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Abstract. Knowledge base maintenance is managed by constructing a 
formal model. In this model the representation of each chunk of know- 
ledge encapsulates the knowledge in a set of declarative rules, each of 
which in turn encapsulates the knowledge in a set of imperative 
programs. In this model an “item” is the unit of knowledge 
representation. Items are at a higher level of abstraction than rules. 
Understanding what has to be done to maintain the integrity of an item 
leads to a specification of the modifications to the set of programs that 
implement it. An analysis of the maintenance of the formal model is 
achieved by introducing maintenance links. Analysis of the maintenance 
links shows that they are of four different types. The density of the 
maintenance links is reduced by transforming that set into an equivalent 
set. In this way the knowledge base maintenance problem is analysed 
and simplified. A side benefit of knowledge items as a formalism is that 
they contain knowledge constraints that protect the knowledge from 
unforeseen modification. 

 

1. Introduction 

 
The problem of maintaining the consistency of a first-order knowledge base is 
not computable. This means that no algorithmic method can address the 
knowledge base integrity maintenance problem [1]. But it does not mean that 
the maintenance problem is not worth analysing, or that an analysis of it can 
not lead to its simplification, or that such simplifications can not have 
practical value. Here the knowledge base maintenance problem is analysed in 
terms of four kinds of “maintenance link”. Two of these kinds of link can in 
principle be removed completely but not with an algorithm, another may be 
simplified with a method, and the final kind can not be simplified or removed. 
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The resulting set of links admits no further simplification and so in that 
sense is optimal for the representation chosen. 

This analysis is made possible by the choice of knowledge model. In this 
model knowledge is represented at a high level of abstraction. The 
representation of each chunk of knowledge encapsulates the knowledge in a 
set of declarative rules, each of which in turn encapsulates the knowledge in 
a set of imperative programs. So this analysis has implications for the 
maintenance of imperative programs as well as for knowledge bases. In this 
representation each chunk of knowledge is represented as an “item” [2]. An 
item admits one or more declarative interpretations as ifthen rules that share 
common wisdom. In turn, each if-then declarative interpretation admits one 
or more imperative interpretations as programs. In particular, if two 
programs are instances of the same knowledge item then it may be the case 
that modification of one of them means that the other too should be modified. 
Items are a uniform representation for knowledge in the sense that all “data”, 
“information” and “knowledge” things are represented in the same way. The 
insights gained by analysing the maintenance of items leads naturally to an 
understanding of the maintenance of if-then rules, conventional programs 
and other knowledge representation paradigms [3]. The integrity of items 
represented in this model is maintained by following maintenance links — 
the structure of these links is simplified by a decomposition process.  

For either a knowledge base implementation or an imperative 
implementation, the maintenance problem is to determine which programs in 
it should be checked for correctness in response to a change in the application 
[4]. Given any form of conceptual model for knowledge, maintenance links 
may be introduced that join two things in that model if a modification to one 
of them means that the other must necessarily be checked for correctness, 
and so possibly modified, if consistency of that model is to be preserved. If 
that other thing requires modification then the links from it to yet other 
things are followed, and so on until things are reached that do not require 
modification. If node A is linked to node B which is linked to node C then 
nodes A and C are indirectly linked. In a coherent model of an application 
everything is indirectly linked to everything else. A good conceptual model for 
maintenance will have a low density of maintenance links [5]. Ideally, the set 
of maintenance links will be minimal in than none may be removed. 
Informally, one conceptual model is “better” than another if it takes less 
effort to validate it. The aim of this work is to generate a good conceptual 
model. A classification of maintenance links into four classes is given here. 
Methods are given for removing two of these classes of link so reducing the 
density of maintenance links in the resulting model. In this way the 
maintenance problem is simplified. 
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Approaches to the maintenance of declarative conceptual models are 
principally of two types [6]. First, approaches that take a model ‘as is’ and 
then try to control the maintenance process [7]. Second, approaches that 
engineer a model so that it is in a form that is inherently easy to maintain [8] 
[9]. The approach described here is of the second type because maintenance is 
driven by a maintenance link structure that is simplified by transforming the 
model. 

The majority of conceptual models for knowledge-based systems treat the 
“rule base” component separately from the “database” component. This 
enables well established design methodologies to be employed, but the use of 
two separate models means that the interrelationship between the things in 
these two models cannot be represented, integrated and manipulated 
naturally within the model [4]. Further, neither of these two separate models 
is able to address completely the validity of the whole knowledge base. 

The terms data, information and knowledge are used here in the following 
sense. The data things in an application are the fundamental, indivisible 
things. Data things can be represented as simple constants or variables. If an 
association between things cannot be defined as a succinct, computable rule 
then it is an implicit association. Otherwise it is an explicit association. An 
information thing in an application is an implicit association between data 
things. Information things can be represented as tuples or relations. A 
knowledge thing in an application is an explicit association between 
information and/or data things. Knowledge can be represented either as 
programs in an imperative language or as rules in a declarative language.  

2. Maintaining knowledge in implementable 
representations 

A simple example is used to motivate this discussion by examining the issues 
with maintaining two simple chunks of ‘system knowledge’ as represented in 
both a conventional imperative formalism and in a rule-based declarative 
formalism. The first chunk is: [K1] “The sale price of a part is the cost price of 
that part marked up by the mark-up rate for that part”. The second chunk is: 
[K2] “The profit on a part is the difference between the marked-up cost price 
and the raw cost price”. 

Even if these two chunks of knowledge are valid they may contain a 
potential ‘maintenance hazard’. For example, if [K3] “The profit on a part is 
the difference between the sale price and the cost price of that part” is valid 
then [K2] may be derived from both [K1] and [K3]. Why does this present a 

ComSIS Vol.2, No. 1,  June 2005                                                                                3 
 
 
 
 



John Debenham  
 
 
 
 

problem? If the knowledge in either [K1] or [K3] becomes invalid and so is 
modified then [K2] should be modified as well. The relationship between 
these three chunks is not difficult to identify given the raw chunks, but, as is 
illustrated below, given only implementations of particular interpretations of 
those chunks — even with documentation — the relationship becomes 
noticeably more obscure. 

2.1. Imperative representations 

Chunk [K1] leads to a number of different imperative interpretations each of 
which can be implemented as a program. Two such programs are given below 
as Java methods. In this simple implementation, parts are identified by an 
integer part number, both the cost in cents and the mark-up per cent, of 
parts, are stored in an integer array part cost mark-up[][]. These programs, 
and the system of which they are part, are not intended to illustrate high 
quality systems design. They are intended to illustrate the difficulty in 
identifying links between such imperative interpretations of chunks of 
system knowledge. The first method returns the sale price of an item given 
its part no: 
 
static int part sale price( int part no, int part cost     
           markup[][], int no of part nos ) { 
 if (no of part nos < 1 ) return -1; 
 for ( int count = 0; count < no of part nos; count++ ){  
   if ( part cost markup[count][0] == part no ) { 
     return part cost markup[count][1] * 
        part cost markup[count][2] / 100; 
   } 
 } 
 return -1; 
} [P1] 
 
The second method returns the part number of a part that sells for a given 
sale price: 
 
static int sale price part( int sale price, int part cost    
           markup[][], int no of part nos ) { 
  if (no of part nos < 1 ) { return -1; }  
  for ( int count = 0; count < no of part nos; count++ ) {    
    if (( part cost markup[count][1]*part cost     
        markup[count][2]/ 100 ) == sale price ) { 
      return part cost markup[count][0]; 
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  } 
}return -1; 
} [P2] 
 
These two methods are related in that they are both based on different 
imperative interpretations of the same knowledge chunk. So if it is necessary 
to modify one of them then it may be necessary to modify the other. Further 
these two methods can not necessarily be guaranteed to reside in the same 
object in the system design although they are clearly both intimately 
associated with the array part cost markup[][]. Informally, the second is 
similar to the first but with “the implication going the other way”. From a 
maintenance perspective, it is reasonable to estimate that the possibility of 
the relationship between [P1] and [P2] being overlooked is neither ‘high’ nor 
‘insignificant’. 

Chunk [K2] also has a number of different imperative interpretations. One 
such interpretation may be used to calculate the profit on an item given its 
part no: 
 
static int part profit( int part no, int part cost  
           markup[][], int no of part nos ) { 
  if (no of part nos < 1 ) { return -1; }  
  for ( int count = 0; count < no of part nos; count++ ) {    
    if ( part cost markup[count][0] == part no ) { 
      return ( part cost markup[count][1] * 
    ( part cost markup[count][2] - 100 ) ) / 100 ; 
  } 
}return -1; 
} [P3] 
 
Method [P3] is closely related to both methods [P1] and [P2] but this 
relationship is more obscure than the relationship between [P1] and [P2]. To 
make maters worse, [P3] is also related to chunk [K3] which may not have 
even been identified. So the possibility of the relationship between [P3] and 
{[P1], [P2]} being overlooked is high, and between [P3] and [K3] is very high 
— after all, [K3] has yet to be identified! Further the system knowledge 
embedded in [P3] may also manifest itself in a method to calculate the profit 
on other things besides ‘parts’ whose data is not stored in a two-dimensional 
array. Such a method should also be linked to the above. The simplicity of 
these examples should not detract from the importance of the principle that 
the failure to identify relationships between the chunks of knowledge, 
imperative interpretations of which are high level descriptions of methods, 
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leads to maintenance hazards. The analysis presented here removes these 
hazards completely. 

2.2. Declarative representations 

In a declarative representation an if-then interpretation of a knowledge 
chunk is represented directly in an “if-then” formalism. In the 1980s there 
was considerable interest in building expert systems. At that time declarative 
formalisms, in particular if-then formalisms such as logic programming, 
provided one way of computing with knowledge that was far easier to use 
than imperative formalisms. The comparative ease of use of ifthen 
formalisms was responsible for the misapprehension that knowledge could be 
thought of as “if-then stuff”. In a sense this is true. If a chunk of knowledge 
has a number of if-then interpretations then it is unlikely that more than one 
of those interpretations will be useful at any particular time. One 
consequence of this misapprehension is that changes in the validity of one if-
then interpretation that is not implemented may have subtle implications for 
the validity of a number of parts of the knowledge base that are implemented. 
Approaches to modelling expert systems applications were also based on 
other than declarative representations; for example, on frame-based systems, 
but these are not considered here. During the ‘age of expert systems’ it was 
not uncommon to hear knowledge engineers observe: “I took considerable 
trouble to build the knowledge base well but now I find that a simple change 
in the application can lead to an extensive maintenance task”. One reason for 
such an observation is that apparently useless links in the raw knowledge 
have been ignored. 

In the hype that surrounded the early days of Prolog, the declarative 
paradigm appeared to offer significant benefits to the representation and 
maintenance of system knowledge. For example, a sort program in Prolog if 
‘driven backwards’ can be used as a — not necessarily efficient — 
permutation generator. But at least as far as the representation of knowledge 
is concerned, declarative formalisms enable different imperative 
interpretations to be bundled into one declarative program. So — in theory — 
declarative formalisms reduce the number of possible program 
interpretations of system knowledge, and so — in theory — assist with 
maintenance. One problem in practice is that, as with the sort program  
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Fig 1. The abstraction hierarchy for chunk [K1]: knowledge rules and programs 
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mentioned above, it is difficult to write programs in Horn clause logic, or in 
any declarative formalism, that operate efficiently in both forward and 
reverse gear. Setting this issue aside for the moment, Horn clause logic 
provides a clean representation of system knowledge, but it is not powerful 
enough to represent a single chunk of system knowledge in a single logic 
program. 

Consider the chunk of knowledge [K1] as given above. This single chunk is 
a simple statement of fact: it is not in an if-then form. Under a reasonable 
understanding of the meaning of chunk [K1] it admits three different if-then 
interpretations: 
 

part/sale-price(x,y)    part/co t-price(x, z), ← s

s (

  part/mark-up(x,w),y = (z ·w)   [C1.1] 
part/cost-price(x, z)  part/sale-price(x,y), ←

 part/mark-up(x,w),y = (z ·w)   [C1.2] 
part/mark-up(x,w)  part/sale-price(x,y), ←

part/co t-price x, z),y = (z ·w)   [C1.3] 
 
For the third of these if-then interpretations — with “part/mark-up” as its 
head — there is a possibility of round-off error. Each of these three clauses 
may be driven in two directions, alternatively, using the powerful string-
matching ‘unification’ method of Prolog they may pass partly assembled data 
structures in and out as arguments. For example, [C1.1] may be used both to 
find the sale price of a given part, and to find a part with a given sale price. 
Despite this representation power, all three clauses are required to capture 
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all of the wisdom in chunk [K1]. The three clauses [C1.1] — [C1.3] are an 
inconvenient representation of the single chunk [K1] in that one statement of 
fact has been represented as three logical statements. A hierarchy is 
emerging in these examples. In it a chunk of knowledge is interpreted as a 
set of if-then statements eachof which is interpreted as a set of imperative 
programs. The hierarchy for chunk [K1] is shown in Fig. 1. 

Consider the chunk of knowledge [K2] as given above. As for [K1], the 
chunk [K2] is not in an if-then form. Under a reasonable understanding of its 
meaning, it also admits three if-then interpretations: 
 
      part/profit(x,y)           part/co t-price(x,w), part/mark-up(x,u), ← s

s (
z = (w × u),y = z−w   [C2.1] 

part/co t-price x,w)       ←       part/profit(x,y), part/mark-up(x,u), 
 z = (w × u),y = z−w   [C2.2] 

part/mark-up(x,u)         ←  part/cost-price(x,w), part/profit(x,y), 
z = (w × u),y = z−w   [C2.3]  

 
The six Horn clauses above [C1.1] — [C2.3] may be combined using resolution 
to give some potentially useful clauses: 

 
part/profit(x,y)    part/co t-price(x,w), part/mark-up(x,u), s

z = (w×u),y = z−w     [C3] 
part/profit(x,y)    part/sale-price(x, z), part/mark-up(x,u), 

z = (w×u),y = z−w     [C4] 
part/mark-up(x,w)    part/sale-price(x,y), part/profit(x,u), 

u = y−z,y = (z×w)      [C5] 
 

as well as some rather useless clauses: 
 

part/sale-price(x,y)   part/sale-price(x,v), part/profit(x,u), 
u = v−z, part/mark-up(x,w),y = (z×w)     [C6] 

 
A danger with all of [C3]—[C6] is that they are assembled from particular if-
then interpretations of two chunks of knowledge, namely [K1] and [K2]. If the 
meaning of either of those two chunks should change then [C3] — [C6] may 
all have to be changed as well. This is not a problem if the relationships 
between [C3] — [C6] and both [K1] and [K2] are represented. But in the 
declarative representation, it is not clear that the meanings of [K1] and [K2] 
are buried in the four clauses [C3] — [C6]. So [C3] — [C6] and any other 
clauses derived from the original six clauses above, are potential 
maintenance hazards [10]. Given the six original clauses [C1.1] —[C1.3], 
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[C3.1] — [C3.3] there is no reason to combine them as illustrated in [C3] — 
[C6]. But clauses such as [C3] — [C6] are valid and could have been 
constructed by a programmer as part of a system. If they form part of a 
system then they may constitute a maintenance hazard [10]. To make 
matters worse, chunk [K3] is buried inside the three clauses [C2.1] — C[2.3].  

The discussion in this sub-section and in the previous sub-section is not 
intended to imply that traditional programming languages and methods 
should be discarded. The point is that no matter what programming language 
is used the problem of maintaining programs in that language is ideally 
tackled through a high level model of knowledge with the property that one 
chunk of real knowledge is represented in one place and for which there is a 
method for representing and removing the relationships between those 
chunks [11]. Such a model is described below. If the chunks represented in 
this model are linked to the programs that implement them then these links 
together with those in the model itself provide a maintenance map for the 
programs. 

3. A unified representation 

A representation formalism is a unified representation if all “data”,  
information” and “knowledge” things are represented in the same way. The 
terms data, information and knowledge are used here in the following sense. 
The data things in an application are the fundamental, indivisible things. 
Data things can be represented as simple constants or variables. If an 
association between things cannot be defined as a succinct, computable 
statement then it is an implicit association. Otherwise it is an explicit 
association. An information thing in an application is an implicit association 
between data things. Information things can be represented as tuples or 
relations. A knowledge thing in an application is an explicit association 
between information and/or data things. Knowledge can be interpreted either 
as programs in an imperative language or as rules in a declarative language. 

The expressive power of a unified representation must be able to describe 
at least the data, information and knowledge things. The unified   
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Fig.2. A thing and its representation in the unified representation, a declarative 
representation and an imperative interpretation 

 
 

representation described here also contains two classes of constraints that 
apply equally to knowledge, information and to data. These constraints 
provide safeguards against invalid maintenance operations. In [12] these 
constraints are generalised to fuzzy acceptability measures of knowledge base 
integrity. Item and object join has been extended to apply to those measures 
[10]. 

Why use a unified knowledge representation [2]? A knowledge 
representation with the property that a single chunk of system knowledge is 
represented as a single entity is at a level of abstraction that is far closer to 
‘reality’ than traditional declarative or imperative formalisms. There is a 
hierarchy: a real chunk of knowledge is represented as a single “item” in the 
unified representation. Each item has a number of interpretations as if-then 
forms. Each if-then form has a number of interpretations as imperative 
programs. This is illustrated in Fig. 2. 

Further, if the unified knowledge representation treats data, information 
and knowledge in the same way then links between these three classes of 
things may also be represented. The majority of knowledge representation 
formalisms treat these three classes quite differently and so such links have 
no natural representation. Items represent all data, information and 
knowledge things in an application [4]. 

Items incorporate two powerful classes of constraints. The key to this 
uniform representation is the way in which the “meaning” of an item, called 
its semantics, is specified. The semantics of an item is a function that 
recognises the members of the “value set” of that item. The 
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     part/sale-price  part/cost-price part/mark-up 

 
Table 1. Value set for the knowledge item [part/sale-price,  part/cost-price,  
               part/mark-up].  
 
value set of an item will change in time t, but the item’s semantics should 
remain constant. The value set of a data item at a certain time t is the set of 
labels that are associated with a population that implements that item at 
that time. The value set of an information item at a certain time t is the set of 
tuples that are associated with a relational implementation of that item at 
that time. Knowledge items have value sets too. Consider again the chunk of 
knowledge [K1] “the sale price of a part is the cost price of that part marked 
up by the mark-up rate for that part”; this chunk is represented by the item 
named [part/sale-price, part/cost-price, part/markup] with a value set of 
corresponding sextuples. This example illustrates a preference for using 
binary relations. When system knowledge is expressed in terms of such 
binary relations it tends to be in a simple form. A possible value set for this 
chunk is shown in Table 1. This chunk admits three interpretations as 
declarative rules which in turn lead to at least five non-trivial imperative 
programs. 

The idea of defining the semantics of items as recognising functions for the 
members of their value set extends to complex, recursive knowledge items. 
Consider the chunk of knowledge “If two persons have the same address then 
they are cohabitants”. This chunk can be represented by the item: 
[person/cohabitant, person/address]. The meaning of this item may be defined 
by the single clause:  
 

person/cohabitant(x,y)    person/address(x, z), 
person/address(y, z),x ≠  y 

 
The semantics of an item is the recognising function for its value set. The 
trick to dealing with recursive items is to identify the correct value set for 
this purpose. A first attempt at constructing the value set of this chunk could 
be the four-tuples associated with the two information items 
person/ ohabitant and person/address, but it is hard to construct a c
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recognising function for this value set. A function may be specified that 
recognises the value set of this item displayed in a different way. Consider 
the function: 
 
 

(u,v,w,x,y,z) ∈  Value set of [person/cohabitant, person/address]  ↔
    (u,v) ∈Value set of person/cohabitant ∧  
      (w,x) ∈Value set of person/address ∧  
      (y, z) ∈Value set of person/address ∧  
      (((u = w) ∧  (v = y) ∧  (u ≠ v)) ∧  (x = z)) 
 
 

This function recognises the tuples in the value set consisting of the three 
information items person/ ohabitant, person/address and person/address. 
Hence if this set of six-tupes is the value set then the [person/cohabitant, 
person/address] item has a simple recognising function. The trick here is to 
use a double occurrence of the component information item person/address. 
The semantics of recursive knowledge items are defined in this way with 
value sets that have multiple occurrences of component information items. 

c

 
An item is a named triple A[SA,VA,CA] with item name A, SA is the item 

semantics of A, VA is the item value constraints of A andCA is the item set 
constraints of A. The item semantics, SA, is a �-calculus expression that 
recognises the members of the value set of item A. The expression for an 
item’s semantics may contain the semantics of other items A1,...,An which 
are called that item’s components. 
 
 

λX1X2Y1Y2Z1Z2· [(Spart/sale-price(x1,x2) ∧ Spart/cost-price(y1,y2) ∧  
                 Spart/mark-up(z1, z2)) ∧  
                   (((x1 = y1) ∧ (x1 = z1)) →  (x2 = z2×y2))]· 
 

This expression asserts that the pair (x1,x2) satisfies the semantics of the 
item part/sale-price, that (y1,y2) satisfies the semantics of the item part/cost-
price, that (z1, z2) satisfies the semantics of the item part/markup, and that: 
 

(((x1 = y1) ∧ (x1 = z1))  (x2 = z2×y2)) →
 

holds. This last component of the semantics expression is the substantive 
part. The essence of this expression is represented in the ‘schema notation’ in 
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Table 2 — the meaning of the last two rows in that Figure are discussed 
below.  
 

item name 
components 
dummy variables 
semantics 
constraints 
set constraints 

 
Table 2. Shema for the item [part/sale-price,  part/cost-price, part/mark-up]. 

 
The schema notation is intended to make the unified representation more 
accessible. The important feature of the λ -calculus form or the schema form 
is that they each represent all that chunk [K1] says. For example, the two 
programs [P1] and [P2] are both interpretations of the item whose semantics 
is shown in Table. 2. 

In general the item semantics is an expression of the form: 

 
where J is a first-order predicate. The item value constraints, VA, is a �-
calculus expression: 

 
where K is a first-order predicate, that should be satisfied by the members of 
the value set of item A as they change in time. So if a tuple satisfies SA then 
it should satisfy VA [13]. The expression for an item’s value constraints 
contains the value constraints of that item’s components. The item set 
constraints, CA, is an expression of the form: 

 
where L is a logical combination of: 
– Card lies in some numerical range; 
– Uni(Ai) for some i, 1  i ≤ ≤  n, and 
– Can(Ai,X) for some i, 1 ≤ i ≤  n, where X is a non-empty subset of 
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   {A1, . . . ,An}−{Ai} 
 
subscripted with the name of the item A, “Uni(a)” means that “all members of 
the value set of item a must be in this association”. “Can(A,X)” means that 
“the value set of the set of items X functionally determines the value set of 
item A”. “Card” means “the number of things in the value set”. The subscripts 
indicate the item’s components to which that set constraint applies. 

For example, each part may be associated with a cost-price subject to the 
“value constraint” that parts whose part-number is less that 1999 should be 
associated with a cost price of no more than $300. A set constraint specifies 
that every part must be in this association, and that each part is associated 
with a unique cost-price. The information item named part/cost-price then is: 

 
 
Chunks of knowledge can also be defined as items, although it is neater to 
define knowledge items using “objects”, see Sec 3.1. “Objects” are item 
building operators. The knowledge item [part/sale-price, part/cost-price, 
mark-up] which means “the sale price of parts is the cost price marked up by 
a uniform markup factor” is: 

 
 
The λ-calculus representation is rather clumsy. In practice items are 
represented in a more convenient schema notation. The schema notation for 
the above knowledge item, including its constraints, is illustrated in Table 2. 

Two different items can share common embedded knowledge. This is a 
generalisation of the particular point made above that two programs may 
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implement the essence of the ‘mark-up knowledge’ in different contexts 
besides the mark-up of ‘spare parts’. If this is so then those two items 
constitute a maintenance hazard. This problem can be avoided to some extent 
by using objects. If two items share some common embedded knowledge then 
declarative rules and imperative programs derived from them may also share 
common knowledge. For this reason, basing the approach to knowledge base 
maintenance at the abstract level of items simplifies maintenance. 

3.1. Objects 

To make the inherent structure of items clear, ‘objects’ are introduced as item 
building operators. The use of objects to build items enables the hidden links 
in the knowledge to be identified. A single operation for objects enables these 
hidden links to be removed from the knowledge thus simplifying 
maintenance. 
 

An n-adic obj ct is an operator that maps n given items into another item 
for some value of n. Further, the definition of each object will presume that 
the set of items to which that object may be applied are of a specific “type”. 
Examples of item type include D

e

m for m-adic data items, Im for m-adic 
information items and Km for m-adic knowledge items. Items may also have 
unspecified, or free, type which is denoted by Xm. The formal definition of an 
object is similar to that of an item. An object named A is a typed triple 
A[E,F,G] where E is a typed expression called the semantics of A, F is a typed 
expression called the value constraints of A, and G is a typed expression 
called the set constraints of A. For example, the part/cost-price item can be 
built from the items part and cost-price using the costs operator: 
 

 
 
where ν (costs,P,Q) is the name of the item costs(P,Q). As for items, objects 
are more digestible in the schema notation. The schema for the costs object is 
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shown in Table 3 where universal set constraints are denoted by an ‘ ∀ ’ and 
candidate constraints by an ‘ ⊗ ’ and a ‘——’. 
 
 

object name 
argument type 
dummy variables 
semantics 
value constraints 
set constraints 

 
 

Table 3. The shema for the object costs 
 

Data objects provide a representation of sub-typing. Data objects are used 
in the conceptual model to derive individual data items from the universal 
item U, where U = U[λx·x :U·,λx·>·,/0], “U” is the “universe of discourse” and 
> is the constant “true” expression. The data object part is: 
 

 
 
If the object part is applied to the universal item U it then generates the item 
part by: part = partU. 
 

Declarative rules are quite clumsy when represented as items; objects 
provide a more compact representation. For example, consider the [part/sale-
price, part/cost-price, part/mark-up] knowledge item which represents the 
chunk of knowledge [K1] “The sale price of a part is the cost price of that part 
marked up by the markup rate for that part”. This item can be built by 
applying a knowledge object mark-up-rule of argument type (I2, I2, I2) to the 
items part/sale-price, part/cost-price and part/markup. That is: 
 

[part/sale-price,part/cost-price, part/mark-up] = 
mark-up-rule(part/sale-price, part/cost-price, part/mark-up) 
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Table 4. The shema for the object mark-up-rule 

 
Objects also represent value constraints and set constraints in a uniform 
way. The mark-up-rule object is: 
 

 
 
and its schema form is shown in Table 4. 

3.2. The join operator 

Item join provides the basis for item decomposition [4]. Given items A and B, 
the item with name AE B is called the join of A and B on E, where E is a set 
of components common to both A and B. Consider: 
 

and 
 

Suppose that SA has n variables, that is A is an n-adic item. Suppose that SB 
has m variables, that is B is an m-adic item. Some of the components of A and 
B may be identical. Suppose that k pairs of components of A and B that are 
identical are identified, where k 0. Let E be an ordered set of components 
where each is one of these identical pairs of components of both A and B. E 

≥
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may be empty. To ensure that the definition is well defined the order of the 
components in the set E is the same as order in which they occur as 
components of A. Suppose the semantics expressions of the components from 
item A (or item B) that are in the set E are expressed in terms of a total of p 
variables. Let A* be an n-adic item that is identical to item A except for the 
order of its variables. The last p variables in A* are those variables in A that 
belong to the components of A in the set E. Let B* be an m-adic item that is 
identical to item B except for the order of its variables. The first p variables 
in B* are those variables in B that belong to the components of B in the set E. 
Let π’ be a permutation that turns the ordered set of variables of A* into the 
ordered set of variables of A. Let π be a permutation that turns the ordered 
set of variables of B* into the ordered set of variables of B. Suppose that x is 
an (n−p)-tuple of free variables, y is a p-tuple of free variables and z is an 
(m−p)-tuple of free variables. Then the item with name A ⊗ E B is the join of 
A and B on E, it is defined to be: 
 

 
 
where CA EB⊗  is defined as follows. Suppose that CA is an expression of the 
form cA ∧ G where c is that part of CA that carries the subscript ‘A’ and G is 
that part of CA that carries subscripts other than ‘A’. Likewise suppose that 
CB  is an expression of the form dB ∧ H. Then: 
  

 
 
The set E is a set of identical pairs of components of A and B. If E is the set of 
all identical pairs of components of A andB  then A ⊗ E B may be written as 
A B. ⊗

Using the method of composition , knowledge items, information items and 
data items may be joined with one another regardless of type. For example, 
the knowledge item: 
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can be joined with the information item part/cost-price on the set {costprice} 
to give the information item part/cost-price/tax. In other words: 
 

 
 

Using the item join operator, items may be joined together to form more 
complex items. The  operator also forms the basis of a theory of decomposition 
in which each item is replaced by a set of simpler items. An item I is 
decomposable; into the set of items D = {I1, I2, ..., I Iin} if:  has non-trivial 
semantics for all i, I = I1 ⊗ I2 ⊗ ··· ⊗ In, where each join is monotonic; that is, 
each term in this composition contributes at least one component to I. If item 
I is decomposable then it will not necessarily have a unique decomposition. 
The join operator for objects is defined in a similar way to item join and is 
also denoted by . When  is used to join two objects it is subscripted with a set 
of pairs of positive integers that identify the component pairs in the first and 
second argument ofthat are being joined. The method of decomposition is: 
“Given a conceptual model discard any items and objects which are 
decomposable”. For example, this method requires that the item part/cost-
price/tax should be discarded in favour of the two items [cost-price,tax] and 
part/cost-price. 

4. Analysis of the conceptual model 

A conceptual model consists of: 
– the universal data item U, 
– an object library, 
– a conceptual diagram, and 
– a set of maintenance links. 
 
where, U, the universal data item, is as defined above. The conceptual 
diagram is a graph in which each item is represented by a node and is linked 
to those nodes from which it can be derived by applying an object operator. 
The conceptual diagram also shows the programs that implement the model 
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and links them to the knowledge-items from which they are derived. So the 
items in the conceptual model are constructed by applying a set of object 
operators to U. A maintenance link joins two items in the conceptual model if 
modification of one item means that the other item must be checked for 
correctness, and maybe modified, so that the consistency of the conceptual 
model is preserved [14]. The number of maintenance links can be very large. 
So maintenance links can only form the basis of a practical approach to 
knowledge base maintenance if there is some way of reducing their density on 
the conceptual model.  
 
RESULT. 
Sub-item links may be reduced to sub-type links between data items. 
Demonstration: 
Given two items A and B, where both are n-adic items with semantics SA and 
SB respectively, if π is permutation such that: 
 

 
 
then item B is a sub-item of item A. These two items should be joined with a 
maintenance link. If A and B are both data items then B is a sub-type of A. 
Suppose that: 
 

 X = ED; where D = CAB         (1) 
 
for items X, D, A and B and objects E and C. Item X is a sub-item of item D. 
Object E has the effect of extracting a sub-set of the value set of item D to 
form the value set of item X. Item D is formed from items A and B using 
object C. Introduce two new objects F and J. Suppose that object F when 
applied to item A extracts the same subset of item A’s value set as E 
extracted from the “left-side” (ie. the “A-side”) of D. Likewise J extracts the 
same subset of B’s value set as E extracted from D. Then: 
 
    X = CGK; where G = FA and K = JB        (2) 
 
so G is a sub-item of A, and K is a sub-item of B. The form (2) differs from (1) 
in that the sub-item maintenance links have been moved one layer closer to 
the data item layer, and object C has moved one layer away from the data 
item layer. Using this method repeatedly sub-item maintenance links 
between non-data items are reduced to sub-type links between data items.  
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RESULT. 
There are four kinds of maintenance link in a conceptual model built using 
the uniform knowledge representation. 
Demonstration: 
Consider two items A and B, and suppose that their semantics SA and SB
have the form: 
 

 
 
SA contains (p+1) terms and SB contains (q+1) terms. Let µ be a maximal sub-
expression of SA B⊗  such that: 
 

           both                      and                                                           (3)                       
 
where µ has the form: 
 

 
 
If µ is empty, ie. ‘false’, then the semantics of A and B are independent. If µ is 
non-empty then the semantics of A and B have something in common and A 
and B should be joined with a maintenance link.  

Now examine µ to see why A and B should be joined. If µ is non-empty 
then there are three cases. First, if: 
 
               (4)  
    
then items A and B are equivalent and should be joined with an equivalence 
link. Second if (4) does not hold and: 
 
                                          either                or                                               (5) 
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then either A is a sub-item of B, or B is a sub-item of A and these two items 
should be joined with a sub-item link. Third, if (4) and (5) do not hold then if 
∆ is a minimal sub-expression of SA such that ∆ →µ. Then: 
 
 
                            either                                    for some j                            (6) 
                                or                                                                                  (7)        
 
 
Both (6) and (7) may hold. If (6) holds then items A and B share one or more 
component items to which they should each be joined with a component link. 
If (7) holds then items A and B may be constructed with two object operators 
whose respective semantics are logically dependent. Suppose that item A was 
constructed by object operator C then the semantics of C will imply: 
 
 

 
 
 
where the Qi’s take care of any possible duplication in the Pj’s. Let E be the 
object E[Φ,>, /0] then C is a sub-object of E; that is, there exists a non-
tautological object F such that: 
 

                                                                                                                     (8)  
 
for some set M and where the join is not necessarily monotonic. Items A and 
B are weakly equivalent, written A ≈ 'π B, if there exists a permutation 
π such that: 
 

 
 
where the xi are the ni variables associated with the i ’th component of A. If A 
is a sub-item of B and if B is a sub-item of A then items A and B are weakly 
equivalent. 

If (8) holds then the maintenance links are of three different kinds. If the 
join in (8) is monotonic then (8) states that C may be decomposed into E and 
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F. If the join in (8) is not monotonic then (8) states that either C ≈ E or C 'π
≈ 'π  F. So, if the join in (8) is not monotonic then either E will be weakly 
equivalent to C, or C will be a sub-object of E.  
 

It has been shown above that sub-item links between non-data items may 
be reduced to sub-type links between data items. So if:  

– all equivalent objects have been removed by re-naming, and 
– sub-item links between non-data items have been reduced to sub-type 

links between data items  
then the maintenance links will be between nodes marked with: 

– a data item that is a sub-type of the data item marked on another 
node, these are called the sub-type links; 

– an item and the nodes marked with that item’s components, these are 
called the component links, and 

– an item constructed by a decomposable object and nodes constructed 
with that object’s decomposition, these are called the duplicate links. 

 
If the objects employed to construct the conceptual model have been 
decomposed then the only maintenance links remaining will be the sub-type 
links and the component links. The sub-type links and the component links 
cannot be removed from the conceptual model.  

Unfortunately, decomposable objects, and so too duplicate links, may be 
hard to detect. Suppose that objects A and B are decomposable as follows: 
 

 
Then objects A and B should both be linked to object E. If the decompositions 
of A and B have not been identified then object E may not have been 
identified and the implicit link between objects A and B may not be 
identified. 

4.1. Identifying decomposable objects 

Four principles are given that identify potentially decomposable objects. The 
first of these principles relies on the notion of a “separable” predicate. 
 
Principle 1: Given a predicate J of the form: 
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Define the set {Y1,Y2, . . . ,Yn} by Yi = {yi1, . . . ,yimi}. If J can be written in the 
form J1 ∧ J2 ∧ ··· J∧ m where each J  is a predicate in terms of the set of 
variables X

i
i with: 

– Xi ⊂ Y1 ∪ Y2 ∪ ··· ∪ Yn, and 
–  for each Xi ( ∃ j) such that Xi does not contain any of the variables in 

Y  j
then predicate J is separable into the partition {X1,X2, . . . ,Xm}. 

If the predicate in an object’s semantics is separable then investigate 
whether that object is decomposable into objects containing the argument 
sets identified by the separability of that predicate. 
 
Principle 2. Given object C, if the objects A and B are not tautological, and 
the argument sets X, Y and Z all non-empty with: 
 

                              and   
 
where  indicates functional dependency, then check whether: 

  
If it does then discard object C in favour of objects A and B. 
 
Principle 3. Given object C, if the objects A and B are not tautological, and 
the argument sets X, Y and W  all non-empty and: 

 
                                                                           and  
 
then check whether: 

 
If it does then discard object C in favour of objects A and B. 
 
Principle 4. Given object C, if the objects A and B are not tautological, and 
the argument sets V, W, X, Y and Z all non-empty with W ⊇ V X and: ∪
          and  
   
then check whether: 

 
If it does then discard object C in favour of objects A and B. 
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5. Maintaining the unified representation 

How does the unified representation manage the maintenance of the 
imperative programs in Sec. 2.1 or the declarative programs in Sec. 2.2? 
Much of the formal paraphernalia to describe that example has been 
introduced in the preceding discussion. A conceptual diagram for the material 
described in Sec. ?? is shown in Fig. 3. That Figure shows the component  
 

Fig. 3. Conceptual diagram for knowledge in example programs. 

 
 
links. As all of the objects in that Figure are fully decomposed those links are 
also a complete set of maintenance links. Further, Fig. 3 does not show any 
duplicate use of objects — and this is part of the rationale for introducing 
objects—but that Figure is large enough as it is. It could have shown the 
mark-up-rule object being used to derive an item [product/saleprice, 
product/cost-price, product/mark-up] for example. The multiple use of objects 
in this way leads to a very intricate understanding of the maintenance 
structure. 

To illustrate the use of this diagram suppose that there is some 
modification to the mark-up item. This modification could be a modification 
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to its constraints on mark-up values permitting mark-up values in a range 
that was previously not permitted. Will this modification require that the 
program [P3] requires maintenance? To answer this question follow all paths 
from mark-up to [P3] until an item is encountered that is not effected by this 
modification. The universal item U will never be effected by such a 
modification, for example. So first consider part, which, suppose is not 
effected. Second, suppose that part/mark-up is effected, but that the object 
mark is not. The only remaining  
 

Fig. 4. Maintenance links for [K1] and [K2]. 

 
 

path from part/mark-up to [P3] leads through mark-up-rule to part/cost-price. 
Suppose that part/cost-price is not effected by the modification to part/mark-
up. The chain then halts and so [P3] will not be effected by this modification.  

As a simple example, the rule of decomposition is applied to reduce [K2] 
above to [K1] and [K3], so removing [K2] from the conceptual model. 
Maintenance links join two items in the conceptual model if modification of 
one of these items could require that the other item should be checked for 
correctness if the validity of the conceptual model is to be preserved. The 
efficiency of maintenance procedures depends on a method for reducing the 
density of the maintenance links in the conceptual model. One kind of 
maintenance link is removed by applying the rule of knowledge 
decomposition. Another is partly removed by reducing sub-item relationships 
to sub-type relationships. And another is removed by re-naming. In the 
simple example given the conceptual model consists only of [K1] and [K3], 
and the maintenance links are just the component links as shown in Fig. 4. 
So what? Because the model can not be decomposed it means that the 
maintenance links in Fig. 4 are complete. These links may then be mapped to 
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the imperative programs that implement the knowledge in chunks [K1] and 
[K3]. 

6. Constraints 

The conceptual model consists of a representation of each thing as an item. 
Both items and objects contain two classes of constraint. These two classes 
are the value constraints and the set constraints. Constraints play a 
significant role in knowledge base maintenance. They are employed for two 
distinct purposes: 

– constraints protect the validity of the knowledge base during 
maintenance [12] (these are called pragmatic constraints), and 

–  constraints contribute to the efficiency of the maintenance procedure 
(these are called referential constraints). 

Pragmatic constraints are an integral part of every item and object in the 
conceptual model. Pragmatic constraints apply equally to knowledge, 
information and data. A taxonomy of pragmatic constraints is: 

– constraints which are attached to each item (these are called the item  
constraints), these are: 
• the item value constraints which are constraints on the individual      
   members of an item’s value set, and 
• the item set constraints which are constraints on the structure of 
   an item’s value set. Set constraints include: 
* cardinality constraints, denoted by “Card”, which constrain the 
  size of the value set; 
* universal constraints, denoted by “Uni”, which generalise database   
universal constraints, and 
* candidate constraints, denoted by “Can”, which constrain the    
  functional dependencies in an item and generalise database key     
  constraints. 
* constraints which are attached to the conceptual model itself    
  (these are called the model constraints). 

 
The need to follow component links may be restricted by applying “referential 
constraints” to items. Referential constraints state that a particular 
component link need not be followed during the complete execution of a 
maintenance operation. They improve the efficiency of the maintenance 
procedure, but they complicate the maintenance of the item to which they are 
applied and so they should only be applied to items of low volatility. Model 
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constraints are constraints on the conceptual model. They are used in 
database technology. The rule “the selling price of parts is always greater 
than the cost price of parts” is an example of a chunk of knowledge that could 
be a constraint on the information in a database. The information in the 
database is constrained to be consistent with this particular chunk of 
knowledge. Such a constraint is a knowledge model constraint. They may be 
used for knowledge-based systems. For knowledgebased systems the inverse 
of this idea can be used. In knowledge-based systems a chunk of information 
can be used as a constraint on the knowledge in the conceptual model. Such a 
constraint is an information model constraint. Hand-coded, simple but non-
trivial information models can provide powerful information model 
constraints. Information model constraints are simple, powerful and effective 
constraints on the knowledge in the conceptual model. They may be useful in 
applications where the knowledge is subject to a high rate of change and the 
information is comparatively stable. 

7. Conclusion 

A high-level abstraction of imperative programs is achieved by using a 
unified conceptual model. An item encapsulates the wisdom in a set of 
declarative rules each of which in turn encapsulates the wisdom in a set of 
imperative programs. Maintenance links form the basis of a maintenance 
procedure. A maintenance link joins two items in the conceptual model if a 
modification to one of them means that the other must necessarily be checked 
for correctness, and so possibly modified, if consistency of that set of items is 
to be preserved. The efficiency of this maintenance procedure depends on a 
method for reducing the density of the maintenance links. One kind of 
maintenance link may removed by applying a method of decomposition. Five 
principles have been given to identify decomposable objects. Another kind of 
maintenance link is removed by reducing subitem relationships to sub-type 
relationships. In this way the maintenance problem is simplified. All items, 
including knowledge items, have a set of constraints. The constraints of a 
knowledge item apply to any program that implements that item. So item 
constraints provide a mechanism that further protects against integrity 
violation during maintenance. 
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