
UDC 681.5.015

Multi-Paradigm Design with Feature Modeling

Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology

Slovak University of Technology, Ilkovičova 3, 84216 Bratislava 4, Slovakia
vranic@fiit.stuba.sk, http://www.fiit.stuba.sk/~vranic/

Abstract. In this article, a method for selecting paradigms, viewed as solution
domain concepts, appropriate for given application domain concepts is
proposed. In this method, denoted as multi-paradigm design with feature
modeling, both application and solution domain are modeled using feature
modeling. The selection of paradigms is performed in the process of feature
modeling based transformational analysis as a paradigm instantiation over
application domain concepts. The output of transformational analysis is a set
of paradigm instances annotated with the information about the
corresponding application domain concepts and features. According to these
paradigm instances, the code skeleton is being designed. The approach is
presented in conjunction with its specialization to AspectJ programming
language. Transformational analysis performed according to the AspectJ
paradigm model enables an early aspect identification.

1. Introduction

A quarter of a century since the Robert W. Floyd’s Turing Award Lecture
on paradigms of programming [1], there is no common agreement on the
precise meaning of the term paradigm in the field of software development.
In spite of that, it has been widely used to denote any distinctive enough
approach to programming or software development in general. However, as
software has finally to be expressed in the form of a program written in one
of the programming languages, it is not surprising that the term paradigm
is related mostly to programming languages as such.

Programming languages are often categorized according to paradigms
they support. This is being done especially according to some of the more
widely accepted paradigms, namely procedural, functional, logical, and
object-oriented programming. Having several paradigms, each of which has
some advantages over the other ones, has naturally lead to the idea of
integrating or combining several programming languages, each of which
supports some paradigm, into one,multi-paradigm programming language.

Valentino Vranić

t

It is important to note that advantages of a paradigm are relative to the
problem being solved. A multi-paradigm programming language itself does
not help in multi-paradigm design, which is concerned with the issue of
selecting a paradigm appropriate for the problem being solved. This issue is
addressed by the method proposed in this article, multiparadigm design
with feature modeling (MPDFM). MPDFM is based on the small-scale
paradigm view, in which paradigms are understood as solution domain
concepts. A solution domain is a domain in which a solution is to be
expressed. Although some intermediate design notations may be considered
as solution domains, too, the ultimate solution domain is a programming
language. In a programming language understood as a solution domain,
solution domain concepts correspond to programming language
mechanisms.

By sticking to the small-scale paradigm view, MPDFM avoids the
problems
connected with the lack of precise definitions of the popular, largescale
paradigms [2,3]. Small-scale paradigms can be represented as
configurations of commonality and variability [3]. For this, MPDFM employs
fea ure modeling, which enables to explicitly deal with variability of
concepts. Feature modeling is applied also to the application domain, the
domain being solved. The two feature models, the application and solution
domain one, enter transformational analysis in which application to
solution domain mapping is being established. This mapping is expressed
in the form of yet another feature model consisting of the paradigm
instances annotated with the information about corresponding application
domain concepts and features which determines the code skeleton. The
whole process is captured in Fig. 1. In a detailed design and
implementation that follows MPDFM, methods specific to the large-scale
paradigms pointed to by the small-scale paradigms selected in
transformational analysis can be employed.

The rest of the article is structured as follows. Section 2 provides the
necessary information on feature modeling in MPDFM. Section 3 describes
solution domain feature modeling and shows its use to capture aspect-
oriented mechanisms of the AspectJ programming language. Section 4
describes transformational analysis based on feature modeling and
demonstrates its application using the AspectJ paradigm model. Section 5
describes briefly code skeleton design. Section 6 discusses related
approaches. Section 7 concludes the article.

80 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

Fig.1. Multi-paradigm design with feature modeling

2. Feature Modeling for Multi-Paradigm Design

Feature modeling is a conceptual domain modeling technique in which
concepts in a domaind, understood broadly as an area of interest [4,5], are
being expressed by their features taking into account feature
interdependencies and variability in order to capture concept
configurability.

The origins of feature modeling can be traced back to FODA method [6].
Apart from the mentioned Czarnecki-Eisenecker generative programming,
FODA feature modeling has been adopted and adapted by several other
domain engineering approaches to software development [7,8,9,10,11,12].
Some work has been devoted primarily to extending feature modeling as
such (with respect to UML) [13,14], or even to formalize it [15].

Feature modeling used in MPDFM is based on the Czarnecki-Eisenecker
feature modeling employed in generative programming [16,17]. It has been
adapted and extended to fit the needs of MPDFM by enabling concept
instantiation with respect to instantiation time with concept instances
represented by feature diagrams. Further, it brings in parameterization in
feature models, enables to represent constraints among features by logical
expressions, and introduces concept references to enable to deal with
complex feature models (see [18] for details).

This section will provide the necessary information on feature modeling
in MPDFM invoking an example of an application domain concept on which
further aspects of the method will be demonstrated. An exhaustive

ComSIS Vol.2, No.1, June 2005 81

Valentino Vranić

r

description of the feature modeling for multi-paradigm design may be found
in [18,19].

Feature modeling is based on the notions of concept and feature. A
concept is an understanding of a class or category of elements in a domain.
Individual elements that correspond to this understanding are called
concept instances. A feature is an important property of a concept [17]. In
general, a feature may be common, which means it is present in all concept
instances, or variable, which means it is present only in some concept
instances.

2.1. Feature Diagrams

Feature diagrams are the most important part of a feature model which
also may contain information associated with concepts and features and
constraints and default dependency rules associated with feature diagrams.
An example of a feature diagram is presented in Fig. 2. This figure shows a
feature diagram of the text editing buffer concept (adapted from [20],
originally inspired by [4]). A text editing buffer represents the state of a file
being edited in a text editor. This is modeled by a mandato y feature (File),
which is denoted by a filled circle ended edge. Each text editing buffer
employs some memory management scheme to deal with files larger than
the working memory (Memory Management), which is also modeled by a
mandatory feature. Also, each text editing buffer loads and saves its
contents into a file, maintains a record of the number of lines and
characters, the cursor position, etc., which is modeled by further mandatory
features.

Fig.2. The feature diagram of the T x Editing Bu fer concept e t f

82 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

On the other hand, debugging code might be useful during the development
of the text editing buffer, but would probably be undesirable in the final
product. Thus, it is modeled by an optional feature (Debugging Code),
which is denoted by an empty circle ended edge.

A text editing buffer will use exactly one of the available character sets
(Character Set).This is specified by alternative features (ASCII,
UNICODE...), which are denoted by an empty arc. Note the brackets
around the Character Set feature’s name. This means that it is an open
feature; it is expected to have further variable subfeatures. In this case,
they would represent other character sets in the group of alternative
features, which is indicated by ellipsis placed at this group.

The alternative features just described are actually mandato y
alternative features. There are also op ional alterna ive features of which
one or none must be selected. A mixed mandatory-optional alternative
feature group is also possible, but its semantics are the same as if all the
features were optional alternative.

r
t t

1

Feature diagrams may also contain or-features, which are denoted by a
filled arc (see Fig. 3b). Any non-empty subset or all of the features can be
selected from the set of or-features. Having an optional features in a group
of or-features would change all its features into simple optional features.

A concept can be referenced as a feature in another or even in its own
feature diagram, which is equivalent to the repetition of its feature diagram
n the place of the reference. The mark2 follows the names of concept
references in order to distinguish them from the rest of the features. The
features Memory Management , File , and Debugging Code in Fig.
2 represent concept references; Fig. 3 shows the feature diagrams of the
corresponding concepts.

Note that, with exception of feature references, feature names have no
absolute meaning and equally named features may represent different
things.

However, no names should be repeated among sibling features, nor among
concepts that belong to one feature model.

2.2. Feature Binding

For a variable feature either binding time or binding mode has to be
specified. The binding time describes when a variable feature is to be
bound, i.e. selected to become a mandatory part of a concept instance.

1 This process is being denoted as feature diagram normalization [17].
2 For technical reasons, presented as (R) in diagrams.

ComSIS Vol.2, No.1, June 2005 83

Valentino Vranić

Fig.3. File (a) and Debugging Code concept (b) feature diagram

It is determined in terms of the binding times available in the solution
domain. These usually include: source time, compile time, link time, and
run time [4].

At the time of application domain modeling, the solution domain may be
unknown or it may be undesirable to pollute the application domain feature
model with solution domain details. In that case, using the binding mode
instead of the binding time is more appropriate. The binding mode
describes how a variable feature is bound from the perspective of a running
program. A variable feature may be bound statically, in which case it
cannot be unbound and rebound, or dynamically, in which case its binding
is fully controlled at run time. Other, more specific binding modes may be
defined as well, e.g. changeable binding as an optimized dynamic binding
[17].

Consider again the Text Editing Buffer concept (presented in Fig. 2); all
its variable features are statically bound. The alternative file type features
of the File concept in Fig. 3a are bound dynamically because we need to be
able to change the output file type at run time. On the other hand, it is
sufficient to determine the presence of the debugging code parts at source
or compile time, so the corresponding or-features in Fig. 3b are bound
statically.

84 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

2.3. Constraints Associated with Feature Diagrams

Feature diagrams define the main constraints on feature combinations in
concept instances. Since feature diagrams are represented as trees, in all
but simplest cases it is impossible to express all the constraints solely by a
feature diagram. Remaining constraints are introduced in a list of
constraints associated with the feature diagram. Also, a list of default
dependency rules may be associated with each feature diagram in order to
specify which features should or should not appear together by default
(details available in [18,19]).

To avoid ambiguities, constraints are specified by predicate logic
expressions. In such an expression, a feature name f stands for is in
instance(f), a predicate which is true if f is embraced in the concept
instance, and false otherwise. Feature names should be qualified to avoid
name clashes, but since each expression is associated with a specific feature
diagram, the domain and concept name are unnecessary. Some examples of
constraints associated with feature diagrams will be introduced in Sect. 3.2.

2.4. Concept Instantiation

A general definition of a concept instance with respect to instantiation time
is given here. An instance I of the concept C at time t is a C’s specialization
achieved by configuring its features which includes the C’s concept node
and in which each feature whose parent is included in I obeys the following
conditions:

1. All the mandatory features are included in I.
2. Each variable feature whose binding time is earlier than or equal to t is

included or excluded in I according to the constraints of the feature
diagram and those associated with it. If included, it becomes
mandatory for I.

3. The rest of the features, i.e. the variable features whose binding time is
later than t, may be included in I as variable features or excluded
according to the constraints of the feature diagram and those
associatedwith it. The constraints (both feature diagram and
associated ones) on the included features may be changed as long as
the set of concept instances available at later instantiation times is
preserved or reduced.

4. The constraints associated with C’s feature diagram become associated
with the I’s feature diagram.

ComSIS Vol.2, No.1, June 2005 85

Valentino Vranić

e
e

A concept may be instantiated in a top-down or a bottom-up fashion. The

top-down instantiation starts by the inclusion of the concept node; then
inclusion of each feature whose parent has been included is considered. The
bottom-up instantiation starts at leaves and proceeds towards the root; a
feature may be considered for inclusion only if the set of its features
selected for inclusion is correct according to the feature variability defined
by the feature model.

A concept instance is represented by a feature diagram derived from the
feature diagram of the concept by showing only the features included in the
concept instance. A concept instance is regarded as a concept and as such
may be a subject of further instantiation.

During instantiation, concept references are treated as regular features.
As such, they may appear in concept instances if they are not replaced by
the diagrams of concepts they reference prior to instantiation.

In case of an open feature whose form of expected variable subfeatures
is specified, the instance may contain any number of the subfeatures of the
specified form. If this description is missing (as with the Character Set
feature in Fig. 2), during instantiation, an open feature is considered as any
other non-open feature.

3. Solution Domain Feature Modeling

This section describes how to apply feature modeling to a solution domain
understood as a programming language in order to obtain its paradigm
model, which is necessary for performing transformational analysis. Recall
that the term paradigm in MPDFM denotes a solution domain concept,
which, in turn, corresponds to a programming language mechanism.
Solution domain feature modeling starts with paradigm identification. The
paradigms that can be used directly at the topmost level of programs, i.e.
dir ctly usable paradigms, are identified first, e.g. the class paradigm in
AspectJ programming language [21]. All other paradigms are indir ctly
usable paradigms. In AspectJ, an example would be the method paradigm,
which, unlike the class paradigm, can be used only inside of a class or
aspect.

There may be several levels of indirectly usable paradigms. However,
the first-level indirectly usable paradigms would probably be sufficient.
This issue must be solved with respect to the purpose of the paradigm
model: its use in transformational analysis. It is not feasible to model all

3 The AspectJ paradigm model is valid for the AspectJ language definition version 1.1.1
(which remains unchanged in the version 1.2 [21]).

86 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

the language constructs as paradigms. Much of such low-level paradigms
would never be used during transformational analysis because the
application domain feature model would be far less detailed. For example, a
method in AspectJ may contain an assignment construct, so there could be
the assignment paradigm. On the other hand, an application domain
feature model would hardly mention assignments, so having the
assignment paradigm in the paradigm model is futile.

After identifying directly usable paradigms, binding times (see Sect. 2.2)
of the solution domain should be identified. Following that, the first-level
paradigm model may be created (Sect. 3.1) and the paradigms may finally
be modeled (Sect. 3.2).

3.1. First-Level Paradigm Model

The directly usable paradigm references should appear as features of the
solution concept. If a paradigm may appear more than once in a program,
its reference should be introduced in the solution domain feature diagram
in plural, otherwise in singular.4 The variability of the paradigm references
should be determined according to the restrictions posed by the
programming language. If the paradigm reference is a variable feature, its
binding time (usually source time) should be determined, too. Finally,
initial constraints among paradigms may be determined.

As example, consider the feature diagram of the first-level AspectJ
paradigms in Fig. 4. All the directly usable paradigms of AspectJ are
modeled
as source time bound optional features of an AspectJ program as a solution
concept. Modeling of these directly usable AspectJ paradigms leads to
indirectly usable paradigms (which would appear as their features), namely
method, overloading, pointcut, inter-type declaration, and advice.

Fig.4. First-level AspectJ paradigms

4 Plural forms should be defined with respect to singular forms (see [18,19] for details).

ComSIS Vol.2, No.1, June 2005 87

Valentino Vranić

3.2. Modeling Paradigms

Each paradigm is considered to be a concept and thus it is presented in a
separate feature diagram created according to the solution domain related
information. Paradigms that may be used in the paradigm being modeled
should be referenced by it. If a paradigm enables instantiation, it should be
modeled as a feature (or features). If the feature is variable, its binding
time has to be selected among the binding times identified in the solution
domain. If none is appropriate, a new binding time should be established.

After creating an initial feature model of a paradigm, feature
combinations and interactions should be analyzed to determine constraints
and, possibly, identify new features (as proposed in [17] for feature
modeling in general).

If some feature’s subtree is repeated, it should be factored out as a
concept into a separate feature diagram and referenced as needed. In a
solution domain feature model, this concept may be a paradigm. If it
doesn’t appear to be a paradigm, it may be considered as an auxiliary
concept.

Much of the paradigms correspond to the main constructs, i.e.
structures, of the programming language (e.g., the class in AspectJ). In
transformational analysis, there may be an application domain concept
node that matches with the root of such a structural paradigm. Thus, it is
possible that no application domain node will match with the root of a
structural paradigm. This is especially inherent to the aspect paradigm in
AspectJ, which will be introduced in Sect. 3.2.5

Besides structural paradigms, there are also paradigms that are about
the relationship between some language structures. AspectJ examples
include inheritance (a relationship between classes), overloading (a
relationship between methods), and advice (a relationship between the
advice code, i.e. its body, and the join points it affects). In transformational
analysis, no application domain node will match with the root of such a
relationship paradigm.

Three related paradigms from the AspectJ paradigm model—the aspect,
advice, and pointcut paradigm—will be presented here to illustrate the
process of paradigm modeling.

5 Examples of aspect paradigm instances without application domain nodes matching their roots
may be found in [18]

88 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

Fig.5. The aspect paradigm in AspectJ

Aspect. The aspect paradigm (see Fig. 5) enables to articulate related
structure and behavior that crosscuts otherwise possibly unrelated classes,
interfaces, and other aspects (only static aspects are allowed) into a named
unit. An aspect is similar to a class in the sense that it also embodies
related structure (fields) and behavior (methods). But this structure and
behavior is used only to support the crosscutting, which is achieved by two
paradigms an aspect is a container of: the advice and inter-type
declaration. In addition, the pointcut paradigm is used to specify the join
points (where the aspect is to be attached).

As classes, aspects can also be instantiated, but the instantiation is
automatic. By default, an aspect is a singleton, i.e. there is a single aspect
per Java virtual machine. Furthermore, it is possible to declare that an
aspect instantiates per each of the specified objects (executing or target
ones) at any of the join points specified by a pointcut or per each flow of
control (as it is entered or below it) of the join points specified by a pointcut.

Aspects can be privileged in order to override the access rules of the
elements they crosscut. The aspect paradigm enables employing (inside of
it) the same paradigms as the class paradigm beside inter-type declarations
and pointcuts, which have a special position in it.

ComSIS Vol.2, No.1, June 2005 89

Valentino Vranić

The parts of an aspect (without considering inheritance) are known at
source time, which means that all the variable features presented in Fig. 5
have source time binding.

The following constraint is associated with the aspect paradigm feature
diagram:

final _abstract

which means that the aspect is either final, or abstract.

Fig.6. The advice (a) and pointcut (b) paradigm in AspectJ

Advice. Inside of an aspect, the advice paradigm (see Fig. 6a) may be used
to articulate the actions to be performed in the context of the join points
specified by the pointcut. An advice provides a piece of code (in its body) to
be run before, after, or in place (around) of a pointcut. The body of an advice
is similar to the body of a method. It can use the join points context exposed
by its pointcut.

An after advice can run after the execution of each join point specified by
the Poin ut tc completes normally, after it throws an exception, or after it
does either one. In the last case, no matching based on the type being
returned or exception being thrown can be made.

An around advice returns a value which will replace the original one at
each join point specified by the Pointcu t . The original join point return
value may also be captured and returned, modified or not, by letting the
original join point execute inside of the advice body. However, this AspectJ
paradigm model does not go into such details as they could hardly be used
in the transformational analysis.

Pointcut. The pointcut paradigm (see Fig. 6b) enables to specify the join
points. Two kinds of join points exist: static and dynamic join points. Both

90 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

are specified at source time, but are really determined later; static join
points, such as method calls or executions, are determined at compile time,
while dynamic join points, such as all method calls performed by an object
of some type, may be determined only at run time. This means that the
Static join points.Join points feature has compile time binding, while
Dynamic join points.Join points has run time binding.

A pointcut is a logical expression formed out of primitive pointcuts and
the pointcuts already defined. It can be named or not (if it is specified
directly in the place of its use). A pointcut can expose the context, i.e. an
object or its fields, caught by some of the primitive pointcuts.

The following two constraints are associated with the pointcut paradigm
feature diagram:

abstract _Body
Name,Access

which mean that an abstract pointcut cannot have a body (or vice versa),
and that an access type can and must be specified in case a pointcut is
named, respectively.

Fig.7. The type (a) and access (b) concept

The two auxiliary concepts referenced in the paradigms mentioned above
are presented in Fig. 7. The variable features in Figures 5–7 whose binding
time has not been explicitly introduced have source time binding.

4. Transformational Analysis

Transformational analysis in MPDFM is a process of finding the
correspondence and establishing the mapping between the application and
solution domain concepts. It is performed as a paradigm instantiation over
application domain concepts at source time. The input to transformational
analysis are two feature models: the application domain one and the
solution domain one. The output of transformational analysis is a set of
paradigm instances annotated with the information about corresponding
application domain concepts and features. Before presenting the process of
transformational analysis and providing an example of it, the key issue of

ComSIS Vol.2, No.1, June 2005 91

Valentino Vranić

it—paradigm instantiation over application domain concepts—will be
explained.

4.1. Paradigm Instantiation Over Application Domain Concepts

In a paradigm instantiation over application domain concepts, a paradigm,
i.e. a solution domain concept, is being instantiated in a bottom-up fashion
(see Sect. 2.4) with inclusion of some of the paradigm nodes being
stipulated by the mapping of the nodes of one or more application domain
concepts to them in order to ensure the paradigm instances correspond to
these application domain concepts.

Not all nodes of application domain concepts need to be mapped. An
inner6 application domain concept node may act as an auxiliary node to
ease the categorization of subfeatures. A feature represented by such a
node may have no counterpart in the solution domain.7 Such nodes will be
denoted as mediato y. r

Further, there may (and usually will) be a mismatch in detailedness
between the application and solution domain feature model. If solution
domain feature model is more detailed, features of some paradigms or even
some indirectly usable paradigms will not be mapped to in
transformational analysis, but in spite of that they may be included in
paradigm instances if determined so from the application domain concept
semantics. In case of the application domain feature model is more detailed,
there may be no corresponding nodes of the solution domain feature model
for some of the non-mediatory nodes or even whole application domain
concepts.

Any other non-mediatory feature diagram node of an application domain
concept has to be mapped to the corresponding node of a paradigm
instance. In general, only the correspondence between the nodes of the
same category may be considered, i.e. between two concepts or between two
features (note that concept references are also features). Further, semantics
of the two nodes have to correspond to each other.

The binding times of the nodes being mapped must correspond. For the
purposes of the binding time comparison, mandatory features are treated
as if they have the earliest binding time the solution domain provides
(which is usually the source time, as discussed in Sect. 2.2). The binding

6 An inner node is a non-root and non-leaf node.
7 However, there may be other mappings in which such a feature would be mapped.

92 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

tme correspondence may mean equality, but it may be relaxed to mean that
the binding time of the paradigm feature may not be earlier than required
by the application domain concept feature (as that would “only” afect the
execution time).

If binding modes were used in the application domain analysis instead
of binding times, then the correspondence between the application domain
binding modes and the solution domain binding times has to be established.
However, in most cases, run time binding corresponds to dynamic binding
mode, and the rest of binding times correspond to static binding mode.

In addition, if features are bound later than at the instantiation time,
constraints on their variability must correspond, too. To a certain extent,
during the instantiation of a paradigm, its constraints may accommodate to
the constraints of an application domain concept (as far as they obey the
rules defined in step 3 of concept instantiation introduced in Sect. 2.4).

Each mapping between the nodes should be recorded in the form of an
annotation, which is graphically presented by connecting the nodes with a
dashed line. Annotations other than the feature diagram nodes of an
application domain concept should be introduced in dashed boxes. For
example, some paradigm features may have specific values intended for use
in the code skeleton design (e.g., a name of the class).

4.2. The Process of Transformational Analysis

For each concept C from the application domain feature model, the
following steps are performed:

1. Determine the structural paradigm corresponding to C:
(a) Select a structural paradigm P of the solution domain feature

model that has not been considered for C yet.
(b) If there are no more paradigms to select, there may be a level

mismatch: C may correspond to a paradigm feature, and not to a
paradigm itself. Unless C has been factored out as a concept in
step 1d, continue transformational analysis considering C only as
a feature of the concepts where it is referenced, and not as a
concept. Otherwise, the process has terminated unsuccessfully.

(c) Try to instantiate P over C at source time. If this couldn’t be
performed or if P’s root doesn’t match with C’s root, go to step 1a.
Otherwise, record the paradigm instance created.

(d) If there are unmapped non-mediatory feature nodes ofC left,
factor out them as concepts (introducing concept references in
place of the subtrees they headed) and perform the

ComSIS Vol.2, No.1, June 2005 93

Valentino Vranić

transformational analysis of them. Subsequently, regard them as
concept references in C’s feature diagram and reconsider the
paradigm instance created in step 1c.

2. If there are relationships (direct or indirect ones) between the concept
node of C and its non-mediatory features not yet mapped to
relationships between the corresponding paradigm feature model
nodes, determine the corresponding relationship paradigms for each
such a relationship:
(a) Select a relationship paradigm P of the solution domain feature

model that has not been considered for a given relationship in C
yet. If there are no more paradigms to select, the process has
terminated unsuccessfully.

(b) Try to instantiate P over the relationship in C at source time. If
this couldn’t be performed or if there are no P’s nodes that match
with the C’s relationship nodes, go to step 2a. Otherwise, record
the paradigm instance created.

The given order of steps of transformational analysis process need not be

followed strictly; the main purpose of introducing it is to precisely define
the output of transformational analysis. For example, one may choose to
instantiate a relationship paradigm on an application domain concept prior
to actually determining its structural paradigm.

A successful transformational analysis results in only one of the possible
solutions and carrying out transformational analysis differently can lead to
another one. Deciding which solution is the best is out of the scope of this
method.

4.3. A Transformational Analysis Example

Consider again the text editing buffers debugging code concept whose
feature diagram is shown in Fig. 3c. Assume that the File feature matches
with the class paradigm, and that its features read and write represent
methods, while name and status are its attributes. Further, assume that
the file types inherit from this base file class. In this example,
transformational analysis of the text editing buffer’s file debugging code
part will performed. For this purpose, the feature corresponding to it,
Debugging Code.File, will be factored out as a concept.

As may be seen from Fig. 3c, the file debugging code consists of reading
and writing part. Debugging Code.File.reading is concerned with reading
files and supposed to provide an information on the type of the file before it

94 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

has been read. Debugging Cod .File.writing should provide an information
on the status of the file after it has been written to.

e

o

One could choose the method paradigm for both these features because

they represent functionality. However, a more careful examination of the
description of the two features given in the previous paragraph reveals that
this functionality is performed in connection with some other functionality.
Recalling that the debugging code should be plugable, and thus separated
from the rest of the code as much as possible, brings us to another form of
expressing functionality in AspectJ: the advice paradigm.

As shown in Fig. 8, both Debugging Code.File.reading and Debugging
Code. File.writing match with the body of a separate advice. An advice
performs its actions with respect to the join points specified by a pointcut.
In both cases, the pointcut would be unnamed, as we need it only for this
one application, and thus final (P intcut.final). The context of the read
method execution object would be needed to determine the file type in
reading file advice and file status in writing file advice. Thus, the context
should be exported by the pointcut (Pointcut.context) to be used by the
advice (Advice.context). The reading file advice should be run before
(Advice.before) the calls to File.read method, while the writing file advice
should be run after (Advice.after) the calls to File.write method.

Note that Fig. 8 presents actually five paradigm instances: two
pointcuts, two advices, and one aspect. Since paradigm instances are
concept instances (see Sect. 2.4), and concept instances are specialized
concepts, each paradigm instance could be presented in a separate diagram,
as well, with enclosing paradigm referencing the enclosed paradigm
instances.

ComSIS Vol.2, No.1, June 2005 95

Valentino Vranić

Fig.8. The file debugging code concept transformational analysis; an aspect with
 two advices

5. Code Skeleton Design

Code skeleton design is performed by traversing paradigm instances and
writing the source code manually. The paradigm instances obtained in
transformational analysis define the code skeleton, but the notes made
during transformational analysis (as those accompanying the feature model
element transformational analysis example) may also help mold the
skeleton more accurately and make it more concrete.

In code skeleton design, first the instances of structural paradigms are
transformed into code. Subsequently, the instances of relationship
paradigms are transformed, too.

The first step produces the basis for the second one because relationship
paradigms are usually not represented by independent syntactical
structures, but rather attached to the syntactical structures representing
structural paradigms.

96 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

Following the transformational analysis of the file debugging code
concept presented as a paradigm instance in Fig. 8, we could write the
following code:

The code represents an aspect with two advices. The first one is being
executed before reading any file, and the second one after writing each file.
Both advices expose the current File object which is to be utilized in the
advice bodies in order to output the file type in the first advice, and file
status in the second advice.

6. Related Approaches

Conceptually, MPDFM is closest to multi-paradigm design (MPD) [4]. By
employing feature modeling, MPDFM introduces several improvements. One
of the most important improvements is overcoming the MPD’s problem of
having to decide the conceptual correspondence between the paradigm and
application domain concept at once.8 By performing transformational
analysis as a bottom-up paradigm instantiation over application domain
concepts, the correspondence is decided part by part, at lower level
features, which are more easily compared.

Feature modeling in MPDFM also enables to visualize hierarchical
relationships between the commonalities and variabilities in both
application and solution domain models. In MPD, variability dependency
graphs are used for this, but they are not capable of expressing variability
constraints as feature diagrams are. Moreover, they are used only in
application domain models, while representing hierarchical relationships
between solution domain concepts, i.e. paradigms, is also needed.

While binding time in MPD is an attribute of a concept as a whole, in
MPDFM binding time is specified precisely where it applies: at individual
variable features. Also, instantiation in MPD is just an attribute of a
concept, while in MPDFM it may be modeled in more details by features.

8 In fact, MPD uses different terminology than MDFM, e.g. a domain in MPD denotes a concept
P in MPDFM. See [20] for a detailed comparison.

ComSIS Vol.2, No.1, June 2005 97

Valentino Vranić

r

t
 e

Feature modeling enables to have a visual control over transformational
analysis in MPDFM. Its output, annotated paradigm instances, provide
enough information about the mapping between the application and
solution domain concepts to obtain the main part of the code skeleton from
their trees, while in MPD, transformational analysis results are only a
guide in choosing a paradigm for an application domain concept.

Negative variability, which is in MPD presented in separate tables
(negative variability tables), is in feature modeling modeled by features.
The negative variability features of paradigms are actually their
specializations (e.g., consider the template specialization [4]).

A design method proposed in connection with multi-paradigm
programming in Leda [22] is also related to MPDFM. However, while
MPDFM is domain-oriented, Leda design method is concerned with the
design of one system.

The substantial difference is that MPDFM is performed in a bottom-up
fashion, and Leda design method in a top-down fashion, which is related to
the large-scale paradigm view it’s being based on. The granularity of large-
scale paradigms corresponds to the top level of a system or subsystem.
However, the selection of the main paradigm for the system or a part of it is
a hard decision to make at once. In Leda design method, a paradigm is
selected based on the analysis of the application of each available paradigm
impact to lower levels of the system.

Application domain feature modeling is a common activity of both
generative p ogramming [17] and MPDFM, so it may be performed without
having to decide which one of these approaches will be employed. Taking a
closer look at generative programming reveals that it also aims at
employing multiple paradigms. The difference is in the selection of
paradigms: while in MPDFM it is performed directly as a matter of the
primary concern, in generative programming it can be viewed as being built
into the generator.

7. Conclusions and Further Work

A new method of multi-paradigm software development called mul i-
paradigm design with feature mod ling (MPDFM) has been proposed in
this article. In this method, feature modeling is used to model both
application and solution domain. For this purpose, Czarnecki-Eisenecker
feature modeling [17] has been extended and adapted.

98 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

Consequently, transformational analysis, the key activity of multi-
paradigm design, in which paradigms (solution domain concepts)
appropriate for given application domain concepts are being selected, has
been proposed in terms of feature modeling as a bottom-up paradigm
instantiation over application domain concepts. Subsequently, code
skeleton, the final output of MPDFM, is obtained by traversing the trees of
annotated paradigm instances, which represent the output of
transformational analysis, and writing the source code manually.

To obtain the whole code skeleton, transformational analysis should be
performed for each application domain concept, as explained in Sect. 4.2. It
is also possible to perform transformational analysis only of some
application domain concepts (e.g., the critical ones) and do the rest of the
design without MPDFM. The rest of the design would be restricted by such
partial transformational analysis results.

Creating a feature model of a solution domain can be viewed as a
specialization of MPDFM with respect to transformational analysis. Parts of
such a specialization of MPDFM to AspectJ regarding its aspect-oriented
paradigms have been presented and applied in this article; its whole
paradigm
model is available in [18]. The AspectJ paradigm model has been
successfully applied in transformational analysis of a feature model of the
domain of feature modeling itself [18] (the feature model of feature
modeling is available also in [19]).

From the viewpoint of aspect-oriented software development,
transformational analysis according to the AspectJ paradigm model enables
an early aspect identification. Of course, such aspects are valid in the
context
of AspectJ only, but this is also the case with language-specific design
notations such as [23], which have to be used due to large differences in
aspect-oriented mechanisms provided by individual aspect-oriented
languages. An important difference is that an application domain model
expressed in such a notation is heavily language-dependent, which is not
the case with an application domain model in MPDFM.

In MPDFM, both application and solution domain feature models are
reused as a whole: different application domains may be implemented in
the same solution domain, and an application domain may be implemented
in several solution domains. However, some domains overlap, and this
happens even if one of them is an application domain and the other one is a
solution domain. Thus, the issue of overlapping domains is worth
considering as a step towards reuse of individual concepts.

ComSIS Vol.2, No.1, June 2005 99

Valentino Vranić

The reuse of individual concepts which are similar to each other would
require their generalization. Subsequently, they would appear as
specializations of a more general concept. This would be particularly useful
for paradigm models of related programming languages. Another
interesting topic for further work would be experimenting with
specialization of MPDFM to design patterns or other intermediate solution
domains and combinations of these in conjunction with programming
languages as such.

Acknowledgements. The work was partially supported by Slovak Science
Grant Agency VEGA, project No. 1/0162/03. I would like to thank Pavol
N´avrat and M´ aria Bielikov´a for their valuable suggestions.

8. References

1. Floyd, R.W.: The paradigms of programming. Communications of the ACM 22
(1979) 455–460

2. Coplien, J.O.: Multi-paradigm design and implementation in C++. Slides and
 notes of the tutorial given at 1st International Conference on Generative and

Component-Based Software Engineering (GCSE’99), Erfurt, Germany (1999)
Available at http://www.old.netobjectdays.org/mirrors /stja.cd/Beitraege/

 JimCoplien/Tutorial.ppt (accessed in June 2005).
3. Vranić, V.: Towards multi-paradigm software development. Journal of
 Computing and Information Technology (CIT) 10 (2002) 133–147
4. Coplien, J.O.: Multi-Paradigm Design for C++. Addison-Wesley (1999)
5. Coplien, J.O.: Multi-Paradigm Design. PhD thesis, Vrije Universiteit Brussel,
 Belgium (2000) Available at
 http://users.rcn.com/jcoplien/Mpd/Thesis/Thesis.pdf (accessed in June 2005).
6. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-

oriented domain analysis (FODA): A feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, USA (1990) Available at [24] (accessed in June 2005).

7. Chastek, G., Donohoe, P., Kang, K.C., Thiel, S.: Product line analysis: A
 practical introduction. Technical Report CMU/SEI-2001-TR-001, Software
 Engineering Institute, Carnegie Mellon University, Pittsburgh, USA (2001)
 Available at [24] (accessed in June 2005). 8. Geyer, L.: Feature modelling using
 design spaces. In: Proc. of the 1st German Product Line Workshop (1. Deutscher

Software-Produktlinien Workshop, DSPL-1), Kaiserslautern, Germany, IESE
(2000) Available at http://wwwagss.informatik.uni-kl.de/Veroeffentl/

 FeatureModelingUsingDesignSpaces.pdf (accessed in June 2005).
9. Griss, M.L., Favaro, J., d’Alessandro, M.: Integrating feature modeling with

100 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

 the RSEB. In Devanbu, P., Poulin, J., eds.: Proc. of 5th International
 Conference on Software Reuse, Victoria, B.C., Canada, IEEE Computer
 Society Press (1998) 76–85 Available at http://www.favaro.net/
 john/home/publications/rseb.pdf (accessed in June 2005).
10. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-
 oriented reuse method with domain-specific reference architectures. Annals of
 Software Engineering 5 (1998) 143–168
11. Simos, M.A.: Organization domain modeling (ODM): Formalizing the core
 domain modeling life cycle. In: Proc. of the 1995 Symposium on Software
 reusability, Seattle, Washington, United States, ACM Press (1995) 196–205
12. Software Engineering Institute, Carnegie Mellon University: A framework for
 software product line practice. (http://www.sei.cmu.edu/productlines/
 framework.html) Accessed in June 2005.
13. Claub, M.: Modeling variability with UML. In: Proc. of Net.ObjectDays 2001,
 Young Researchers Workshop on Generative and Component-Based Software
 Engineering, Erfurt, Germany, tranSIT (2001) 226–230
14. Riebisch, M., B¨ ollert, K., Streitferdt, D., Philippow, I.: Extending feature
 diagrams with UML multiplicities. In: Proc. of the 6th Conference on
 Integrated Design and Process Technology (IDPT 2002), Pasadena, California,
 USA, Society for Design and Process Science (2002) Available at
 http://www.theoinf.tu-ilmenau.de/»riebisch/publ/IDPT2002-paper.pdf, accessed
 in June 2005).
15. Jia, Y., Gu, Y.: The representation of component semantics: A feature-oriented
 approach. In Crnkovi´c, I., Larsson, S., Stafford, J., eds.: Proc. of the Workshop
 on Component-based Software Engineering: Composing Systems From
 Components (a part of 9th IEEE Conference and Workshops on Engineering of
 Computer-Based Systems), Lund, Sweden (2002) Available at
 http://www.idt.mdh.se/»icc/cbse-ecbs2002/jiayu.pdf (accessed in June 2005).
16. Czarnecki, K.: Generative Programming: Principles and Techniques of
 Software Engineering Based on Automated Configuration and Fragment-Based

Component Models. PhD thesis, Technical University of Ilmenau, Germany
 (1998) Available at http://www.prakinf.tu-ilmenau.de/»czarn/diss (accessed in

June 2005).
17. Czarnecki, K., Eisenecker, U.W.: Generative Programing: Methods, Tools, and
 Applications. Addison-Wesley (2000)
18. Vranić, V.: Multi-Pradigm Design with Feature Modeling. PhD thesis, Slovak
 University of Technology in Bratislava, Slovakia (2004) Available at
 http://www.fiit.stuba.sk/»vranic.
19. Vranić, V.: Reconciling feature modeling: A feature modeling metamodel. In
 Weske, M., Liggsmeyer, P., eds.: Proc. of 5th Annual International Conference
 on Object-Oriented and Internet-Based Technologies, Concepts, and
 Applications for a Networked World (Net.ObjectDays 2004). LNCS 3263,
 Erfurt, Germany, Springer (2004) 122–137 20. Vrani´c, V.: AspectJ paradigm
 model: A basis for multi-paradigm design for AspectJ. In Bosch, J., ed.: Proc. of
 3rd International Conference on Generative and Component-Based Software

ComSIS Vol.2, No.1, June 2005 101

Valentino Vranić

 Engineering (GCSE 2001). LNCS 2186, Erfurt, Germany, Springer (2001) 48–
 57
21. Eclipse.org: AspectJ project home page. (http://eclipse.org/aspectj) Accessed in
 June 2005.
22. Knutson, C.D., Budd, T.A., Vidos, H.: Multiparadigm design of a simple
 relational database. ACM SIGPLAN Notices 35 (2000) 51–61
23. Stein, D., Hanenberg, S., Unland, R.: A uml-based aspect-oriented design
 notation for aspectj. In Kiczales, G., ed.: Proc. of 1st International Conference
 on Aspect-Oriented Software Development, ACM Press (2002) 106–112
24. Software Engineering Institute, Carnegie Mellon University: Home page.
 (http://www.sei.cmu.edu) Accessed in June 2005.

Valentino Vranić is a researcher at Institute of Informatics and Software
Engineering, Faculty of Informatics and Information Technology of the
Slovak University of Technology in Bratislava. He holds a Bc. (BSc.) and
Ing. (MSc.) in information technology, and PhD. in program and
information systems, all from the Slovak University of Technology in
Bratislava. His main research interests are multi-paradigm software
development, domain engineering, and aspect-oriented programming.

102 ComSIS Vol.2, No.1, June 2005

	Introduction
	Feature Modeling for Multi-Paradigm Design
	Feature Diagrams
	Feature Binding
	Constraints Associated with Feature Diagrams
	Concept Instantiation

	Solution Domain Feature Modeling
	First-Level Paradigm Model
	Modeling Paradigms

	Transformational Analysis
	Paradigm Instantiation Over Application Domain Concepts
	The Process of Transformational Analysis
	A Transformational Analysis Example

	Code Skeleton Design
	Related Approaches
	Conclusions and Further Work
	References

