
UDC 681.5.01

An Analysis of Knowledge Base Maintenance

John Debenham

Faculty of IT, University of Technology, Sydney
PO Box 123, Broadway 2007, Australia

debenham@it.uts.edu.au

Abstract. Knowledge base maintenance is managed by constructing a
formal model. In this model the representation of each chunk of know-
ledge encapsulates the knowledge in a set of declarative rules, each of
which in turn encapsulates the knowledge in a set of imperative
programs. In this model an “item” is the unit of knowledge
representation. Items are at a higher level of abstraction than rules.
Understanding what has to be done to maintain the integrity of an item
leads to a specification of the modifications to the set of programs that
implement it. An analysis of the maintenance of the formal model is
achieved by introducing maintenance links. Analysis of the maintenance
links shows that they are of four different types. The density of the
maintenance links is reduced by transforming that set into an equivalent
set. In this way the knowledge base maintenance problem is analysed
and simplified. A side benefit of knowledge items as a formalism is that
they contain knowledge constraints that protect the knowledge from
unforeseen modification.

1. Introduction

The problem of maintaining the consistency of a first-order knowledge base is
not computable. This means that no algorithmic method can address the
knowledge base integrity maintenance problem [1]. But it does not mean that
the maintenance problem is not worth analysing, or that an analysis of it can
not lead to its simplification, or that such simplifications can not have
practical value. Here the knowledge base maintenance problem is analysed in
terms of four kinds of “maintenance link”. Two of these kinds of link can in
principle be removed completely but not with an algorithm, another may be
simplified with a method, and the final kind can not be simplified or removed.

John Debenham

The resulting set of links admits no further simplification and so in that
sense is optimal for the representation chosen.

This analysis is made possible by the choice of knowledge model. In this
model knowledge is represented at a high level of abstraction. The
representation of each chunk of knowledge encapsulates the knowledge in a
set of declarative rules, each of which in turn encapsulates the knowledge in
a set of imperative programs. So this analysis has implications for the
maintenance of imperative programs as well as for knowledge bases. In this
representation each chunk of knowledge is represented as an “item” [2]. An
item admits one or more declarative interpretations as ifthen rules that share
common wisdom. In turn, each if-then declarative interpretation admits one
or more imperative interpretations as programs. In particular, if two
programs are instances of the same knowledge item then it may be the case
that modification of one of them means that the other too should be modified.
Items are a uniform representation for knowledge in the sense that all “data”,
“information” and “knowledge” things are represented in the same way. The
insights gained by analysing the maintenance of items leads naturally to an
understanding of the maintenance of if-then rules, conventional programs
and other knowledge representation paradigms [3]. The integrity of items
represented in this model is maintained by following maintenance links —
the structure of these links is simplified by a decomposition process.

For either a knowledge base implementation or an imperative
implementation, the maintenance problem is to determine which programs in
it should be checked for correctness in response to a change in the application
[4]. Given any form of conceptual model for knowledge, maintenance links
may be introduced that join two things in that model if a modification to one
of them means that the other must necessarily be checked for correctness,
and so possibly modified, if consistency of that model is to be preserved. If
that other thing requires modification then the links from it to yet other
things are followed, and so on until things are reached that do not require
modification. If node A is linked to node B which is linked to node C then
nodes A and C are indirectly linked. In a coherent model of an application
everything is indirectly linked to everything else. A good conceptual model for
maintenance will have a low density of maintenance links [5]. Ideally, the set
of maintenance links will be minimal in than none may be removed.
Informally, one conceptual model is “better” than another if it takes less
effort to validate it. The aim of this work is to generate a good conceptual
model. A classification of maintenance links into four classes is given here.
Methods are given for removing two of these classes of link so reducing the
density of maintenance links in the resulting model. In this way the
maintenance problem is simplified.

2 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

Approaches to the maintenance of declarative conceptual models are
principally of two types [6]. First, approaches that take a model ‘as is’ and
then try to control the maintenance process [7]. Second, approaches that
engineer a model so that it is in a form that is inherently easy to maintain [8]
[9]. The approach described here is of the second type because maintenance is
driven by a maintenance link structure that is simplified by transforming the
model.

The majority of conceptual models for knowledge-based systems treat the
“rule base” component separately from the “database” component. This
enables well established design methodologies to be employed, but the use of
two separate models means that the interrelationship between the things in
these two models cannot be represented, integrated and manipulated
naturally within the model [4]. Further, neither of these two separate models
is able to address completely the validity of the whole knowledge base.

The terms data, information and knowledge are used here in the following
sense. The data things in an application are the fundamental, indivisible
things. Data things can be represented as simple constants or variables. If an
association between things cannot be defined as a succinct, computable rule
then it is an implicit association. Otherwise it is an explicit association. An
information thing in an application is an implicit association between data
things. Information things can be represented as tuples or relations. A
knowledge thing in an application is an explicit association between
information and/or data things. Knowledge can be represented either as
programs in an imperative language or as rules in a declarative language.

2. Maintaining knowledge in implementable
representations

A simple example is used to motivate this discussion by examining the issues
with maintaining two simple chunks of ‘system knowledge’ as represented in
both a conventional imperative formalism and in a rule-based declarative
formalism. The first chunk is: [K1] “The sale price of a part is the cost price of
that part marked up by the mark-up rate for that part”. The second chunk is:
[K2] “The profit on a part is the difference between the marked-up cost price
and the raw cost price”.

Even if these two chunks of knowledge are valid they may contain a
potential ‘maintenance hazard’. For example, if [K3] “The profit on a part is
the difference between the sale price and the cost price of that part” is valid
then [K2] may be derived from both [K1] and [K3]. Why does this present a

ComSIS Vol.2, No. 1, June 2005 3

John Debenham

problem? If the knowledge in either [K1] or [K3] becomes invalid and so is
modified then [K2] should be modified as well. The relationship between
these three chunks is not difficult to identify given the raw chunks, but, as is
illustrated below, given only implementations of particular interpretations of
those chunks — even with documentation — the relationship becomes
noticeably more obscure.

2.1. Imperative representations

Chunk [K1] leads to a number of different imperative interpretations each of
which can be implemented as a program. Two such programs are given below
as Java methods. In this simple implementation, parts are identified by an
integer part number, both the cost in cents and the mark-up per cent, of
parts, are stored in an integer array part cost mark-up[][]. These programs,
and the system of which they are part, are not intended to illustrate high
quality systems design. They are intended to illustrate the difficulty in
identifying links between such imperative interpretations of chunks of
system knowledge. The first method returns the sale price of an item given
its part no:

static int part sale price(int part no, int part cost
 markup[][], int no of part nos) {
 if (no of part nos < 1) return -1;
 for (int count = 0; count < no of part nos; count++){
 if (part cost markup[count][0] == part no) {
 return part cost markup[count][1] *
 part cost markup[count][2] / 100;
 }
 }
 return -1;
} [P1]

The second method returns the part number of a part that sells for a given
sale price:

static int sale price part(int sale price, int part cost
 markup[][], int no of part nos) {
 if (no of part nos < 1) { return -1; }
 for (int count = 0; count < no of part nos; count++) {
 if ((part cost markup[count][1]*part cost
 markup[count][2]/ 100) == sale price) {
 return part cost markup[count][0];

4 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

 }
}return -1;
} [P2]

These two methods are related in that they are both based on different
imperative interpretations of the same knowledge chunk. So if it is necessary
to modify one of them then it may be necessary to modify the other. Further
these two methods can not necessarily be guaranteed to reside in the same
object in the system design although they are clearly both intimately
associated with the array part cost markup[][]. Informally, the second is
similar to the first but with “the implication going the other way”. From a
maintenance perspective, it is reasonable to estimate that the possibility of
the relationship between [P1] and [P2] being overlooked is neither ‘high’ nor
‘insignificant’.

Chunk [K2] also has a number of different imperative interpretations. One
such interpretation may be used to calculate the profit on an item given its
part no:

static int part profit(int part no, int part cost
 markup[][], int no of part nos) {
 if (no of part nos < 1) { return -1; }
 for (int count = 0; count < no of part nos; count++) {
 if (part cost markup[count][0] == part no) {
 return (part cost markup[count][1] *
 (part cost markup[count][2] - 100)) / 100 ;
 }
}return -1;
} [P3]

Method [P3] is closely related to both methods [P1] and [P2] but this
relationship is more obscure than the relationship between [P1] and [P2]. To
make maters worse, [P3] is also related to chunk [K3] which may not have
even been identified. So the possibility of the relationship between [P3] and
{[P1], [P2]} being overlooked is high, and between [P3] and [K3] is very high
— after all, [K3] has yet to be identified! Further the system knowledge
embedded in [P3] may also manifest itself in a method to calculate the profit
on other things besides ‘parts’ whose data is not stored in a two-dimensional
array. Such a method should also be linked to the above. The simplicity of
these examples should not detract from the importance of the principle that
the failure to identify relationships between the chunks of knowledge,
imperative interpretations of which are high level descriptions of methods,

ComSIS Vol.2, No. 1, June 2005 5

John Debenham

leads to maintenance hazards. The analysis presented here removes these
hazards completely.

2.2. Declarative representations

In a declarative representation an if-then interpretation of a knowledge
chunk is represented directly in an “if-then” formalism. In the 1980s there
was considerable interest in building expert systems. At that time declarative
formalisms, in particular if-then formalisms such as logic programming,
provided one way of computing with knowledge that was far easier to use
than imperative formalisms. The comparative ease of use of ifthen
formalisms was responsible for the misapprehension that knowledge could be
thought of as “if-then stuff”. In a sense this is true. If a chunk of knowledge
has a number of if-then interpretations then it is unlikely that more than one
of those interpretations will be useful at any particular time. One
consequence of this misapprehension is that changes in the validity of one if-
then interpretation that is not implemented may have subtle implications for
the validity of a number of parts of the knowledge base that are implemented.
Approaches to modelling expert systems applications were also based on
other than declarative representations; for example, on frame-based systems,
but these are not considered here. During the ‘age of expert systems’ it was
not uncommon to hear knowledge engineers observe: “I took considerable
trouble to build the knowledge base well but now I find that a simple change
in the application can lead to an extensive maintenance task”. One reason for
such an observation is that apparently useless links in the raw knowledge
have been ignored.

In the hype that surrounded the early days of Prolog, the declarative
paradigm appeared to offer significant benefits to the representation and
maintenance of system knowledge. For example, a sort program in Prolog if
‘driven backwards’ can be used as a — not necessarily efficient —
permutation generator. But at least as far as the representation of knowledge
is concerned, declarative formalisms enable different imperative
interpretations to be bundled into one declarative program. So — in theory —
declarative formalisms reduce the number of possible program
interpretations of system knowledge, and so — in theory — assist with
maintenance. One problem in practice is that, as with the sort program

6 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

Fig 1. The abstraction hierarchy for chunk [K1]: knowledge rules and programs

 real knowledge

 if-then rules

imperative programs

mentioned above, it is difficult to write programs in Horn clause logic, or in
any declarative formalism, that operate efficiently in both forward and
reverse gear. Setting this issue aside for the moment, Horn clause logic
provides a clean representation of system knowledge, but it is not powerful
enough to represent a single chunk of system knowledge in a single logic
program.

Consider the chunk of knowledge [K1] as given above. This single chunk is
a simple statement of fact: it is not in an if-then form. Under a reasonable
understanding of the meaning of chunk [K1] it admits three different if-then
interpretations:

part/sale-price(x,y) part/co t-price(x, z), ← s

s (

 part/mark-up(x,w),y = (z ·w) [C1.1]
part/cost-price(x, z) part/sale-price(x,y), ←

 part/mark-up(x,w),y = (z ·w) [C1.2]
part/mark-up(x,w) part/sale-price(x,y), ←

part/co t-price x, z),y = (z ·w) [C1.3]

For the third of these if-then interpretations — with “part/mark-up” as its
head — there is a possibility of round-off error. Each of these three clauses
may be driven in two directions, alternatively, using the powerful string-
matching ‘unification’ method of Prolog they may pass partly assembled data
structures in and out as arguments. For example, [C1.1] may be used both to
find the sale price of a given part, and to find a part with a given sale price.
Despite this representation power, all three clauses are required to capture

ComSIS Vol.2, No. 1, June 2005 7

John Debenham

all of the wisdom in chunk [K1]. The three clauses [C1.1] — [C1.3] are an
inconvenient representation of the single chunk [K1] in that one statement of
fact has been represented as three logical statements. A hierarchy is
emerging in these examples. In it a chunk of knowledge is interpreted as a
set of if-then statements eachof which is interpreted as a set of imperative
programs. The hierarchy for chunk [K1] is shown in Fig. 1.

Consider the chunk of knowledge [K2] as given above. As for [K1], the
chunk [K2] is not in an if-then form. Under a reasonable understanding of its
meaning, it also admits three if-then interpretations:

 part/profit(x,y) part/co t-price(x,w), part/mark-up(x,u), ← s

s (
z = (w × u),y = z−w [C2.1]

part/co t-price x,w) ← part/profit(x,y), part/mark-up(x,u),
 z = (w × u),y = z−w [C2.2]

part/mark-up(x,u) ← part/cost-price(x,w), part/profit(x,y),
z = (w × u),y = z−w [C2.3]

The six Horn clauses above [C1.1] — [C2.3] may be combined using resolution
to give some potentially useful clauses:

part/profit(x,y) part/co t-price(x,w), part/mark-up(x,u), s

z = (w×u),y = z−w [C3]
part/profit(x,y) part/sale-price(x, z), part/mark-up(x,u),

z = (w×u),y = z−w [C4]
part/mark-up(x,w) part/sale-price(x,y), part/profit(x,u),

u = y−z,y = (z×w) [C5]

as well as some rather useless clauses:

part/sale-price(x,y) part/sale-price(x,v), part/profit(x,u),
u = v−z, part/mark-up(x,w),y = (z×w) [C6]

A danger with all of [C3]—[C6] is that they are assembled from particular if-
then interpretations of two chunks of knowledge, namely [K1] and [K2]. If the
meaning of either of those two chunks should change then [C3] — [C6] may
all have to be changed as well. This is not a problem if the relationships
between [C3] — [C6] and both [K1] and [K2] are represented. But in the
declarative representation, it is not clear that the meanings of [K1] and [K2]
are buried in the four clauses [C3] — [C6]. So [C3] — [C6] and any other
clauses derived from the original six clauses above, are potential
maintenance hazards [10]. Given the six original clauses [C1.1] —[C1.3],

8 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

[C3.1] — [C3.3] there is no reason to combine them as illustrated in [C3] —
[C6]. But clauses such as [C3] — [C6] are valid and could have been
constructed by a programmer as part of a system. If they form part of a
system then they may constitute a maintenance hazard [10]. To make
matters worse, chunk [K3] is buried inside the three clauses [C2.1] — C[2.3].

The discussion in this sub-section and in the previous sub-section is not
intended to imply that traditional programming languages and methods
should be discarded. The point is that no matter what programming language
is used the problem of maintaining programs in that language is ideally
tackled through a high level model of knowledge with the property that one
chunk of real knowledge is represented in one place and for which there is a
method for representing and removing the relationships between those
chunks [11]. Such a model is described below. If the chunks represented in
this model are linked to the programs that implement them then these links
together with those in the model itself provide a maintenance map for the
programs.

3. A unified representation

A representation formalism is a unified representation if all “data”,
information” and “knowledge” things are represented in the same way. The
terms data, information and knowledge are used here in the following sense.
The data things in an application are the fundamental, indivisible things.
Data things can be represented as simple constants or variables. If an
association between things cannot be defined as a succinct, computable
statement then it is an implicit association. Otherwise it is an explicit
association. An information thing in an application is an implicit association
between data things. Information things can be represented as tuples or
relations. A knowledge thing in an application is an explicit association
between information and/or data things. Knowledge can be interpreted either
as programs in an imperative language or as rules in a declarative language.

The expressive power of a unified representation must be able to describe
at least the data, information and knowledge things. The unified

ComSIS Vol.2, No. 1, June 2005 9

John Debenham

Fig.2. A thing and its representation in the unified representation, a declarative
representation and an imperative interpretation

representation described here also contains two classes of constraints that
apply equally to knowledge, information and to data. These constraints
provide safeguards against invalid maintenance operations. In [12] these
constraints are generalised to fuzzy acceptability measures of knowledge base
integrity. Item and object join has been extended to apply to those measures
[10].

Why use a unified knowledge representation [2]? A knowledge
representation with the property that a single chunk of system knowledge is
represented as a single entity is at a level of abstraction that is far closer to
‘reality’ than traditional declarative or imperative formalisms. There is a
hierarchy: a real chunk of knowledge is represented as a single “item” in the
unified representation. Each item has a number of interpretations as if-then
forms. Each if-then form has a number of interpretations as imperative
programs. This is illustrated in Fig. 2.

Further, if the unified knowledge representation treats data, information
and knowledge in the same way then links between these three classes of
things may also be represented. The majority of knowledge representation
formalisms treat these three classes quite differently and so such links have
no natural representation. Items represent all data, information and
knowledge things in an application [4].

Items incorporate two powerful classes of constraints. The key to this
uniform representation is the way in which the “meaning” of an item, called
its semantics, is specified. The semantics of an item is a function that
recognises the members of the “value set” of that item. The

10 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

 part/sale-price part/cost-price part/mark-up

Table 1. Value set for the knowledge item [part/sale-price, part/cost-price,
 part/mark-up].

value set of an item will change in time t, but the item’s semantics should
remain constant. The value set of a data item at a certain time t is the set of
labels that are associated with a population that implements that item at
that time. The value set of an information item at a certain time t is the set of
tuples that are associated with a relational implementation of that item at
that time. Knowledge items have value sets too. Consider again the chunk of
knowledge [K1] “the sale price of a part is the cost price of that part marked
up by the mark-up rate for that part”; this chunk is represented by the item
named [part/sale-price, part/cost-price, part/markup] with a value set of
corresponding sextuples. This example illustrates a preference for using
binary relations. When system knowledge is expressed in terms of such
binary relations it tends to be in a simple form. A possible value set for this
chunk is shown in Table 1. This chunk admits three interpretations as
declarative rules which in turn lead to at least five non-trivial imperative
programs.

The idea of defining the semantics of items as recognising functions for the
members of their value set extends to complex, recursive knowledge items.
Consider the chunk of knowledge “If two persons have the same address then
they are cohabitants”. This chunk can be represented by the item:
[person/cohabitant, person/address]. The meaning of this item may be defined
by the single clause:

person/cohabitant(x,y) person/address(x, z),
person/address(y, z),x ≠ y

The semantics of an item is the recognising function for its value set. The
trick to dealing with recursive items is to identify the correct value set for
this purpose. A first attempt at constructing the value set of this chunk could
be the four-tuples associated with the two information items
person/ ohabitant and person/address, but it is hard to construct a c

ComSIS Vol.2, No. 1, June 2005 11

John Debenham

recognising function for this value set. A function may be specified that
recognises the value set of this item displayed in a different way. Consider
the function:

(u,v,w,x,y,z) ∈ Value set of [person/cohabitant, person/address] ↔
 (u,v) ∈Value set of person/cohabitant ∧
 (w,x) ∈Value set of person/address ∧
 (y, z) ∈Value set of person/address ∧
 (((u = w) ∧ (v = y) ∧ (u ≠ v)) ∧ (x = z))

This function recognises the tuples in the value set consisting of the three
information items person/ ohabitant, person/address and person/address.
Hence if this set of six-tupes is the value set then the [person/cohabitant,
person/address] item has a simple recognising function. The trick here is to
use a double occurrence of the component information item person/address.
The semantics of recursive knowledge items are defined in this way with
value sets that have multiple occurrences of component information items.

c

An item is a named triple A[SA,VA,CA] with item name A, SA is the item

semantics of A, VA is the item value constraints of A andCA is the item set
constraints of A. The item semantics, SA, is a �-calculus expression that
recognises the members of the value set of item A. The expression for an
item’s semantics may contain the semantics of other items A1,...,An which
are called that item’s components.

λX1X2Y1Y2Z1Z2· [(Spart/sale-price(x1,x2) ∧ Spart/cost-price(y1,y2) ∧
 Spart/mark-up(z1, z2)) ∧
 (((x1 = y1) ∧ (x1 = z1)) → (x2 = z2×y2))]·

This expression asserts that the pair (x1,x2) satisfies the semantics of the
item part/sale-price, that (y1,y2) satisfies the semantics of the item part/cost-
price, that (z1, z2) satisfies the semantics of the item part/markup, and that:

(((x1 = y1) ∧ (x1 = z1)) (x2 = z2×y2)) →

holds. This last component of the semantics expression is the substantive
part. The essence of this expression is represented in the ‘schema notation’ in

12 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

Table 2 — the meaning of the last two rows in that Figure are discussed
below.

item name
components
dummy variables
semantics
constraints
set constraints

Table 2. Shema for the item [part/sale-price, part/cost-price, part/mark-up].

The schema notation is intended to make the unified representation more
accessible. The important feature of the λ -calculus form or the schema form
is that they each represent all that chunk [K1] says. For example, the two
programs [P1] and [P2] are both interpretations of the item whose semantics
is shown in Table. 2.

In general the item semantics is an expression of the form:

where J is a first-order predicate. The item value constraints, VA, is a �-
calculus expression:

where K is a first-order predicate, that should be satisfied by the members of
the value set of item A as they change in time. So if a tuple satisfies SA then
it should satisfy VA [13]. The expression for an item’s value constraints
contains the value constraints of that item’s components. The item set
constraints, CA, is an expression of the form:

where L is a logical combination of:
– Card lies in some numerical range;
– Uni(Ai) for some i, 1 i ≤ ≤ n, and
– Can(Ai,X) for some i, 1 ≤ i ≤ n, where X is a non-empty subset of

ComSIS Vol.2, No. 1, June 2005 13

John Debenham

 {A1, . . . ,An}−{Ai}

subscripted with the name of the item A, “Uni(a)” means that “all members of
the value set of item a must be in this association”. “Can(A,X)” means that
“the value set of the set of items X functionally determines the value set of
item A”. “Card” means “the number of things in the value set”. The subscripts
indicate the item’s components to which that set constraint applies.

For example, each part may be associated with a cost-price subject to the
“value constraint” that parts whose part-number is less that 1999 should be
associated with a cost price of no more than $300. A set constraint specifies
that every part must be in this association, and that each part is associated
with a unique cost-price. The information item named part/cost-price then is:

Chunks of knowledge can also be defined as items, although it is neater to
define knowledge items using “objects”, see Sec 3.1. “Objects” are item
building operators. The knowledge item [part/sale-price, part/cost-price,
mark-up] which means “the sale price of parts is the cost price marked up by
a uniform markup factor” is:

The λ-calculus representation is rather clumsy. In practice items are
represented in a more convenient schema notation. The schema notation for
the above knowledge item, including its constraints, is illustrated in Table 2.

Two different items can share common embedded knowledge. This is a
generalisation of the particular point made above that two programs may

14 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

implement the essence of the ‘mark-up knowledge’ in different contexts
besides the mark-up of ‘spare parts’. If this is so then those two items
constitute a maintenance hazard. This problem can be avoided to some extent
by using objects. If two items share some common embedded knowledge then
declarative rules and imperative programs derived from them may also share
common knowledge. For this reason, basing the approach to knowledge base
maintenance at the abstract level of items simplifies maintenance.

3.1. Objects

To make the inherent structure of items clear, ‘objects’ are introduced as item
building operators. The use of objects to build items enables the hidden links
in the knowledge to be identified. A single operation for objects enables these
hidden links to be removed from the knowledge thus simplifying
maintenance.

An n-adic obj ct is an operator that maps n given items into another item
for some value of n. Further, the definition of each object will presume that
the set of items to which that object may be applied are of a specific “type”.
Examples of item type include D

e

m for m-adic data items, Im for m-adic
information items and Km for m-adic knowledge items. Items may also have
unspecified, or free, type which is denoted by Xm. The formal definition of an
object is similar to that of an item. An object named A is a typed triple
A[E,F,G] where E is a typed expression called the semantics of A, F is a typed
expression called the value constraints of A, and G is a typed expression
called the set constraints of A. For example, the part/cost-price item can be
built from the items part and cost-price using the costs operator:

where ν (costs,P,Q) is the name of the item costs(P,Q). As for items, objects
are more digestible in the schema notation. The schema for the costs object is

ComSIS Vol.2, No. 1, June 2005 15

John Debenham

shown in Table 3 where universal set constraints are denoted by an ‘ ∀ ’ and
candidate constraints by an ‘ ⊗ ’ and a ‘——’.

object name
argument type
dummy variables
semantics
value constraints
set constraints

Table 3. The shema for the object costs

Data objects provide a representation of sub-typing. Data objects are used
in the conceptual model to derive individual data items from the universal
item U, where U = U[λx·x :U·,λx·>·,/0], “U” is the “universe of discourse” and
> is the constant “true” expression. The data object part is:

If the object part is applied to the universal item U it then generates the item
part by: part = partU.

Declarative rules are quite clumsy when represented as items; objects
provide a more compact representation. For example, consider the [part/sale-
price, part/cost-price, part/mark-up] knowledge item which represents the
chunk of knowledge [K1] “The sale price of a part is the cost price of that part
marked up by the markup rate for that part”. This item can be built by
applying a knowledge object mark-up-rule of argument type (I2, I2, I2) to the
items part/sale-price, part/cost-price and part/markup. That is:

[part/sale-price,part/cost-price, part/mark-up] =
mark-up-rule(part/sale-price, part/cost-price, part/mark-up)

16 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

Table 4. The shema for the object mark-up-rule

Objects also represent value constraints and set constraints in a uniform
way. The mark-up-rule object is:

and its schema form is shown in Table 4.

3.2. The join operator

Item join provides the basis for item decomposition [4]. Given items A and B,
the item with name AE B is called the join of A and B on E, where E is a set
of components common to both A and B. Consider:

and

Suppose that SA has n variables, that is A is an n-adic item. Suppose that SB
has m variables, that is B is an m-adic item. Some of the components of A and
B may be identical. Suppose that k pairs of components of A and B that are
identical are identified, where k 0. Let E be an ordered set of components
where each is one of these identical pairs of components of both A and B. E

≥

ComSIS Vol.2, No. 1, June 2005 17

John Debenham

may be empty. To ensure that the definition is well defined the order of the
components in the set E is the same as order in which they occur as
components of A. Suppose the semantics expressions of the components from
item A (or item B) that are in the set E are expressed in terms of a total of p
variables. Let A* be an n-adic item that is identical to item A except for the
order of its variables. The last p variables in A* are those variables in A that
belong to the components of A in the set E. Let B* be an m-adic item that is
identical to item B except for the order of its variables. The first p variables
in B* are those variables in B that belong to the components of B in the set E.
Let π’ be a permutation that turns the ordered set of variables of A* into the
ordered set of variables of A. Let π be a permutation that turns the ordered
set of variables of B* into the ordered set of variables of B. Suppose that x is
an (n−p)-tuple of free variables, y is a p-tuple of free variables and z is an
(m−p)-tuple of free variables. Then the item with name A ⊗ E B is the join of
A and B on E, it is defined to be:

where CA EB⊗ is defined as follows. Suppose that CA is an expression of the
form cA ∧ G where c is that part of CA that carries the subscript ‘A’ and G is
that part of CA that carries subscripts other than ‘A’. Likewise suppose that
CB is an expression of the form dB ∧ H. Then:

The set E is a set of identical pairs of components of A and B. If E is the set of
all identical pairs of components of A andB then A ⊗ E B may be written as
A B. ⊗

Using the method of composition , knowledge items, information items and
data items may be joined with one another regardless of type. For example,
the knowledge item:

18 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

can be joined with the information item part/cost-price on the set {costprice}
to give the information item part/cost-price/tax. In other words:

Using the item join operator, items may be joined together to form more
complex items. The operator also forms the basis of a theory of decomposition
in which each item is replaced by a set of simpler items. An item I is
decomposable; into the set of items D = {I1, I2, ..., I Iin} if: has non-trivial
semantics for all i, I = I1 ⊗ I2 ⊗ ··· ⊗ In, where each join is monotonic; that is,
each term in this composition contributes at least one component to I. If item
I is decomposable then it will not necessarily have a unique decomposition.
The join operator for objects is defined in a similar way to item join and is
also denoted by . When is used to join two objects it is subscripted with a set
of pairs of positive integers that identify the component pairs in the first and
second argument ofthat are being joined. The method of decomposition is:
“Given a conceptual model discard any items and objects which are
decomposable”. For example, this method requires that the item part/cost-
price/tax should be discarded in favour of the two items [cost-price,tax] and
part/cost-price.

4. Analysis of the conceptual model

A conceptual model consists of:
– the universal data item U,
– an object library,
– a conceptual diagram, and
– a set of maintenance links.

where, U, the universal data item, is as defined above. The conceptual
diagram is a graph in which each item is represented by a node and is linked
to those nodes from which it can be derived by applying an object operator.
The conceptual diagram also shows the programs that implement the model

ComSIS Vol.2, No. 1, June 2005 19

John Debenham

and links them to the knowledge-items from which they are derived. So the
items in the conceptual model are constructed by applying a set of object
operators to U. A maintenance link joins two items in the conceptual model if
modification of one item means that the other item must be checked for
correctness, and maybe modified, so that the consistency of the conceptual
model is preserved [14]. The number of maintenance links can be very large.
So maintenance links can only form the basis of a practical approach to
knowledge base maintenance if there is some way of reducing their density on
the conceptual model.

RESULT.
Sub-item links may be reduced to sub-type links between data items.
Demonstration:
Given two items A and B, where both are n-adic items with semantics SA and
SB respectively, if π is permutation such that:

then item B is a sub-item of item A. These two items should be joined with a
maintenance link. If A and B are both data items then B is a sub-type of A.
Suppose that:

 X = ED; where D = CAB (1)

for items X, D, A and B and objects E and C. Item X is a sub-item of item D.
Object E has the effect of extracting a sub-set of the value set of item D to
form the value set of item X. Item D is formed from items A and B using
object C. Introduce two new objects F and J. Suppose that object F when
applied to item A extracts the same subset of item A’s value set as E
extracted from the “left-side” (ie. the “A-side”) of D. Likewise J extracts the
same subset of B’s value set as E extracted from D. Then:

 X = CGK; where G = FA and K = JB (2)

so G is a sub-item of A, and K is a sub-item of B. The form (2) differs from (1)
in that the sub-item maintenance links have been moved one layer closer to
the data item layer, and object C has moved one layer away from the data
item layer. Using this method repeatedly sub-item maintenance links
between non-data items are reduced to sub-type links between data items.

20 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

RESULT.
There are four kinds of maintenance link in a conceptual model built using
the uniform knowledge representation.
Demonstration:
Consider two items A and B, and suppose that their semantics SA and SB
have the form:

SA contains (p+1) terms and SB contains (q+1) terms. Let µ be a maximal sub-
expression of SA B⊗ such that:

 both and (3)

where µ has the form:

If µ is empty, ie. ‘false’, then the semantics of A and B are independent. If µ is
non-empty then the semantics of A and B have something in common and A
and B should be joined with a maintenance link.

Now examine µ to see why A and B should be joined. If µ is non-empty
then there are three cases. First, if:

 (4)

then items A and B are equivalent and should be joined with an equivalence
link. Second if (4) does not hold and:

 either or (5)

ComSIS Vol.2, No. 1, June 2005 21

John Debenham

then either A is a sub-item of B, or B is a sub-item of A and these two items
should be joined with a sub-item link. Third, if (4) and (5) do not hold then if
∆ is a minimal sub-expression of SA such that ∆ →µ. Then:

 either for some j (6)
 or (7)

Both (6) and (7) may hold. If (6) holds then items A and B share one or more
component items to which they should each be joined with a component link.
If (7) holds then items A and B may be constructed with two object operators
whose respective semantics are logically dependent. Suppose that item A was
constructed by object operator C then the semantics of C will imply:

where the Qi’s take care of any possible duplication in the Pj’s. Let E be the
object E[Φ,>, /0] then C is a sub-object of E; that is, there exists a non-
tautological object F such that:

 (8)

for some set M and where the join is not necessarily monotonic. Items A and
B are weakly equivalent, written A ≈ 'π B, if there exists a permutation
π such that:

where the xi are the ni variables associated with the i ’th component of A. If A
is a sub-item of B and if B is a sub-item of A then items A and B are weakly
equivalent.

If (8) holds then the maintenance links are of three different kinds. If the
join in (8) is monotonic then (8) states that C may be decomposed into E and

22 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

F. If the join in (8) is not monotonic then (8) states that either C ≈ E or C 'π
≈ 'π F. So, if the join in (8) is not monotonic then either E will be weakly
equivalent to C, or C will be a sub-object of E.

It has been shown above that sub-item links between non-data items may
be reduced to sub-type links between data items. So if:

– all equivalent objects have been removed by re-naming, and
– sub-item links between non-data items have been reduced to sub-type

links between data items
then the maintenance links will be between nodes marked with:

– a data item that is a sub-type of the data item marked on another
node, these are called the sub-type links;

– an item and the nodes marked with that item’s components, these are
called the component links, and

– an item constructed by a decomposable object and nodes constructed
with that object’s decomposition, these are called the duplicate links.

If the objects employed to construct the conceptual model have been
decomposed then the only maintenance links remaining will be the sub-type
links and the component links. The sub-type links and the component links
cannot be removed from the conceptual model.

Unfortunately, decomposable objects, and so too duplicate links, may be
hard to detect. Suppose that objects A and B are decomposable as follows:

Then objects A and B should both be linked to object E. If the decompositions
of A and B have not been identified then object E may not have been
identified and the implicit link between objects A and B may not be
identified.

4.1. Identifying decomposable objects

Four principles are given that identify potentially decomposable objects. The
first of these principles relies on the notion of a “separable” predicate.

Principle 1: Given a predicate J of the form:

ComSIS Vol.2, No. 1, June 2005 23

John Debenham

Define the set {Y1,Y2, . . . ,Yn} by Yi = {yi1, . . . ,yimi}. If J can be written in the
form J1 ∧ J2 ∧ ··· J∧ m where each J is a predicate in terms of the set of
variables X

i
i with:

– Xi ⊂ Y1 ∪ Y2 ∪ ··· ∪ Yn, and
– for each Xi (∃ j) such that Xi does not contain any of the variables in

Y j
then predicate J is separable into the partition {X1,X2, . . . ,Xm}.

If the predicate in an object’s semantics is separable then investigate
whether that object is decomposable into objects containing the argument
sets identified by the separability of that predicate.

Principle 2. Given object C, if the objects A and B are not tautological, and
the argument sets X, Y and Z all non-empty with:

 and

where indicates functional dependency, then check whether:

If it does then discard object C in favour of objects A and B.

Principle 3. Given object C, if the objects A and B are not tautological, and
the argument sets X, Y and W all non-empty and:

 and

then check whether:

If it does then discard object C in favour of objects A and B.

Principle 4. Given object C, if the objects A and B are not tautological, and
the argument sets V, W, X, Y and Z all non-empty with W ⊇ V X and: ∪
 and

then check whether:

If it does then discard object C in favour of objects A and B.

24 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

5. Maintaining the unified representation

How does the unified representation manage the maintenance of the
imperative programs in Sec. 2.1 or the declarative programs in Sec. 2.2?
Much of the formal paraphernalia to describe that example has been
introduced in the preceding discussion. A conceptual diagram for the material
described in Sec. ?? is shown in Fig. 3. That Figure shows the component

Fig. 3. Conceptual diagram for knowledge in example programs.

links. As all of the objects in that Figure are fully decomposed those links are
also a complete set of maintenance links. Further, Fig. 3 does not show any
duplicate use of objects — and this is part of the rationale for introducing
objects—but that Figure is large enough as it is. It could have shown the
mark-up-rule object being used to derive an item [product/saleprice,
product/cost-price, product/mark-up] for example. The multiple use of objects
in this way leads to a very intricate understanding of the maintenance
structure.

To illustrate the use of this diagram suppose that there is some
modification to the mark-up item. This modification could be a modification

ComSIS Vol.2, No. 1, June 2005 25

John Debenham

to its constraints on mark-up values permitting mark-up values in a range
that was previously not permitted. Will this modification require that the
program [P3] requires maintenance? To answer this question follow all paths
from mark-up to [P3] until an item is encountered that is not effected by this
modification. The universal item U will never be effected by such a
modification, for example. So first consider part, which, suppose is not
effected. Second, suppose that part/mark-up is effected, but that the object
mark is not. The only remaining

Fig. 4. Maintenance links for [K1] and [K2].

path from part/mark-up to [P3] leads through mark-up-rule to part/cost-price.
Suppose that part/cost-price is not effected by the modification to part/mark-
up. The chain then halts and so [P3] will not be effected by this modification.

As a simple example, the rule of decomposition is applied to reduce [K2]
above to [K1] and [K3], so removing [K2] from the conceptual model.
Maintenance links join two items in the conceptual model if modification of
one of these items could require that the other item should be checked for
correctness if the validity of the conceptual model is to be preserved. The
efficiency of maintenance procedures depends on a method for reducing the
density of the maintenance links in the conceptual model. One kind of
maintenance link is removed by applying the rule of knowledge
decomposition. Another is partly removed by reducing sub-item relationships
to sub-type relationships. And another is removed by re-naming. In the
simple example given the conceptual model consists only of [K1] and [K3],
and the maintenance links are just the component links as shown in Fig. 4.
So what? Because the model can not be decomposed it means that the
maintenance links in Fig. 4 are complete. These links may then be mapped to

26 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

the imperative programs that implement the knowledge in chunks [K1] and
[K3].

6. Constraints

The conceptual model consists of a representation of each thing as an item.
Both items and objects contain two classes of constraint. These two classes
are the value constraints and the set constraints. Constraints play a
significant role in knowledge base maintenance. They are employed for two
distinct purposes:

– constraints protect the validity of the knowledge base during
maintenance [12] (these are called pragmatic constraints), and

– constraints contribute to the efficiency of the maintenance procedure
(these are called referential constraints).

Pragmatic constraints are an integral part of every item and object in the
conceptual model. Pragmatic constraints apply equally to knowledge,
information and data. A taxonomy of pragmatic constraints is:

– constraints which are attached to each item (these are called the item
constraints), these are:
• the item value constraints which are constraints on the individual
 members of an item’s value set, and
• the item set constraints which are constraints on the structure of
 an item’s value set. Set constraints include:
* cardinality constraints, denoted by “Card”, which constrain the
 size of the value set;
* universal constraints, denoted by “Uni”, which generalise database
universal constraints, and
* candidate constraints, denoted by “Can”, which constrain the
 functional dependencies in an item and generalise database key
 constraints.
* constraints which are attached to the conceptual model itself
 (these are called the model constraints).

The need to follow component links may be restricted by applying “referential
constraints” to items. Referential constraints state that a particular
component link need not be followed during the complete execution of a
maintenance operation. They improve the efficiency of the maintenance
procedure, but they complicate the maintenance of the item to which they are
applied and so they should only be applied to items of low volatility. Model

ComSIS Vol.2, No. 1, June 2005 27

John Debenham

constraints are constraints on the conceptual model. They are used in
database technology. The rule “the selling price of parts is always greater
than the cost price of parts” is an example of a chunk of knowledge that could
be a constraint on the information in a database. The information in the
database is constrained to be consistent with this particular chunk of
knowledge. Such a constraint is a knowledge model constraint. They may be
used for knowledge-based systems. For knowledgebased systems the inverse
of this idea can be used. In knowledge-based systems a chunk of information
can be used as a constraint on the knowledge in the conceptual model. Such a
constraint is an information model constraint. Hand-coded, simple but non-
trivial information models can provide powerful information model
constraints. Information model constraints are simple, powerful and effective
constraints on the knowledge in the conceptual model. They may be useful in
applications where the knowledge is subject to a high rate of change and the
information is comparatively stable.

7. Conclusion

A high-level abstraction of imperative programs is achieved by using a
unified conceptual model. An item encapsulates the wisdom in a set of
declarative rules each of which in turn encapsulates the wisdom in a set of
imperative programs. Maintenance links form the basis of a maintenance
procedure. A maintenance link joins two items in the conceptual model if a
modification to one of them means that the other must necessarily be checked
for correctness, and so possibly modified, if consistency of that set of items is
to be preserved. The efficiency of this maintenance procedure depends on a
method for reducing the density of the maintenance links. One kind of
maintenance link may removed by applying a method of decomposition. Five
principles have been given to identify decomposable objects. Another kind of
maintenance link is removed by reducing subitem relationships to sub-type
relationships. In this way the maintenance problem is simplified. All items,
including knowledge items, have a set of constraints. The constraints of a
knowledge item apply to any program that implements that item. So item
constraints provide a mechanism that further protects against integrity
violation during maintenance.

28 ComSIS Vol.2, No. 1, June 2005

An Analysis of Knowledge Base Maintenance

References

1. Kern-Isberner, G.: Postulates for conditional beief revision. In: proceedings
International Joint Conference on Artificial Intelligence IJCAI’99, Stockholm,
Sweden (1999) 186–191

2. Debenham, J.: Why use a unified knowledge representation? In: proceedings
Fourteenth International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems IEA/AIE-2001, Budapest, Hungary
(2001)

3. Iglezakis, I., Reinartz, T., Roth-Berghofer, T.: Maintenance Memories: Beyond
Concepts and Techniques for Case Base Maintenance. In: Advances in Case-
Based Reasoning. Springer-Verlag (2004) 227 – 241

4. Debenham, J.: Knowledge Engineering — Unifying Knowledge Base and
 Database Design. Springer-Verlag (1998)
5. Mayol, E., Teniente, E.: Addressing the process of integrity maintenance. In:

proceedings Tenth Intenational Conference on Database and Expert Systems
DEXA’99, Florence, Italy (1999) 270 – 281

6. Katsuno, K., Mendelzon, A.: On the difference between updating a knowledge
base and revising it. In: proceedings Second International Conference on
Principles of Knowledge Representation and Reasoning KR’91, Morgan-
Kaufmann (1991)

7. Barr, V.: Applying reliability engineering to expert systems. In: proceedings
 12’th International FLAIRS conference. (1999) 494 – 498
8. Jantke, K., Herrmann, J.: Lattices of knowledge in intelligent systems
 validation. In: proceedings 12’th International FLAIRS conference, Florida, US

(1999) 499 – 505
9. Darwiche, A.: Compiling knowledge into decomposable negation normal form.
 In: proceedings International Joint Conference on Artificial Intelligence IJCAI’99,

Stockholm, Sweden (1999) 284 – 289
10. Debenham, J.: A rigorous approach to knowledge base maintenance. In:
 proceedings Sixteenth International Conference on Industrial and Engineering
 Applications of Artificial Intelligence and Expert Systems IEA/AIE-2003,
 Loughborough, UK (2003) 219 – 228
11. Roth-Berghofer, T.: Knowledge maintenace of case-based reasoning systems –
 the SIAM methodology. Zeitschrift KI – Kunstliche Intelligenz 17 (2003) 55 – 57
12. Debenham, J.: Fuzzy degrees of knowledge integrity. In: proceedings 9’th
 International Conference on Information Processing and Management of
 Uncertainty in Knowledge-Based Systems IPMU-2002. (2002) 1391 – 1398
13. Johnson, G., Santos, E.: Generalizing knowledge representation rules for
 acquiring and validating uncertain knowledge. In: proceedings 13’th
 International FLAIRS conference, Florida, US (2000) 186 – 191
14. Ramirez, J., de Antonio, A.: Semantic verification of rule-based systems with
 arithmetic constraints. In: proceedings 11’th International Conference on
 Database and Expert Systems DEXA’2000, London, UK (2000) 437 – 446

ComSIS Vol.2, No. 1, June 2005 29

John Debenham

John Debenham is Professor of Computer Science at the University of
Technology, Sydney. John is also Chair of the Australian Computer Society’s
National Committee for Artificial Intelligence and Expert Systems. John
Debenham has a long standing research interest in the design of knowledge-
based systems. During 1997 he developed an interest in multi-agent systems.
He presently retains both of these interests. The focus of his research on
knowledge-based systems has been on the preservation of system integrity.

30 ComSIS Vol.2, No. 1, June 2005

	Introduction
	Maintaining knowledge in implementable�representations
	Imperative representations
	Declarative representations

	A unified representation
	Objects
	The join operator

	Analysis of the conceptual model
	Identifying decomposable objects

	Maintaining the unified representation
	Constraints
	Conclusion
	References

