
DOI:10.2298/CSIS090608019P

Usage of Agents in Document Management

Dragoslav Pešović
1
, Milan Vidaković

2
, Mirjana Ivanović

1
, Zoran Budimac

1
,

and Jovana Vidaković
1

1
Department of Mathematics and Informatics, Faculty of Science,

University of Novi Sad, Trg D. Obradovića 4,
21000 Novi Sad, Serbia

{dragoslav,mira,zjb,jovana}@dmi.uns.ac.rs

2
Computing and Control Department, Faculty of Technical Sciences,

University of Novi Sad, Trg D. Obradovića 6,
21000 Novi Sad, Serbia

minja@uns.ac.rs

Abstract. EXtensible Java-based Agent Framework (XJAF) is a
pluggable architecture of the hierarchical intelligent agents system with
communication based on KQML. Workers, Inc. is a workflow
management system implemented using mobile agents. It is especially
suited for highly distributed and heterogeneous environments. The
application of the above-mentioned systems will be considered in the
area of Document Management Systems.

Keywords: Mobile Agents, Workflow Management Systems, Document
Management.

1. Introduction

According to the most general definition, a mobile agent is a program that is
able to stop its execution at one node in a computer network, and to transfer
itself to another node where its execution continues. An important feature of
mobile agents is their autonomous behavior: a mobile agent autonomously
decides when and where it will be transferred.

EXtensible Java-based Agent Framework (XJAF) [32] is a pluggable
architecture of the hierarchical intelligent agents system with communication
based on KQML. This framework supports pluggable software managers that
are dealing with a particular job. The system is designed so that it is possible
to choose an arbitrary manager when configuring provided that it implements
the given interface. This enables the use of arbitrary managers whose
existence is not necessary at compile-time. The system is compliant to the
FIPA specification and has been implemented using Java Enterprise Edition
(JEE) technology.

Workflow [13, 37, 38] can be defined as the automated part of a business
process, organized as a collection of activities, where documents, information
or tasks are passed between participants according to a set of procedural

Dragoslav Pešović at all.

ComSIS Vol. 8, No. 1, January 2011 194

rules. A workflow management system (WFMS) provides for defining,
creating, and managing of workflow instances.

The usage of mobile agents [14] in modeling and implementation of a
workflow [37] simplifies the workflow management. Workers, Inc. [25] consists
of individual agents with autonomous behavior. Mobile agents carrying out
workflow instances (the so-called workers) have the ability to move to different
users, where they can interact with them locally, autonomously taking care of
their current position, state, and further itinerary. In order to achieve the flow
of work, workers split the work in logical parts, cooperate together, and
synchronize themselves.

To allow the exchange of process definitions with various other workflow
products (ranging from other workflow management systems to modeling and
simulation tools), the system had to be made compliant with XML Process
Definition Language (XPDL) [39], the proposed standard in the area of
workflow definition languages. In order to comply with XPDL, the system first
had to be modified to conform to the basic constructs of XPDL and the
underlying meta-model. Moreover, a system-specific import layer had to be
provided to allow the translation of XPDL process definitions, generated using
a visual modeling tool, into worker execution contexts, their internal system
representations.

The application of the above-mentioned systems will be considered in the
area of Document Management Systems.

The rest of the paper is organized as follows. In the next section, the
related work is presented. Main concepts of agent frameworks are described
in the third section, introducing basic technologies that can be used for their
implementation. The section 4 presents the architecture of XJAF, while
sections 5 and 6 describe the architecture of Workers, Inc. The seventh
section provides a brief introduction into the area of document management
systems, discussing possibilities of an agent-oriented approach to the design
and implementation of such systems. Finally, the eighth section concludes the
paper.

2. Related Work

Agent frameworks can be analyzed from several points of view. From the
problem domain point of view, frameworks can be general-purpose [1, 2, 8, 9],
or specialized ones, which solve particular problems [18, 36]. Also, from the
technology point of view, agent frameworks are based on either proprietary
solutions or on solutions based on the distributed components technology.
Agent frameworks like JAF (Java Agent Framework) [8] and JAT (Java Agent
Template) [9] are based on proprietary solutions, while Aglets [1] and JADE
(Java Agent DEvelpment framework) [2] are based on the RMI, CORBA and
Java EE technology.

The large number of papers is related to the security issues in agent
frameworks [3, 12, 30, 35]. Security issues regarding agent frameworks

Usage of Agents in Document Management

ComSIS Vol. 8, No. 1, January 2011 195

include: providing message integrity, code protection during agent migration
and protecting agent frameworks from malicious agents.

This paper presents an implementation of an agent framework which is
based on the Java EE technology. All important elements of this framework
are implemented as plug-ins, which provides for flexibility in both design and
implementation.

Several authors have recently suggested a usage of agents in workflow
and document management.

Rather than going top-down in describing possible use of mobile agents in
workflow management, we take bottom-up approach. Workers, Inc. is highly
decentralized and consists solely of individual agents with autonomous
behavior, which differentiates it from approaches in [5, 6, 15, 20]. The only
centralized control in our system is the control of user rights to create, access,
and change agents and templates, while all mentioned papers describe
systems that had some forms of centralized control or services.

With respect to decentralization, our system resembles [28] that is based
on static CORBA objects. While decentralization in [28] was one of explicit
design goals and had to be explicitly implemented, decentralization in our
system comes for free as a natural consequence of agent mobility and
autonomous behavior. Moreover, our system is uniform – it is designed to use
only one mechanism (mobile agents), without the need for additional
mechanisms (transactions, HTTP protocol, HTML documents, Web browsers,
CORBA, etc.)

While in [16] full decentralization of WfMS using mobile agents is shortly
mentioned, the paper in fact describes the usage of mobile agents in
centralized WfMS and only for external parties. Moreover, agents in [16] are
specialized and created to one task only. Itinerary is saved on hosts instead in
agents themselves which reduces the agent autonomy. Our system
completely relies on agents and is fully distributed with autonomous agents.

Stromer in [29] describes similar goals and advantages of using mobile
agents in WfMS as we are, but his implementation is different.

Among document management systems proposed over the years, there
are some that are agent-based [7, 27] or only agent-enhanced (where an
agent layer is added on top of existing infrastructure) [21]. However, none of
the mentioned systems emphasizes the benefits of using agent mobility.

Proposed workflow and document management systems bring some fresh
views not only in particular fields of workflow and document management, but
in mobile computing as well. In both fields, the advantages of highly
decentralized and distributed approach in designing a system have not been
often recognized. The most cited advantages of mobile agents with respect to
classical techniques of distributed programming are:
1. Potentially better efficiency of the whole system. A client program migrates

to a server node, locally communicates with a server program, and returns
to the original node with a result. In that way, the overall network traffic,
including the number of remote interactions and the amount of data
communicated over the network, is therefore potentially reduced.

Dragoslav Pešović at all.

ComSIS Vol. 8, No. 1, January 2011 196

2. Greater reliability, because the connection between nodes must not be
established all the time.
Our workflow and document management systems emphasize the fact that

mobile agent has organizational advantages as well. Mobile agent systems
can be regarded as a separate programming paradigm and not only as an
improvement of distributed programming style. Solutions to some problems
are easier to program, understand, and maintain, if implemented using mobile
agents.

3. Agent Frameworks

Agent technology [14] represents one of the most consistent approaches in
distributed systems implementation. Software agents realize distributed
component concept entirely. This means that besides solving the problem,
agents utilize a certain degree of intelligence and autonomy that are needed
to solve the problem. Therefore, agents represent software entities capable of
searching and processing the large quantity of information, utilizing a certain
degree of intelligence, autonomy and communication.

Agents need a programming environment which will create and enable
agents to execute tasks. Agent framework [14] represents programming
environment that controls agent life cycle and provides all necessary
mechanisms for task execution (communication, agent mobility, services and
security). Besides controlling life cycle of an agent, an agent framework also
provides messaging and service subsystems to effectively support agents.
Messaging allows agents to communicate to each other, and service
subsystem gives them the possibility of accessing various resources or
executing complex algorithms that are not needed to be implemented in the
agent itself. An agent framework also provides agent mobility and security.
Agent mobility allows agents to migrate from one agent framework to another.
The security subsystem provides security mechanisms which protect both
agents and frameworks. It is also necessary to provide mechanism of
searching agents and services present in agent framework. This mechanism
is called a directory and it represents searchable repositories of agents and
services which can be used by both agents and their clients.

Agent framework implementations rely on Object Oriented (OO)
techniques. It is possible to implement agents easily and effectively taking
advantage of its features (encapsulation, inheritance, polymorphism, dynamic
binding and persistence). Most of the existing agent frameworks are
implemented using Java programming language [11]. Java-based agent
frameworks usually use RMI (Remote Method Invocation) [11], CORBA
(Common Object Request Broker Architecture) [19] and Java EE (Java
Enterprise Edition) [10] technologies for distribute code execution.

CORBA is a standard created by the Object Management Group (OMG)
consortium. This standard defines the framework for creating objects being
executed on the server side, and it also defines the servers themselves. It is

Usage of Agents in Document Management

ComSIS Vol. 8, No. 1, January 2011 197

based on the Internet Inter-ORB Protocol (IIOP). This standard anticipates the
execution of components written in all supporting programming languages.
Besides above mentioned concepts, CORBA supports transactions and its
own components naming and search system (Object Naming Service - COS
Naming).

The Java EE technology is particularly useful for agent framework
implementation because it comprises a large set of technologies and provides
for scalability, reliability and has a large number of implementations. One
element of the Java EE technology is particularly useful – the EJB (Enterprise
JavaBeans) technology. This is a technology of distributed software
components which are created, executed and destroyed in the application
servers. All performance-related issues like load-balancing, distribution-per-
server, etc. are left to the implementation of the application server. Besides
supporting distributed components, Java EE also has all other technologies
for the agent framework implementation: JMS (Java Message Service) for
message exchange, JNDI (Java Naming and Directory Interface) for directory
implementation, Java Security, etc.

4. XJAF

The EXtensible Java-based Agent Framework (XJAF) [32] is based on the
J2EE technology. The system consists of clients and facilitators. The clients
refer to the facilitators for task execution. The task is being executed by the
agents engaged by the facilitator. The Figure 1 shows the link between a
client and an agent framework.

Client
Application

FacilitatorFacilitatorProxy

Figure 1. Client and Agent framework link

The client assigns the task to the facilitator; the facilitator engages an agent
to execute the task and returns the result to the client. The FacilitatorProxy
class ensures that the client application can access the facilitator. It also hides
all techniques necessary for work with agents from the client. The client only
needs to create an object of the FacilitatorProxy class and to pass it the class
representing the task or the KQML message, as well as the corresponding
listener, which would notify it of the result. All other details are managed by
the FacilitatorProxy class.

The client is any Java application. The facilitator is an instance of the
Facilitator class. The Facilitator class realizes the facilitator functionality. The
agent is an instance of a class implementing the Agent interface and realizing
the functionality of an individual agent.

Dragoslav Pešović at all.

ComSIS Vol. 8, No. 1, January 2011 198

Extensibility of this framework is based on the plug-in concept. Plug-ins are
realized as pluggable managers. The facilitator forwards the parts of its job to
the corresponding pluggable managers. The managers are instances of
classes implementing the corresponding managerial interfaces. The
AgentManager interface is responsible for allocating and releasing agents.
The TaskManager interface manages the tasks. The MessageManager
interface is responsible for interagent communication. The
ConnectionManager interface manages facilitator connection and relations.
The SecurityManager handles security of inter-agent communication.

The classes that implement the mentioned interfaces implement the
corresponding algorithms for individual functions. The system is designed so
that it is possible to choose an arbitrary manager when configuring provided
that it implements the given interface. This enables the use of arbitrary
managers whose existence is not necessary at compile-time, but not until
initialization (plug-in concept). The Figure 2 lists all the managers in the
framework.

Figure 2. Functionality of individual parts is assigned to managers

4.1. Agent Manager

Agent management is done using the AgentManager component. Controlling
the agent life cycle means creating and destroying an agent.

This component is also used as an agent directory. All relevant data is kept
in a repository. The repository can be a database, or an LDAP server, or any
other data storage. This manager also keeps track of all local agents required
by external facilitators, and of all agents that have been moved to another
facilitator.

FacilitatorEJB

SimpleAgentManager

AgentManager

SimpleTaskManager

TaskManager

SimpleMessageManager

MessageManager

SimpleConnectionManager

ConnectionManager

SimpleSecurityManager

SecurityManager

ServiceManager

SimpleServiceManager

Usage of Agents in Document Management

ComSIS Vol. 8, No. 1, January 2011 199

4.2. Task Manager

The TaskManager component manages tasks to be performed by the agent
framework. It is realized through the class which implements the
TaskManager interface. It also provides a way of notifying the client about the
task execution progress.

Each task is stored in this component. When completed, it is removed from
it. Tasks are instances of classes which implement the AgentTask interface.
There are two types of task execution: programmatically or by sending a
KQML message to the agent.

The method execute() is run asynchronously, i.e. it does not block the
execution of the client's code for the time of task execution, but it calls the
instance of the class inheriting the interface AgentListener created by the
client application upon and during the task execution. In this way the client
application can proceed with the code execution and it will be notified of the
agent's results by the listener reference.

When executing a task by sending a KQML message to the agent, the
client application sends the KQML message to the Facilitator component. This
component looks for the appropriate agent and sends the message to it.
When the task is completed, the agent replies to the original message and the
message is forwarded to the client using the FacilitatorProxy component.

4.3. Message Manager

The exchange of messages between the agents is actually KQML messages
exchange. These messages are encapsulated in the base class - the class
KQMLMessage. The messages are exchanged by passing the
KQMLMessage class objects between the dialog participants. All the
communication is done by the MessageManager component.

When an agent sends a KQML message to another agent, it is embedded
into a JMS message. The JMS message is sent to all agent frameworks
subscribed to this service, but only the agent framework having the
destination agent will receive the message and extract the KQML message
from it. This KQML message is then sent to the agent.

4.4. Connection Manager

The ConnectionManager component defines an inter-facilitator connectivity
mechanism. This mechanism defines how separate facilitators form a
network. Each facilitator is a node in this network and is automatically
registered on the network at the initialization time. This means that the
programmer does not have to know the exact address of an arbitrary
facilitator and does not have to maintain the list of all available facilitators.

Dragoslav Pešović at all.

ComSIS Vol. 8, No. 1, January 2011 200

Instead, the nodes are registered automatically and the list of all available
facilitators is maintained automatically.

The facilitators form a certain hierarchy structure. One approach is to form
a tree structure with the primary facilitator in the root. The Figure 3 shows this
organization.

Primary Faci litator

Faci litator1

Faci litator2 Faci litator3

Faci litator4

Faci litator5 Faci litator6

Figure 3. Component diagram of facilitator hierarchy

4.5. Security Manager

SecurityManager component [33] handles security issues. It provides
encryption, decryption, signature generation and verification for all messages
passing through the framework. Also, this manager handles access to local
resources. Access control segment of security subsystem insures integrity of
data and code. It provides for integrity of data exchanged between agents and
also protects agent framework from malicious agents. Any cryptographic
system can be used since this manager is proposed by the SecurityManager
interface, and implementation is left to the developer.

4.6. Service Manager

The ServiceManager component implements service directory subsystem.
This component manages the set of services available to agents.

The ServiceManager component includes the service repository which
holds all available services. Services can be added, removed, searched and
used. When the service is not needed anymore, it must be returned to the
repository. Services are implemented as Java classes which implement the
Service interface.

Usage of Agents in Document Management

ComSIS Vol. 8, No. 1, January 2011 201

5. Workflow Management System Using Mobile Agents

Workers, Inc. [4, 22, 23, 24, 25, 26] is a workflow management system under
development at the University of Novi Sad. The system is implemented using
the technology of mobile agents and is therefore especially suited for highly
distributed and heterogeneous environments.

Figure 4. The architecture of Workers, Inc.

Workers, Inc. is envisioned as a community of cooperative agents, its main
characteristics being full decentralization and distribution of workflow
functions. The current architecture is essentially two-part, consisting of work-
agents (workers) and host-agents (worker hosts). Workers, Inc. is built on top
of a Java-based mobile agent system, and uses Java as the language of
implementation as well as of the agent development. Agent migration and
inter-agent communication benefit from Java RMI and class serialization, and
Java sandbox security model is the basis for providing secure agent execution
environment. Java API for XML Processing (JAXP) is used for XPDL
document parsing.

Process definitions are being completely handled by workers, while the
enactment is achieved through the cooperation of a worker carrying a process
definition (or a set of workers when concurrency or subprocesses are
involved) and worker hosts residing at every node of the network. Worker
hosts represent central components of the system mediating between the
underlying system, workers, and human users.

Dragoslav Pešović at all.

ComSIS Vol. 8, No. 1, January 2011 202

5.1. Workers

A worker is the key system component encapsulating both the process
definition and the execution state of a workflow. While performing a workflow,
a worker itinerates among distributed resources carrying process-specific
information and autonomously taking care of its execution state. In that way,
workers manage not only to perform workflow activities locally with respect to
assigned resources, but to avoid the need to consult a central server or the
originating machine at every step.

A worker‟s behavior is entirely defined by its execution context. A worker
context is an executable process definition, a worker being just a medium
through which its context is transmitted and accomplished. When a worker
migrates, its entire execution context as an object net is being encompassed
by object serialization, and then transported and reconstructed at the target
location.

The most important part of a context is the worker itinerary, which
represents a flow of a worker through a network. By representing itineraries
with directed graphs we are able to represent complex flow patterns that could
be needed by workflow applications.

To allow concurrent activity execution, agent social abilities are employed.
When a single thread of control needs to split into two or more threads, which
can be executed in parallel, the worker context is cloned and multiple worker
instances are allowed to be executed simultaneously. On the other hand,
when multiple parallel threads of execution need to converge into a single
thread, agent coordination mechanisms and synchronization techniques are
employed.

To strengthen security of the system, mobile agents and thus workers are
forbidden to access any system resources directly. Critical resources can be
accessed only by communicating with system agents, i.e. worker-hosts.

5.2. Worker Hosts

Every node in the network contains a worker host, which is implemented as a
stationary system agent, having special privileges for the access to host
system resources. A worker host is a passive entity, which spends most of its
lifetime receiving requests from workers or users and coordinating their
actions. There are three main subcomponents of a worker host: an application
manager, a participant manager, and a user interface.

5.3. Other Specialized Agents

Although workers are almost fully autonomous, they may need additional
services to finish their work. Those services cannot be embedded directly into
the workers as this would prevent keeping workers as small as possible.

Usage of Agents in Document Management

ComSIS Vol. 8, No. 1, January 2011 203

Services are therefore implemented separately, as specialized stationary
agents.

Workers, Inc. is a fully distributed system, without central administration,
control, and maintenance. All reports, control, and management can be
achieved by creating and sending specialized agents that will communicate
with other agents in the system and achieve the intended results. Those
agents may be mobile or stationary, depending on the nature of the task they
are intended to accomplish.

6. Worker Execution Contexts

The design of an execution context is done so as to comply with the workflow
meta-model specification. From the control-flow perspective, the itinerary is
the most important part of a context.

6.1. Itinerary

The itinerary has the structure of an arbitrary complex directed graph, where
vertices of the graph represent process activities, and edges of the graph
correspond to process transitions.

6.2. Activities

An activity is the smallest, atomic unit of work in a business process. The
three main properties of an activity specification, which can be seen as
answers to the accompanied questions, are:

 Performer assignment (Where?) – It specifies the performer of the activity.
In the process of workflow participant resolution, the actual location of a
participant is determined. By evaluating a performer expression, a worker
knows where its activity needs to be carried out, and will transfer itself over
the network accordingly.

 Implementation specification (What?) – It specifies what the concrete
realization of the activity is. It can be a call to a declared application,
another workflow process, or an embedded activity set. Also, the activity
may have no implementation at all, in which case it supports complex flow
transitions or manually performed activities.

 Automation modes (How?) – Information on whether the activity is to be
started / finished manually by the user or automatically by the worker itself.

Dragoslav Pešović at all.

ComSIS Vol. 8, No. 1, January 2011 204

Figure 5. Worker and its contexts

6.3. Transitions

Transitions connect individual activities. A transition may contain a condition
which must be fulfilled for the worker to start performing the target activity. If
the transition does not contain a condition, the worker will start the target
activity immediately after the source activity has completed. If the performer
assigned to the target activity is different than the one of the source activity,
the worker will first transfer itself to the appropriate node in the network,
before it actually starts the activity.

The layout of transitions within a process graph may cause the sequential
or parallel operation of individual process activities. If there are multiple
incoming or outgoing transitions of an activity, control flow restrictions and
condition evaluation semantics may be expressed within the appropriate
activity: split as a form of post-activity processing in the source activity, and
join as a form of pre-activity processing in the target activity.

7. Document Management

A document management system (DMS) [7, 17, 21, 27] is a computer system
(or set of computer programs) used to track and store electronic documents
and/or images of paper documents. Document management controls the life
cycle of documents in an organization – how they are created, reviewed,

Usage of Agents in Document Management

ComSIS Vol. 8, No. 1, January 2011 205

published, and consumed, and how they are ultimately disposed of or
retained.

A well-designed document management system promotes finding and
sharing information easily. It organizes content in a logical way, and makes it
easy to standardize content creation and presentation across an enterprise. It
promotes knowledge management and information mining. It provides
features at each stage of a document's life cycle, from template creation to
document authoring, reviewing, publishing, auditing, and ultimately destroying
or archiving.

7.1. Main Features of Document Management Systems

There are several common issues that are involved in the document
management. Document management systems commonly address the
following issues:

 Location. Where will documents be stored? Where will people need to go to
access documents? How content moves between locations? It may be
necessary to move or copy a document from one site or library to another
at different stages of its life cycle. For example, the publishing process may
include moving a document from a staging site to a public Internet site. If
content needs to be converted from one format to another as it moves from
site to site, content conversions must be specified.

 Filing. How will documents be filed? What methods will be used to organize
or index the documents to assist in later retrieval? Documents can be
organized in free-form document libraries for ad-hoc document creation
and collaboration, or specialized sites such as team sites and portal sites.
Databases can be used to store filing information.

 Retrieval. How will documents be found? Typically, retrieval encompasses
both browsing through documents and searching for specific information.

 Security. How will documents be kept secure? How will unauthorized
personnel be prevented from reading, modifying or destroying documents?

 Retention period. How long should documents be kept, i.e. retained?

 Archiving. How can documents be preserved for future readability?

 Distribution. How can documents be available to the people that need
them?

 Workflow. By planning workflows, one can control and track how
documents move from one team member to another as each participant
collaborates in a document's life cycle. A system may include workflows for
common team tasks such as reviewing and approving documents. It may
also support creating and installing custom workflows.

 Creation. How are documents created? This question becomes important
when multiple people need to collaborate, and the logistics of version
control and authoring arise.

 Authentication. Is there a way to vouch for the authenticity of a document?

Dragoslav Pešović at all.

ComSIS Vol. 8, No. 1, January 2011 206

 Content types. Content types can be used to organize information about
types of documents, such as metadata, document templates, policies, and
workflow processes.

7.2. Agent-Oriented Approach

The usage of software agents in modeling and implementation of a document
management system simplifies the document management. The organization
and implementation of the system are easy to understand and follow,
because most of its parts are uniformly implemented as (mobile) agents:

 User agents to assist individual users (with incorporated access rights).
Every user of the document management system would have a devoted
user agent to assist him/her in the authoring and access processes. Those
user agents would communicate with other agents in the system directly, or
create and send specialized mobile agents in order to achieve the intended
results. Specific user's rights will be incorporated in his/her agent,
controlling access to other agents or registered system services. Every
user agent will need a user interface for communication with the user.

 Specialized agents for document retrieval, indexing, archiving, etc. Those
agents may be mobile or stationary, depending on the nature of the task
they are intended to accomplish. For example, a retrieval agent would be
mobile, searching for documents on every site or library in the system, and
gathering a report. Once back, it will present the report of the status and
location of all found documents.

 Workflow agents to support all kinds of workflows within the system,
including collaboration, versioning, and publishing. For example, publishing
a document may involve the procedures of proofreading, peer or public
reviewing, authorizing, printing and approving etc. Collaboration
procedures, on the other hand, define how a group of users can work on
the same document(s). Workgroups can benefit from agents to coordinate
their access efforts. The Joint Paper Worker, presented in [24, 25], is an
example of a collaboration workflow. A number of common workflows can
be provided in advance, while keeping the possibility to create custom
workflows at any time.
Since the system consists of many autonomous agents, the system is

easily changed, extended, and improved. It is often needed just to introduce
new agents, without the need to change and even to understand the rest of
the system.

8. Concluding Remarks

The idea of implementing a document management system involved two
modern, attractive and promising fields in computer science:

Usage of Agents in Document Management

ComSIS Vol. 8, No. 1, January 2011 207

1. Software agents with the attributes they possess: autonomy, social ability,
responsiveness, proactiveness. Also, two distinguishing characteristics are
very important and make agents more promising for application in different
areas:

 high-level tasks can be delegated to agents who will autonomously carry
them out,

 agents are situated in an environment which can dynamically affect their
problem solving behavior and strategy.

2. Workflow is concerned with automation of procedures where documents,
information or tasks are passed between participants according to a
defined set of rules to achieve or contribute to an overall business goal.
The approach to an agent framework implementation using the Java EE

technology provides for scalability and reliability. This approach offers agent
and service directory services, security, message exchange and agent
mobility. The EJB technology, as a part of the J2EE concept, offers the simple
use of all technologies necessary to implement this approach. The future work
will include defining and implementing the specialized agent language, based
on KQML. Also, all concepts handled by managers will be developed further.
The research in the field of interoperability among different platforms
(including web services) and improvement of security will be taken into
consideration for further real implementation.

The main characteristics of a workflow system suggested in this paper are
almost full decentralization and distribution of workflow functions. The
proposed organization mimics usual user activities in a real flow of work.
Moreover, it relieves them (or any centralized control) from the need to know
what to do next with the work-agent. Every user takes care only of work-
agents that are currently on its node. Where they came from, why they are
here, and where they will go later, is not concern of the user.

Finally, the paper presented a possibility of using the two very attractive
fields (agent technology and workflow) for the document management
implementation, emphasizing the basic features of the proposed system. The
work in these directions has already been started and more significant results
are expected in the following period.

References

1. Aglets Home Page, http://www.trl.ibm.com/aglets/
2. Bellifemine, F., Poggi, A., Rimassa, G.: "JADE – A FIPA-compliant agent

framework", Proceedings of Practical Applications of Intelligent Agents
(PAAM'99), London, April 1999, pp. 97-108.

3. Binder, W., Roth, V.: "Secure mobile agent systems using Java: where are we
heading?", Proceedings of the 2002 ACM symposium on Applied computing,
2002, Madrid, Spain, ISBN:1-58113-445-2, pp. 115-119.

4. Budimac, Z., Ivanović, М., Popović, A.: “Workflow Management System Using
Mobile Agents”, Proc. of ADBIS „99, Lecture Notes in Computer Science 1691,
Springer Verlag, Berlin, (Maribor, Slovenia), pp. 169 - 178, 1999.

Dragoslav Pešović at all.

ComSIS Vol. 8, No. 1, January 2011 208

5. Cai, T., Gloor, P.A., Nog S.: “Dartflow: a workflow management system on the
web using transportable agents”, Technical report PCS-TR96-186, 1996.

6. Chang, W., Scott, C.: “Agent-based workflow: TRP support environment”,
Computer networks and ISDN systems vol. 28, issues 7-11, 1997.

7. Ginsburg, M.: “An Agent Framework for Intranet Document Management”, Journal
of Autonomous Agents and Multi-Agent Systems, volume 2, issue 3, pp. 271-286,
1999.

8. Java Agent Framework Home Page, http://mas.cs.umass.edu
9. Java Agent Template Home Page, http://java.stanford.edu
10. Java Enterprise Edition Homepage, http://java.sun.com/javaee
11. Java homepage, http://java.sun.com
12. Kim Tan, H., Moreau, L.: "Certificates for mobile code security", Proceedings of

the 17th symposium on Proceedings of the 2002 ACM symposium on applied
computing, 2002, Madrid, Spain, ISBN:1-58113-445-2, pp. 76-81.

13. Leymann, F., Roller, D.: “Production Workflow – Concepts and Techniques”,
Prentice Hall PTR, New Jersey, 2000.

14. M. Knapik, J. Johnson. Developing Intelligent Agents for Distributed Systems.
McGraw-Hill, 1998, pp. 3, 37-39.

15. Meng, J., Helal, S., Su, S.: “An ad-hoc workflow system architecture based on
mobile agents and rule-based reasoning”, Proc. of Int. Conf. on parallel, and
distributed computing techniques and applications, Las Vegas, 2000.

16. Merz, M., Liberman, B., Lamersdorf, W.: “Using mobile agents to support inter-
organizational workflow management”, Int. J. on applied artificial intelligence
11(6), pp. 551-572, 1997.

17. Microsoft TechNet Library, http://technet.microsoft.com/en-
us/library/cc261933.aspx[5]

18. Nardi, B., Miller, J., Wright, D.: "Collaborative, programmable intelligent agents",
Communications of the ACM, Volume 41 , Issue 3 (March 1998), pp. 96-104.

19. OMG. Common Object Request Broker: Architecture and Specification. OMG
Specification Revision 2.0, July 1995.

20. Padalkra, A., Nabar, P., Arora, S., Naik, P.: “SWIFT: Scalable workflow
management system using mobile Agents”,
http://www.iitb.ac.in/~pranav/php/paper.pdf, 2000.

21. Papaspyrou, N., Sgouropoulou, C., Skordalakis, E.: “A Model of Collaborating
Agents for Content-Based Electronic Document Filtering”, Journal of Intelligent
and Robotic Systems, vol. 26, no. 2, pp. 199–213, October 1999.

22. Pešović, D., Budimac, Z., Ivanović, M.: “Distributed Mobile Agent Workflow -
Activity Coordination Constructs in Workflow Process Graphs”, Proc. of 11th
International Multiconference Information Society 2008, Ljubljana, Slovenia, Oct
13-17, 2008.

23. Pešović, D., Budimac, Z., Ivanović, M.: “Towards a Visual Definition of a Process
in a Distributed Environment”, 2nd International Symposium on Intelligent
Distributed Computing - IDC'2008, Catania, Italy, 2008.

24. Pešović, D., Budimac, Z.: “Advanced Joint-Paper Worker”, CCS Journal, 4th
issue, pp. 44-46, March 2003.

25. Pešović, D.: “A High-Level Language for Defining Business Processes”, PhD
Thesis, University of Novi Sad, Novi Sad, 2007.

26. Pešović, D.: “The Implementation of a Workflow Management System Using
Mobile Agents”, Master Thesis, University of Novi Sad, Novi Sad, 2002.

27. Roberto, V., Della Mea, V., Di Gaspero, L., Conti, A.: “MANTHA: Agent-based
Management of Hypermedia Documents”, Proceedings of 6th IEEE Int. Conf. on

Usage of Agents in Document Management

ComSIS Vol. 8, No. 1, January 2011 209

Multimedia Computing and Systems (IEEE ICMCS '99), Firenze, IEEE Computer
Society, vol II, pp. 814-818, 1999.

28. Sheth, A., Kochut, K., Miller, J., Worah, D., Das, S., Lin, C., Palaniswami, D.,
Lynch, J., Shevchenko, I.: “Supporting State-wide Immunization Tracking using
Multi-Paradigm Workflow Technology”, Proc. of 22nd VLDB Conference (Bombay,
India), 1996.

29. Stormer, H.: “A flexible agent-based workflow system”, Workshop on Agent-based
approaches to B2B, 2001.

30. Varadharajan, V.: "Security enhanced mobile agents", Proceedings of the 7th
ACM conference on Computer and communications security, Greece, Athens,
November 2000, pp. 200-209.

31. Vidaković M., Konjović Z.: "One Implementation of Virtual Library Based on Agent
Technology", Proceedings of the 4th Conference on Informatics and Information
Technology, Bitola, 11-14 of December, 2003

32. Vidaković, M., Konjović, Z., "EJB Based Intelligent Agents Framework",
Proceedings of the 6th IASTED International Conference on Software Engineering
and Applications (SEA 2002), Cambridge, USA, November 4-6, 2002, pp. 343-
348

33. Vidaković, M., Sladić, G., Konjović, Z., "Security Management In J2EE Based
Intelligent Agent Framework", Proceedings of the 7th IASTED International
Conference on Software Engineering and Applications (SEA 2003), Marina Del
Rey, USA, November 3-5, 2003, pp. 128-133

34. Vidaković, M., Sladić, G., Zarić, M.: "Metadata Harvesting Using Agent
Technology", Proceedings of the 8th IASTED International Conference on
Software Engineering and Applications (SEA 2004), Cambridge, USA, November
9-11, 2004., pp. 489-493

35. Vuong, S., Fu, P.: "A security architecture and design for mobile intelligent agent
systems", ACM SIGAPP Applied Computing Review archive, Volume 9 , Issue 3
(Fall 2001), pp. 21-30.

36. Wilson, L., Burroughs, D., Sucharitaves, J., Kumar, A.: "An agent-based
framework for linking distributed simulations", Proceedings of the 32nd conference
on Winter simulation, 2000 , Orlando, Florida, ISBN:1-23456-789-0, pp. 1713 –
1721.

37. Workflow Management Coalition, Hollingsworth, D.: “The Workflow Reference
Model”, Homepage of Workflow Management Coalition, 1995.

38. Workflow Management Coalition: “Terminology and Glossary”, Homepage of
Workflow Management Coalition, 1999.

39. Workflow Management Coalition: “Workflow Process Definition Interface – XML
Process Definition Language, Version 1.0”, Homepage of Workflow Management
Coalition, 2002.

Dragoslav Pešović is an assistant professor at Faculty of Science,
Department of Mathematics and Informatics, University of Novi Sad. His
research interests include: mobile agents and distributed systems. He has
published 10 scientific papers in proceedings of international conferences,
has written 2 university textbooks.

Dragoslav Pešović at all.

ComSIS Vol. 8, No. 1, January 2011 210

Milan Vidaković is holding the associate professor position at the Faculty of
Technical Sciences, Novi Sad, Serbia. He received his PhD degree (2003) in
Computer Science from the University of Novi Sad, Faculty of Technical
Sciences. Since 1998 he has been with the Faculty of Technical Sciences in
Novi Sad. Mr. Vidaković participated in several science projects. He published
more than 60 scientific and professional papers. His main research interests
include web and internet programming, distributed computing, software
agents, and language internationalization and localization.

Zoran Budimac is a professor at Faculty of Science, Department of
Mathematics and Informatics, University of Novi Sad. He graduated in 1983
(informatics), received master‟s degree (computer science) in 1991 and
doctor‟s degree (computer science) in 1994. His research interests include:
mobile agents, e-learning, software engineering, case-based reasoning,
implementation of programming languages. He has been project leader for
several international and several national projects. He has published over 180
scientific papers in proceedings of international conferences and journals, has
written more than 12 university textbooks in different fields of informatics.

Mirjana Ivanović is a professor at Faculty of Sciences, Department of
Mathematics and Informatics, University of Novi Sad. She graduated in 1983
(informatics), received master‟s degree (discrete mathematics and
programming) in 1988 and doctor‟s degree (computer science) in 1992. Her
research interests include: multi-agent systems, e-learning and web-based
learning, data mining, case-based reasoning, programming languages and
tools. She actively participates in more than 10 international and several
national projects. She has published over 190 scientific papers in proceedings
of international conferences and journals, has written more than 10 university
textbooks in the field of informatics and ICT. She is the Head of Computer
Science Chair.

Jovana Vidaković is a teaching assistant at Faculty of Sciences, Department
of Mathematics and Informatics, University of Novi Sad. She graduated in
1999 (informatics), received master‟s degree in 2003. Her main research
interests include databases, XML technologies, web and internet
programming. She has published 7 scientific papers and has been coauthor
of 1 university textbook.

Received: June 08, 2010; Accepted: February 04, 2010.

