X.Y., Li P.G., Gao L.: An effective hybrid swarm optimization
algorithm for multi-objective flexible job-shop scheduling problem, Computers and
Industrial Engineering, Vol. 56, No. 4, 1309-1318. (2009)

12. Goldberg D.E., Holland J.H.: Genetic Algorithms and Machine Learning, Machine
Learning, Vol. 3, No. 2-3, 95-99. (1988)

13. Wang L.: Intelligent Optimization Algorithms with Applications. Tsinghua University
Press, Beijing, 2001.

14. Pezzella F., Morganti G., Ciaschetti G.: A genetic algorithm for the Flexible
Job-shop Scheduling Problem. Computers & Operations Research, Vol. 35, No. 10,
3202-3212. (2008)

15. Adams J., Balas E., Zawack D.: The shifting bottleneck procedure for Job Shop
Scheduling. Management Science, Vol. 34, No. 3, 391–401. (1988)

16. Zhang C.Y., Li P.G., Guan Z.L., Rao Y.Q.: A tabu search algorithm with a new
neighborhood structure for the job shop scheduling problem. Computers &
Operations Research, Vol. 34, No. 11, 3229-3242. (2007)

17. Van Laarhoven P.J.M., Aarts E.H.L., Lenstra J.K.: Job shop scheduling by
simulated annealing. Operations Research, Vol. 40, No. 1, 113-125. (1992)

18. Dell'Amico A.M., Trubian A.M.: Applying Tabu Search to the Job-shop Scheduling
Problem. Annals of Operation Research, Vol. 41, No. 3, 231-252. (1993)

19. Nowicki E., Smutnicki C.: A fast taboo search algorithm for the job-shop problem.
Management Science, Vol. 42, No. 6, 797-813. (1996)

A Hybrid Variable Neighborhood Search Algorithm for Solving Multi-Objective
Flexible Job Shop Problems

ComSIS Vol. 7, No. 4, December 2010 929

20. Balas E., Vazacopoulos A.: Guided Local Search with Shifting Bottleneck for Job
Shop Scheduling. Management Science, Vol. 44, No. 2, 262-275. (1998)

Jun-qing Li was born in Liaocheng, China, in 1976. He received the Master
degree of computer science and technology in 2004 from Shandong Economic
University, Shandong, China. He is currently an associate professor in
Department of Computer Science and Technology, Liaocheng University,
Liaocheng, China. He is now a member of IEEE and CCF. His research is
related to the evolutionary optimization methods for discrete events systems,
job shop systems, operational research, computer network, peer-to-peer
systems and network security. He has (co-)authored around 50 research
papers published. He has been serving on editorial boards or reviewers of two
international journals. He has been the member of program committees of
many international conferences.

Quan-ke Pan was born in Liaocheng, China, in 1971. He received the PhD of
manufacturing and automation in 2003 from Nanjing University of Aeronautics
and Astronautics, Nanjing, China. His research interests include computational
intelligent, operational research and swarm optimization algorithms. He is
currently a professor in Department of Computer Science and Technology,
Liaocheng University, Liaocheng, China. He has (co-)authored around 120
research papers published. He has been serving on editorial boards of several
international journals and has edited special issues in international journals.
He has been member of program committees of many international
conferences.

Sheng-xian Xie was born in Liaocheng, China, in 1957. He is currently a
professor in Department of Computer Science and Technology, Liaocheng
University, Liaocheng, China, and he is the chair of the department. His
research interests include network security, access control and peer-to-peer
systems.

Received: August 08, 2009; Accepted: February 04, 2010.

Jun-qing Li, Quan-ke Pan, and Sheng-xian Xie

ComSIS Vol. 7, No. 4, December 2010 930

Table 1 Local minimum processing time rule (MSb)

