
DOI: 10.2298/CSIS111110021F

Implementation of EasyTime Formal Semantics
using a LISA Compiler Generator

Iztok Fister Jr.1, Marjan Mernik1, Iztok Fister1, Dejan Hrnčič1

University of Maribor
Faculty of electrical engineering and computer science

Smetanova 17
2000 Maribor

Slovenia
iztok.fister@guest.arnes.si,
marjan.mernik@uni-mb.si,

iztok.fister@uni-mb.si,
dejan.hrncic@uni-mb.si

Abstract. A manual measuring time tool in mass sporting competitions
would not be imaginable nowadays, because many modern disciplines,
such as IRONMAN, last a long-time and, therefore, demand additional re-
liability. Moreover, automatic timing-devices based on RFID technology,
have become cheaper. However, these devices cannot operate as stand-
alone because they need a computer measuring system that is capa-
ble of processing incoming events, encoding the results, assigning them
to the correct competitor, sorting the results according to the achieved
times, and then providing a printout of the results. This article presents
the domain-specific language EasyTime, which enables the controlling of
an agent by writing the events within a database. It focuses, in particu-
lar, on the implementation of EasyTime with a LISA tool that enables the
automatic construction of compilers from language specifications, using
Attribute Grammars.

Keywords: domain-specific language, compiler, code generator, measur-
ing time.

1. Introduction

In the past, timekeepers measured the time manually. The time given by a timer
was assigned to competitors based on their starting number, and these com-
petitors were then placed in order according to their achieved results and cate-
gory. Later, manual timers were replaced by timers with automatic time-registers
capable of capturing and printing out registered times. However, assigning the
times to competitors based on their starting numbers, was still done manually.
This work could be avoided by using electronic-measuring technology which,
in addition to registering the time, also enables the registering of competitors’
starting numbers. An expansion of RFID (Radio Frequency Identification) tech-
nology has helped this measuring-technology to become less expensive ([4,

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

23]), and accessible to a wider-range of users (e.g., sports clubs, organizers
of sporting competitions). Moreover, they were also able to compete with time-
measuring monopolies at smaller competitions.

In addition to measuring technology, a flexible computer system is also
needed to monitor the results. The proposed computer system enables the
monitoring of different sporting competitions using a various number of mea-
suring devices and measuring points, the online recording of events, the writing
of results, as well as efficiency and security. This measuring device is dedi-
cated to the registration of events and is triggered either automatically, when
the competitor crosses the measuring point that acts as an electromagnetic
antenna fields with an appropriate RFID tag, or manually, when an operator
presses the suitable button on a personal computer that acts as a timer. The
control point is the place where the organizers want to monitor the results. Until
now, each control point has required its own measuring device. However, mod-
ern electronic-measuring devices now allow for the handling of multiple control
points, simultaneously. Moreover, each registered event can have a different
meaning, depending on the situation within which it is generated. Therefore, an
event is handled by the measuring system according to those rules that are valid
for the control point. As a result, the number of control points (and measuring
devices) can be reduced by using more complex measurements. Fortunately,
the rules controlling events can be described easily with the use of a domain-
specific language (DSL) [11, 17]. When using this DSL, measurements at dif-
ferent sporting competitions can be accomplished by an easy pre-configuration
of the rules.

A DSL is suited to an application domain and has certain advantages over
general-purpose languages (GPL) within a specific domain [17]. The GPL is
dedicated to writing software over a wider-range of application domains. Gen-
eral problems are usually solved using these languages. However, a program-
mer is necessary for changing the behavior of a program written in a GPL. On
the other hand, the advantages of DSL are reflected in its greater expressive
power in a particular domain and, hence, increased productivity [14] , ease of
use (even for those domain experts who are not programmers), and easier veri-
fication and optimization [17]. This article presents a DSL called EasyTime, and
its implementation. EasyTime is intended for controlling those agents respon-
sible for recording events from the measuring devices, into a database. There-
fore, the agents are crucial elements of the proposed measuring system. To the
best of the author’s knowledge there is no comparable DSL of time measuring
for sport events, whilst some DSLs for performance measurement of computer
systems [2, 21] as well as on general measurement systems do indeed already
exist [13]. Finally, EasyTime has been successfully employed in practice, as
well. For instance, it measured times at the World Championship for the double
ultra triathlon in 2009 [9], and at a National Championship in the time-trials for
bicycle in 2010 [9].

The structure of the remaining article is as follows; In the second section,
those problems are illustrated that accompany time-measuring at sporting com-

1020 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

petitions. Focus is directed primarily on triathlon competitions, because they
contain three disciplines that need to be measured, and also because of their
lengthy durations. The design of DSL EasyTime is briefly shown in section
three. The implementation of the EasyTime compiler is described in the fourth
section, whilst the fifth section explains the execution of the program written
in EasyTime. Finally, the article is concluded with a short analysis of the work
performed, and a look at future work. This paper extends a previous workshop
paper [10] by providing general guidelines on how to transform formal language
specifications using denotational semantics into attribute grammars. The con-
creteness of these guidelines is shown on EasyTime DSL.

2. Measuring Time in Sporting Competitions

In practice, the measuring time in sporting competitions can be performed man-
ually (classically or with a computer timer) or automatically (with a measuring
device). The computer timer is a program that usually runs on a workstation
(personal computer) and measures in real-time. Thereby, the processor tact is
exploited. The processor tact is the velocity with which the processor’s instruc-
tions are interpreted. A computer timer enables the recording of events that are
generated by the competitor crossing those measure points (MP) in line with
the measuring device. In that case, however, the event is triggered by an oper-
ator pressing the appropriate button on the computer. The operator generates
events in the form of ⟨#,MP,TIME⟩, where # denotes the starting number
of a competitor, MP is the measuring point, and TIME is the number of sec-
onds since 1.1.1970 at 0:0:0 (timestamp). One computer timer represents one
measuring-point.

Today, the measuring device is usually based on RFID technology [6], where
identification is performed using electromagnetic waves within a range of radio
frequencies, and consists of the following elements:

– readers of RFID tags,
– primary memory,
– LCD monitor,
– numerical keyboard, and
– antenna fields.

More antenna fields can be connected on to the measuring device. One an-
tenna field represents one measuring point. Each competitor generates an
event by crossing the antenna field using passive RFID tags that include an
identification number. This number is unique and differs from the starting num-
ber of the competitor. The event from the measuring device is represented in the
form of ⟨#,RFID,MP,TIME⟩, where the identification number of the RFID
tag is added to the previously mentioned triplet.

The measuring devices and workstations running the computer timer can be
connected to the local area network. Communication with devices is performed
by a monitoring program, i.e. an agent, that runs on the database server. This

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1021

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

agent communicates with the measuring device via the TCP/IP sockets, and
appropriate protocol. Usually, the measuring devices support a Telnet protocol
that is character-stream oriented and, therefore, easy to implement. The agent
employs the file transfer protocol (ftp) to communicate with the computer timer.

2.1. Example: Measuring Time in Triathlons

Special conditions apply for triathlon competitions, where one competition con-
sists of three disciplines. This article, therefore, devotes most of its attention to
this problem.

The triathlon competition is performed as follows: first, the athletes swim,
then they ride a bicycle and finally run. In practice, all these activities are per-
formed consecutively. However, the transition times, i.e. the time that elapses
when a competitor shifts from swimming to bicycling, and from bicycling to run-
ning, are added to the summary result. There are various types of triathlon
competitions that differ according to the lengths of various courses. In order to
make things easier, organizers often employ round courses (laps) of shorter
lengths instead of one long course. Therefore, the difficulty of measuring time
is increased because the time for each lap needs to be measured.

Measuring time in triathlon competitions can be divided into nine control
points (Fig. 1). The control point (CP) is a location on the triathlon course, where
the organizers need to check the measured time. This can be intermediate or
final. When dealing with a double triathlon there are 7.6 km of swimming, 360
km of bicycling, and 84 km of running. Hence the swimming course of 380
meters consists of 20 laps, the bicycling course of 3.4 kilometers contains 105
laps, and the running course of 1.5 kilometers has 55 laps (Fig. 1).

Fig. 1. Definition of control points in the triathlon

Therefore, the final result for each competitor in a triathlon competition (CP8)
consists of five final results: the swimming time SWIM (CP2-CP0), the time for
the first transition TA1 (CP3-CP2), the time spent bicycling BIKE (CP5-CP3),
the time for the second transition TA2 (CP6-CP5), the time spent running RUN
(CP8-CP6), and three intermediate results: the intermediate time for swimming

1022 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

(CP1), the intermediate time for bicycling (CP4) and the intermediate time for
running (CP7). However, the current time INTER x and the number of remain-
ing laps LAPS x are measured by the intermediate results, where x = {1,2,3}
denotes the appropriate discipline (1=SWIM, 2=BIKE and 3=RUN).

The DSL EasyTime was developed in order to achieve this goal, and has
been employed in practice by conducting measurements at the World Cham-
pionship in the Double Triathlon in 2009. Note that the measurements were
realized according to Fig. 1. The next sections presents the design, implemen-
tation, and operation of EasyTime.

3. The Design of the EasyTime Domain-Specific Language

Typically, the development of a DSL consists of the following phases [17]:

– a domain analysis,
– a definition of an abstract syntax,
– a definition of a concrete syntax,
– a definition of formal semantics, and
– an implementation of the DSL.

Domain analysis provides an analysis of the application domain, i.e. measuring
time in sporting competitions. The results of this analysis define those con-
cepts of EasyTime that are typically represented within a feature diagram [5,
25]. The feature diagram also describes dependencies between the concepts
of DSL. Thus, each concept can be broken-down into features and sub-features.
In the case of EasyTime, the concept race consists of sub-features: events
(e.g., swimming, bicycling, and running), control points, measuring time,
transition area, and agents. Each control point is described by its starting
and finish line and at least one lap. In addition, the feature transition area
can be introduced as the difference between the finish and start times. Both
updating time and decrementing laps are sub-features of measuring time.
However, an agent is needed for the processing of events received from the
measuring device. It can act either automatically or manually. Note that dur-
ing domain analysis not all the identified concepts are useful for solving actual
problem. Hence, the identified concepts can be further classified into [16]:

– irrelevant concepts, those which are irrelevant to the actual problem;
– variable concepts, those which actually need to be described in the DSL

program; and
– fixed concepts, those which can be built into the DSL execution environ-

ment.

Domain analysis identifies several variable and fixed concepts within the
application domain that needs to be mapped into EasyTime syntax and se-
mantics [17]. At first, the abstract syntax is defined (context-free grammar).
Each variable concept obtained from the domain analysis is mapped to a non-
terminal in the context-free grammar; additionally, some new non-terminal and

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1023

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

terminal symbols are defined. The translations of the EasyTime domain con-
cepts to non-terminals are presented and explained in Table 1, whilst an ab-
stract syntax is presented in Table 2. Note that, the concepts Events and Tran-
sition are irrelevant for solving actual problem and are not mapped into non-
terminals’ symbols (denoted as none in Table 1). Interestingly, a description of
agents and measuring places cannot be found in other DSLs or GPLs. Whilst
attribute declaration is similar to variable declaration in many other program-
ming languages. However, note that there is the distinction that variables are
actually database attributes allocated for every competitor. Some statements,
such as assignment, conditional statement, and compound statement can be
found in many other programming languages, whilst decrement attributes and
update attributes are domain-specific constructs.

Table 1. Translation of the application domain concepts into a context-free grammar

Application domain concepts Non-terminal Formal sem. Description
Race P CP Description of agents; control points; measuring

places.
Events (swimming, cycling, none none Measuring time is independent from the type of an
running) event. However, good attribute’s identifier in control

points description will resemble the type of an event.
Transition area times none none Can be computed as difference between events final

and starting times.
Control points (start, number D D Description of attributes where start and finish time
of laps, finish) will be stored as well as remaining laps.
Measuring places (update time, M CM Measuring place id; agent id, which will control this
decrement lap) measuring place; specific actions (presented

with new non-terminal S) which will be performed
at this measuring place (e.g., decrement lap).

Agents (automatic, manual) A A Agent id; agent type (automatic, manual); agent sour-
ce (file, ip).

Table 2. The abstract syntax of EasyTime

P ∈ Pgm A ∈ Adec
D ∈ Dec M ∈ MeasPlace
S ∈ Stm b ∈ Bexp
a ∈ Aexp n ∈ Num
x ∈ Var file ∈ FileSpec
ip ∈ IpAddress

P ::= A D M
A ::= n manual file | n auto ip | A1;A2

D ::= var x ∶= a | D1;D2

M ::= mp[n1] → agnt[n2] S | M1;M2

S ::= dec x | upd x | x ∶= a | (b)→ S | S1;S2

b ::= true | false | a1 == a2 | a1! = a2

a ::= n | x

1024 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Although a language designer can proceed after domain analysis with infor-
mal or formal design patterns [17] the formal design step is preferred since it
can identify problems before the DSL is actually implemented [27]. Moreover,
formal specifications can be implemented automatically by language develop-
ment systems, thus significantly reducing the implementation effort [17]. The
meaning of the EasyTime language constructs is prescribed during the formal
semantics phase. Each language construct, belonging to the syntax domain, is
mapped into an appropriate semantic domain (Table 3) by semantic functions
CP, A, D, CM, CS, CB, and CA (Table 4).

Table 3. Semantic domains

Integer={. . . − 3,−2,−1,0,1,2,3 . . .} n ∈ Integer
Truth-Value={true, false}
State=Var→Integer s ∈ State
AType={manual, auto}
Agents=Integer→AType × (FileSpec ∪ IpAddress) ag ∈Agents
Runners=(Id ×RFID ×LastName × FirstName)∗ r ∈ Runners
DataBase=(Id × V ar1 × V ar2 × . . . × V arn)∗ db ∈ DataBase
Code=String c ∈ Code

These semantic functions translate EasyTime constructs into the instruc-
tions of the simple virtual machine. The meaning of virtual machine instructions
has been formally defined using operational semantics (Table 5) as the transi-
tion of configurations < c, e, db, j >, where c is a sequence of instructions, e is
the evaluation stack to evaluate arithmetic and boolean expressions, db is the
database, and j is the starting number of a competitor. More details of Easy-
Time syntax and semantics are presented in [9]. This article focuses on the
implementation phase, as presented in the next section.

The sample program written in EasyTime that covers the measuring time in
the double ultra triathlon is presented by Algorithm 1. In lines 1-2 two agents
are defined. Agent no. 1 is manual and agent no. 2 is automatic. In lines 4-
14 several variables, attributes in a database for each competitor, are defined
and initialized appropriately. For example, from Figure 1 it can be seen that
20 laps are needed for the swimming course and ROUND1 is set to 20, 105
laps are needed for the bicycling course and ROUND2 is set to 105, and 55
laps are needed for the running course and ROUND3 is set to 55. Lines 16-
19 define the first measuring place which is controlled by manual agent no.
1. At this measuring place the intermediate swimming time must be updated
in the database (upd SWIM) and the number of laps must be decremented
(dec ROUND1). Lines 20-22 define the second measuring place which is also
controlled by manual agent no. 1. At this measuring place only transition time
must be stored in the database (upd TRANS1). Lines 23-27 define the third
measuring place which is controlled by automatic agent no. 2. At this measur-
ing place we must update the intermediate result for bicycling (upd INTER2)
and decrement the number of laps (dec ROUND2). If a competitor finished

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1025

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Table 4. EasyTime formal semantics

CP ∶ Pgm→ Runners → Code × Integer × DataBase
CP⟦A D M⟧r = let s = D⟦D⟧Ø:

db =create&insertDB(s, r)
in (CM⟦M⟧(A⟦A⟧Ø), db)

A : Adec → Agents → Agents
A⟦n manual file⟧ag = ag[n→ (manual, file)]
A⟦n auto ip⟧ag = ag[n→ (auto, ip)]
A⟦A1;A2⟧ag = A⟦A2⟧(A⟦A1⟧ag)

D : Dec→State → State
D⟦var x ∶= a⟧s = s[x→ a]
D⟦D1,D2⟧s = D⟦D2⟧(D⟦D1⟧s)

CM : MeasPlace → Agents → Code × Integer
CM⟦mp[n1]→ agnt[n2]S⟧ag = (WAIT i ∶ CS⟦S⟧(ag,n2), n1)
CM⟦M1;M2⟧ag = CM⟦M1⟧ag ∶ CM⟦M2⟧ag

CS : Stm→ Agents × Integer → Code
CS⟦ dec x⟧(ag,n) = FETCH x:DEC:STORE x
CS⟦ upd x⟧(ag,n) = FETCH y:STORE x where

y = {accessfile(ag(n) ↓ 2) if ag(n) ↓ 1 =manual
connect(ag(n) ↓ 2) if ag(n) ↓ 1 = automatic

CS⟦x ∶= a⟧(ag,n) = CA⟦a⟧:STORE x
CS⟦(b)→ S⟧(ag,n) = CB⟦b⟧:BRANCH(CS⟦S⟧(ag,n),NOOP)
CS⟦S1;S2⟧(ag,n) = CS⟦S1⟧(ag,n) ∶ CS⟦S2⟧(ag,n)

CB : Bexp → Code
CB⟦true⟧ = TRUE
CB⟦false⟧ = FALSE
CB⟦a1 == a2⟧ = CA⟦a2⟧ ∶ CA⟦a1⟧:EQ
CB⟦a1! = a2⟧ = CA⟦a2⟧ ∶ CA⟦a1⟧:NEQ

CA : Aexp → Code
CA⟦n⟧ = PUSH n
CA⟦x⟧ = FETCH x

all the requested 105 laps (ROUND2 == 0) then time spent on the bicycle
must be stored in the database (upd BIKE). Lines 28-33 define the fourth
measuring place which is also controlled by automatic agent no. 2. At this
measuring place we must first check if a competitor has just started running
(ROUND3 == 55). If this is the case, we must record the transition time between
bicycling and running (upd TRANS2). At this measuring place we also must up-
date the intermediate result for running (upd INTER3) and decremented num-
ber of laps (dec ROUND3). If a competitor finished all the requested 55 laps
(ROUND3 == 0) then the final time must be stored in the database (upd RUN).

1026 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Algorithm 1 EasyTime program for measuring time in a triathlon competition
as illustrated in Fig. 1
1: 1 manual ”abc.res”;
2: 2 auto 192.168.225.100;
3:
4: var ROUND1 := 20;
5: var INTER1 := 0;
6: var SWIM := 0;
7: var TRANS1 :=0;
8: var ROUND2 := 105;
9: var INTER2 :=0;
10: var BIKE := 0;
11: var TRANS2 :=0;
12: var ROUND3 := 55;
13: var INTER3 := 0;
14: var RUN := 0;
15:
16: mp[1] → agnt[1] {
17: (true) → upd SWIM;
18: (true) → dec ROUND1;
19: }
20: mp[2] → agnt[1] {
21: (true) → upd TRANS1;
22: }
23: mp[3] → agnt[2] {
24: (true) → upd INTER2;
25: (true) → dec ROUND2;
26: (ROUND2 == 0) → upd BIKE;
27: }
28: mp[4] → agnt[2] {
29: (ROUND3 == 55) → upd TRANS2;
30: (true) → upd INTER3;
31: (true) → dec ROUND3;
32: (ROUND3 == 0) → upd RUN;
33: }

4. Implementation of the Domain-Specific Language
EasyTime

4.1. A LISA Compiler-Generator

One of the benefits of formal language specifications is the unique possibil-
ity for automatic language implementation. Although some compiler generators
accept denotational semantics [22], the generated compilers are mostly inef-
ficient. Although many compiler-generators based on attribute grammars [12,
20] exist today, we selected a LISA compiler-compiler that was developed at
the University of Maribor in the late 1990s [18]. The LISA tool produces a highly
efficient source code for: the scanner, parser, interpreter or compiler, in Java.
The lexical and syntactical parts of the language specification in LISA supports
various well-known formal methods, such as regular expressions and BNF [1].
LISA provides two kinds of user interfaces:

– a graphic user interface (GUI) (Fig. 2), and
– a Web-Service user interface.

The main features of LISA are as follows:

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1027

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Table 5. The virtual machine specification

⟨PUSH n ∶ c, e, db, j⟩ ▷ ⟨c,n ∶ e, db, j⟩
⟨TRUE ∶ c, e, db, j⟩ ▷ ⟨c, true ∶ e, db, j⟩
⟨FALSE ∶ c, e, db, j⟩ ▷ ⟨c, false ∶ e, db, j⟩
⟨EQ ∶ c, z1 ∶ z2 ∶ e, db, j⟩ ▷ ⟨c, (z1 == z2) ∶ e, db, j⟩ if z1, z2 ∈ Int
⟨NEQ ∶ c, z1 ∶ z2 ∶ e, db, j⟩ ▷ ⟨c, (z1! = z2) ∶ e, db, j⟩ if z1, z2 ∈ Int
⟨DEC ∶ c, z ∶ e, db, j⟩ ▷ ⟨c, (z − 1) ∶ e, db, j⟩ if z ∈ Int
⟨WAIT i ∶ c, e, db, j⟩ ▷ ⟨c, e, db, i⟩
⟨FETCH x ∶ c, e, db, j⟩ ▷ ⟨c, select x from db where Id = j ∶ e, db, j⟩
⟨FETCH accessfile(fn) ∶ c, e, db, j⟩ ▷ ⟨c, time ∶ e, db, j⟩
⟨FETCH connect(ip) ∶ c, e, db, j⟩ ▷ ⟨c, time ∶ e, db, j⟩
⟨STORE x ∶ c, z ∶ e, db, j⟩ ▷ ⟨c, e,update db set x = z where Id = j, j⟩ if z ∈ Int
⟨NOOP ∶ c, e, db, j⟩ ▷ ⟨c, e, db, j⟩

⟨BRANCH(c1, c2) ∶ c, t ∶ e, db, j⟩ ▷ {
⟨c1 ∶ c, e, db, j⟩
⟨c2 ∶ c, e, db, j⟩

if t = true
otherwise

– since it is written in Java, LISA works on all Java platforms,
– a textual or a visual environment,
– an Integrated Development Environment (IDE), where users can specify,

generate, compile and execute programs on the fly,
– visual presentations of different structures, such as finite-state-automata,

BNF, a dependency graph, a syntax tree, etc.,
– modular and incremental language development [19].

LISA specifications are based on Attribute Grammar (AG) [20] as introduced
by D.E. Knuth [12]. The attribute grammar is a triple AG = ⟨G,A,R⟩, where G
denotes a context-free grammar, A a finite set of attributes, and R a finite set of
semantic rules. In line with this, the LISA specifications (Table 6) include:

– lexical regular definitions (lexicon part in Table 6),
– attribute definitions (attributes part in Table 6),
– syntax rules (rule part before compute in Table 6),
– semantic rules, (rule part after compute in Table 6) and
– operations on semantic domains (method part in Table 6).

Lexical specifications for EasyTime in LISA (Fig. 2) are similar to those used
in other compiler-generators, and are obtained from EasyTime concrete syntax
(Table 7). Note that in the rule part of LISA specifications the terminal sym-
bols that are defined by regular expressions in the lexical part are denoted with
symbol # (e.g., #Id, #Int). EasyTime concrete syntax is derived from EasyTime
abstract syntax (Table 2). The process of transforming abstract syntax into con-
crete syntax is straightforward, and presented in [9]. Semantic rules are written
in LISA as regular Java assignment statements and are attached to a particular
syntax rule. Hence, the rule part in LISA (Table 6) specifies the BNF produc-
tion as well as the attribute computations attached to this production. Since the
theory about attribute grammars is a standard topic of compiler science, it is
assumed that a reader has a basic knowledge about attribute grammars [12,
20].

1028 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Fig. 2. LISA GUI

4.2. Translation scheme from denotational semantics to attribute
grammars

The most difficult part of transforming formal EasyTime specifications into LISA
specifications, consists of mapping denotational semantics into attribute gram-
mars. This mapping can be described in a systematic manner, and can also be
used for the implementation of other DSLs (e.g., [15]). It consist of the follow-
ing steps similar to the translation scheme from natural semantics into attribute
grammars [3]:

1. Identification of syntactic and semantic domains in each semantic func-
tion of denotational semantics. Identified syntactic domains must have their
counterparts in non-terminals of concrete syntax. Identified semantic do-
mains must be represented appropriately, with suitable data structures (ty-
pes) in chosen programming language.

2. Identification of inherited and synthesized attributes for each non-terminal
derived in step 1. Semantic argument, which is an input parameter in se-
mantic function, is represented as inherited attribute, while an output param-
eter is represented as synthesized attribute. According to [12], the starting

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1029

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Table 6. LISA specifications

language L1 [extends L2, ..., LN] {
lexicon {
[[P] overrides ∣ [P] extends] R regular expr.
⋮

}
attributes type A1, ..., AM
⋮

rule [[Y] extends ∣ [Y] overrides] Z {
X ::= X11 X12 ... X1p compute {

semantic functions }
⋮

∣
Xr1 Xr2 ... Xrt compute {

semantic functions }
;
}
⋮

method [[N] overrides ∣ [N] extends] M {
operations on semantic domains
}
⋮

}

non-terminal should not have inherited attributes. Whilst LISA automatically
infers whether an attribute is inherited or synthesized [12], the type of at-
tribute must be specified (Fig. 2).

3. For all identified attributes attached to a particular non-terminal’s, semantic
equations need to be developed that are in conformance to semantic equa-
tions from denotational semantics. In particular, semantic equations need to
be written for each synthesized attribute of the left-hand side non-terminal
and for each inherited attribute attached to non-terminals of the right-hand
side. This rule is applied to every production of a concrete syntax. In this
step the whole semantic equation is not yet written, only the existence of
such an equation is identified.

4. In the productions of concrete syntax certain new non-terminals appear,
which are consequences of transformation of abstract syntax into concrete
syntax. These non-terminals also carry information that are needed for com-
putations. In this step such non-terminals are identified and attached at-
tributes are classified into inherited and synthesized.

5. Finalizing semantics for all identified semantic equations. These semantic
equations need to be in conformance to denotational semantics, and require
careful examination of semantic functions of denotational semantics (e.g.,
CP,A, D, CM, CS, CB, and CA from Table 4). This step is most demanding.

6. In code generation, certain additional tests are usually performed, which are
sometimes non-described in formal semantics, in order to be on a proper
abstraction level. For example, only declared variables can be used in ex-

1030 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Table 7. The concrete syntax of EasyTime

PROGRAM ::= AGENTS DECS MES PLACES
AGENTS ::= AGENTS AGENT | ε
AGENT ::= #Int auto #ip ; | #Int manual #file ;
DECS ::= DECS DEC | ε
DEC ::= var #Id ∶= #Int ;
MES PLACES ::= MES PLACE MES PLACES | MES PLACE
MES PLACE ::= mp[#Int] − > agnt [#Int] { STMTS }
STMTS ::= STMT STMTS | STMT
STMT ::= dec #Id ; | upd #Id ; | #Id ∶= EXPR ; | (LEXPR) − > STMT
LEXPR ::= true | false | EXPR == EXPR | EXPR != EXPR
EXPR ::= #Int | #Id

pressions and commands of a language under development. Such addi-
tional tests require that new attributes are defined to carry the results of
tests, as well as existing attributes being propagated to appropriate con-
structs (e.g., expressions, commands). An attribute grammar is finalized
during this step.

Note that the presented guidelines are general and not restricted to a par-
ticular class of attribute grammars [12, 20] (e.g., S-attributed, L-attributed, or-
dered attribute grammar, absolutely non-circular attribute grammar). Actually,
the class of obtained attribute grammar can be identified only after the transla-
tion has been completely performed.

4.3. Translation scheme from EasyTime formal semantics to LISA

When applying the aforementioned rules to EasyTime, the following results are
obtained after each step.

Step 1:
The following non-terminals from Table 7 represent syntactic domains (Ta-

ble 2): PROGRAM ∈ Pgm, MES PLACES ∈ MeasPlace, DECS ∈ Dec, AGENTS
∈ Adec, STMTS ∈ Stm, etc. Semantic domains (Table 3) such as Integer, Truth-
Value, Code have direct counterparts with Java types: int, boolean, and String.
While semantic domains which are functions (e.g., State, Agents) can be mod-
eled with Java Hashtable type. For example, from Figure 2 we can notice that
attribute inState, which represents function State, is of type Hashtable. Using
methods such as put(), get(), and containsKey() we can respectively insert
a new variable, obtain a variable’s value, and check if the variable is declared.
Other semantic domains (e.g., cartesian product) can be modeled easily with
a Java rich type system. Hence, in LISA the type of attributes regarding an
attribute grammar can be any valid pre-defined or user-defined Java type. An
example of auxiliary operations on semantic domains (e.g., Hashtable), is pre-
sented in [10].

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1031

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Step 2:
From CP ∶ Pgm → Runners → Code × Integer × DataBase (Table 4) it

can be concluded that to non-terminal PROGRAM one inherited (representing
a parameter of type Runners) and three synthesized attributes (representing
parameters of Code, Integer, and DataBase) need to be attached. However,
the starting non-terminal should not have inherited attributes [12, 20]. From the
definition of semantic function CP (Table 4) it can be noticed that the input pa-
rameter of type Runners are only needed to create a database. Hence, both
parameters (of type Runners and DataBase) can be omitted from LISA speci-
fications, and its functionality can be externally implemented. Moreover, it was
decided to represent both the generated code and the identification number of
the virtual machine, where the code is going to be executed, as a string ”(Code,
Integer)”. Hence, only one synthesized attribute, PROGRAM.code, is attached
to starting non-terminal PROGRAM.
From A ∶ Adec → Agents → Agents (Table 4) it can be concluded that one
inherited and one synthesized attribute need to be attached to non-terminal
AGENTS. For this purpose AGENTS.inAG is an inherited attribute, and AGEN-
TS.outAG a synthesized attribute. Both attributes are of type Hashtable since
semantic domain Agents is a function, which can be modeled as a Hashtable.
From D ∶ Dec → State → State (Table 4) it can be concluded that one inher-
ited and one synthesized attributes need to be attached to non-terminal DECS.
For this purpose DECS.inState is inherited attribute, and DECS.outState a syn-
thesized attribute. Both attributes are of type Hashtable since semantic domain
State is a function, which can be modeled as a Hashtable.
From CM ∶ MeasPlace → Agents → Code × Integer (Table 4) it can be con-
cluded that one inherited and two synthesized attributes need to be attached to
non-terminal MES PLACES. Again, it was decided to represent both, a gener-
ated code and the identification number of virtual machine, as a string. For this
purpose MES PLACES.inAG is an inherited attribute and MES PLACES.code
is a synthesized attribute.
From CS ∶ Stm → Agents × Integer → Code (Table 4) it can be concluded
that two inherited and one synthesized attribute need to be attached to non-
terminal STMTS. For this purpose STMTS.inAG and STMTS.n are inherited
attributes of type Hashtable and int, respectively. The attribute STMTS.code is
a synthesized attribute of type String. The attributes, inherited and synthesized,
attached to the appropriate non-terminals are collated in Table 8.

Table 8. Attributes of non-terminals representing syntactic domains from EasyTime for-
mal semantics

X Inherited(X) Synthesized(X)
PROGRAM code
AGENTS inAG outAG
DECS inState outState
MES PLACES inAG code
STMTS inAG, n code

1032 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Step 3:
In this step semantic equations are given for each synthesized attribute of

the left-hand side non-terminal, and for each inherited attribute for the right-
hand side non-terminal. This procedure is applied to each production in the
context-free grammar (Table 7). The LISA specification fragment as illustrated
in Table 9 indicates, which semantic equations need to be developed. Let us
explain the process for the first production. Since the non-terminal PROGRAM,
left-hand side non-terminal, has only one synthesized attribute code (Table 8)
only one semantic equation must be defined (PROGRAM.code = ...;). Other
non-terminals (AGENTS, DECS, MES PLACES) in the first production are on
the right hand side and hence only inherited attributes attached to those non-
terminals must be defined (AGENTS.inAG = ...; DECS.inState = ...; MES -
PLACES.inAG = ..;). Note that the order of these semantic equations is irrel-
evant [12, 20].

Table 9. Semantic equations under development that are obtained after Step 3

PROGRAM ::= AGENTS DECS MES PLACES compute {
AGENTS.inAG = ...;
DECS.inState = ...;
MES PLACES.inAG = ...;
PROGRAM.code = ...; };

AGENTS ::= AGENTS AGENT compute {
AGENTS[1].inAG = ...;
AGENTS[0].outAG = ...; };

DECS ::= DECS DEC compute {
DECS[1].inState = ...;
DECS[0].outState = ...; };

MES PLACES ::= MES PLACE MES PLACES compute {
MES PLACES[1].inAG = ...;
MES PLACES[0].code = ...; };

STMTS ::= STMT STMTS compute {
STMTS[1].n = ...;
STMTS[1].inAG = ...;
STMTS[0].code = ...; };

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1033

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Step 4:
From step 3, it can be identified the following non-terminals, which appears

in concrete syntax (Table 7) and were unidentified in steps 1 - 3: AGENT, DEC,
MES PLACE, and STMT (Table 10). If the structure of these non-terminals is
simple (e.g., AGENT, DEC) then attributes attached to these non-terminals car-
ried only synthesized attributes representing mostly lexical values (Table 11).
Semantic equations can be derived immediately for those attributes. On the
other hand, some non-terminals might be complex (e.g., MES PLACE, STMT)
and inherited attributes attached to these non-terminals are also needed. The
attributes might be similar to those attributes attached to other non-terminals
in productions, where new non-terminals appear (Table 8). Moreover, semantic
equations may no longer be simple (Table 11). For example, attributes attached
to non-terminals MES PLACE and STMT (Table 10) are the same as those
attached to non-terminals STMTS and MES PLACES, respectively (Table 8).
However, due to the semantics of the update statement (Table 4) another at-
tribute y is attached to the non-terminal STMT (Table 10).

Table 10. Attributes for additional non-terminals

X Inherited(X) Synthesized(X)
AGENT number, type, file ip
DEC name, value
MES PLACE inAG code
STMT inAG, n code, y

Step 5:
The reasoning of this step is only explained for semantic functions A and

CM (Table 4), which are translated into attributes for non-terminals AGENTS,
AGENT, MES PLACES, and MES PLACE (Tables 8 and 10). For other se-
mantic functions the reasoning is similar. The semantic equation A⟦A1;A2⟧ag
= A⟦A2⟧ (A⟦A1⟧ag) (Table 4) constructs ag ∈ Agents, which is a function from
an integer, denoting an agent, into an agent’s type (manual or auto), and an
agent’s ip or agent’s file. This function is described in LISA as presented in
Table 12. From Table 12 it can be noticed how the attribute outAG, which rep-
resents the ag ∈ Agents, is constructed simply by the calling method insert().
The method insert() will insert a new agent with a particular number, type, and
file ip into the Hashtable. Note also, how the missing equations from Step 3
have been developed. The net effect is that we are constructing a list, more
precisely a hash table, of agents where we are recording the agent’s number
(AGENT.number), the agents’s type (AGENT.type), and the agent’s ip or file
(AGENT.file ip) (see Step 4). The complete LISA specifications for semantic
function A, is shown in Algorithm 2.

The reasoning for the semantic function CM is done in a similar man-
ner. The semantic equation CM⟦M1;M2⟧ag = CM⟦M1⟧ag ∶ CM⟦M2⟧ag (Ta-
ble 4) translates the first construct M1 into code before performing the transla-
tion of the second construct M2. This function is described in LISA, as repre-

1034 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Table 11. Semantic equations for additional non-terminals

AGENT ::= #Int auto #ip compute {
AGENT.number = Integer.valueOf(#Int[0].value()).intValue();
AGENT.type = ”auto”;
AGENT.file ip = #ip.value(); };

DEC ::= var #Id #̄Int compute {
DEC.name = #Id.value();
DEC.value = Integer.valueOf(#Int.value()).intValue(); };

MES PLACES ::= MES PLACE MES PLACES compute {
MES PLACE.inAG = ...; };

MES PLACE ::= mp [#Int] − > agnt [#Int] { STMTS } compute {
MES PLACE.code= ...; };

STMTS ::= STMT STMTS compute {
STMT.n = ...;
STMT.inAG = ...; };

STMT ::= upd #Id compute {
STMT.y = ...;
STMT.code = ...; };

Table 12. Semantic equation for AGENTS

AGENTS ::= AGENTS AGENT compute {
AGENTS[1].inAG = AGENTS[0].inAG;
AGENTS[0].outAG = insert(AGENTS[1].outAG,
new Agent(AGENT.number, AGENT.type, AGENT.file ip));
}

∣ epsilon compute {
AGENTS.outAG = AGENTS.inAG;
};

sented in Table 13, with the following meaning: The code for the first construct
MES PLACE is simply concatenated with the code from the second construct
MES PLACES[1].

The semantic equation CM⟦mp[n1] → agnt[n2]S⟧ag = (WAIT i ∶ CS⟦S⟧

(ag,n2), n1) (Table 4) is described in LISA, as presented in Table 14.
However, in this step the undefined semantic equations from steps 3 and

4 also need to be developed (Table 15). For example, a list of agents (inAG)
needs to be propagated.

Step 6:
Easytime also uses variables in statements, and additional checks must be

performed if only declared variables appear in expressions and statements. For
this reason an additional attribute ok of type boolean has been introduced into
the specifications. Moreover, to be able to check if a variable is declared, it

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1035

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Algorithm 2 Translation of Agents into LISA specifications
1: rule Agents {
2: AGENTS ::= AGENTS AGENT compute {
3: AGENTS[1].inAG = AGENTS[0].inAG;
4: AGENTS[0].outAG = insert(AGENTS[1].outAG,
5: new Agent(AGENT.number, AGENT.type, AGENT.file ip));
6: }
7: ∣ epsilon compute {
8: AGENTS.outAG = AGENTS.inAG;
9: };
10: }
11: rule AGENT {
12: AGENT ::= #Int manual #file compute {
13: AGENT.number = Integer.valueOf(#Int[0].value()).intValue();
14: AGENT.type = ”manual”;
15: AGENT.file ip = #file.value();
16: };
17: AGENT ::= #Int auto #ip compute {
18: AGENT.number = Integer.valueOf(#Int[0].value()).intValue();
19: AGENT.type = ”auto”;
20: AGENT.file ip = #ip.value();
21: };
22: }

Table 13. Semantic equation for MES PLACES

MES PLACES ::= MES PLACE MES PLACES compute {
MES PLACES[0].code = MES PLACE.code +
”/ n” + MES PLACES[1].code; };

MES PLACES ::= MES PLACE compute {
MES PLACES.code = MES PLACE.code };

is necessary to propagate attribute inState into the measuring places, state-
ments, and expressions. The complete LISA specifications for MES PLACE are
shown in Algorithm 3 also using attributes ok and inState.

Semantic equations for other production are obtained in a similar manner.
Let us conclude this example by finalizing semantic equations for the starting
production (see also Table 9). The initial hash table for agents (AGENTS.inAG)
and declarations (DECS.inState) are empty (Table 16). Agents and declara-
tions are constructed after visiting the subtrees represented by the non-terminals
AGENTS and DECS, and stored into attributes AGENTS.outAG and DECS.
outState, that are passed to the subtree represented by the non-terminal MES
PLACES. If all the syntactic constraints are satisfied (MES PLACES.ok ==

true), then the generated code is equal to a code produced by the subtree
represented by the non-terminal MES PLACES.

Table 14. Semantic equation for MES PLACE

MES PLACE ::= mp [#Int] − > agnt [#Int] { STMTS } compute {
MES PLACE.code= ”(WAIT i ” + STMTS.code +
”, ” + #Int[0].value() + ”)”; };

1036 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Table 15. Developing undefined semantic equations for MES PLACES

MES PLACES ::= MES PLACE MES PLACES compute {
MES PLACE.inAG = MES PLACES[0].inAG;
MES PLACES[1].inAG = MES PLACES[0].inAG;
... };

MES PLACES ::= MES PLACE compute {
MES PLACE.inAG = MES PLACES.inAG;
... };

Table 16. Semantic equations for the starting production

PROGRAM ::= AGENTS DECS MES PLACES compute {
AGENTS.inAG = new Hashtable();
DECS.inState = new Hashtable();
MES PLACES.inAG = AGENTS.outAG;
MES PLACES.inState = DECS.outState;
PROGRAM.code = MES PLACES.ok ? ”/ n” +
MES PLACES.code + ”/ n” : ”ERROR”; };

5. Operation

Local organizers of sporting competitions were faced with two possibilities be-
fore developing EasyTime:

– to rent a specialized company to measure time,
– to measure time manually.

The former possibility is expensive, whilst the latter can be very unreliable. How-
ever, both objectives (i.e. inexpensiveness and reliability), can be fulfilled by
EasyTime. On the other hand, producers of measuring devices usually deliver
their units with software for the collecting of events into a database. Then these
events need to be post-processed (batch processed) to get the final results of
the competitors. Although this batch-processing can be executed whenever the
organizer desires, each real-time application requests online processing. For-
tunately, EasyTime enables both kinds of event processing.

In order to use the source program written in EasyTime by the measuring
system, it needs to be compiled. Note that the code generation [1] of a program
in EasyTime is performed only if the parsing is finished successfully. Otherwise
the compiler prints out an error message and stops. For each of measuring
places individually, the code is automatically generated by strictly following the
rules, as defined in Section 3. An example of the generated code from the
Algorithm 1 for the controlling of measurements, as illustrated by Fig. 1, is pre-
sented in Table 17. Note that the generated code is saved into a database. The
meaning of the particular instructions of virtual machine (e.g., WAIT, FETCH,
STORE), is explained in Table 5.

As a matter of fact, the generated code is dedicated to the control of an
agent by writing the events received from the measuring devices, into the data-
base. Normally, the program code is loaded from the database only once. That

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1037

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Algorithm 3 Translation of MES PLACE into LISA specifications
1: rule Mes places {
2: MES PLACES ::= MES PLACE MES PLACES compute {
3: MES PLACE.inAG = MES PLACES[0].inAG;
4: MES PLACES[1].inAG = MES PLACES[0].inAG;
5: MES PLACE.inState = MES PLACES[0].inState;
6: MES PLACES[1].inState = MES PLACES[0].inState;
7: MES PLACES[0].ok = MES PLACE.ok && MES PLACES[1].ok;
8: MES PLACES[0].code = MES PLACE.code + ”/n” + MES PLACES[1].code;
9: };
10: MES PLACES ::= MES PLACE compute {
11: MES PLACE.inAG = MES PLACES.inAG;
12: MES PLACE.inState = MES PLACES.inState;
13: MES PLACES.ok = MES PLACE.ok;
14: MES PLACES.code = MES PLACE.code;
15: };
16: }
17: rule MES PLACE {
18: MES PLACE ::= mp /[#Int /] / − / > agnt /[#Int /] /{ STMTS /} compute {
19: STMTS.inAG = MES PLACE.inAG;
20: STMTS.inState = MES PLACE.inState;
21: STMTS.n = Integer.valueOf(#Int[1].value()).intValue();
22: MES PLACE.ok = STMTS.ok;
23: MES PLACE.code = ”(WAIT i ” + STMTS.code + ”, ” + #Int[0].value() + ”)”;
24: };
25: }

is, only an interpretation of the code could have any impact on the performance
of a measuring system. Because this interpretation is not time consuming, it
cannot degrade the performance of the system. On the other hand, the preci-
sion of measuring time is handled by the measuring device and is not changed
by the processing of events. In fact, the events can be processed as follows:

– batch: manual mode of processing, and
– online: automatic mode of processing.

The agent reads and writes the events that are collected in a text file, when the
first mode of processing is assumed. Typically, events captured by a computer
timer are processed in this mode. Here, the agent looks for an existence of the
event text file that is configured in the agent statement. If it exists, the batch pro-
cessing is started. When the processing is finished, the text file is archived and
then deleted. The online processing is event oriented, i.e. each event generated
by the measuring device is processed in time. In both modes of processing, the
agent works with the program PGM, the runner table RUNNERS, and the re-
sults table DATABASE, as can be seen in Fig. 3. An initialization of the virtual
machine is performed when the agent starts. The initialization consists of load-
ing the program code from PGM. That is, the code is loaded only once. At the
same time, the variables are initialized on starting values.

In order to ensure the reliability of Easytime in practice, competitors are
not allowed to go directly from swimming to running, because the course is
complex and the competitor must to go through both transition areas. In the
case that a competitor skips over the next discipline, the referees disqualify

1038 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

Table 17. Translated code for the EasyTime program in Algorithm 1

(WAIT i FETCH accessfile(”abc.res”) STORE SWIM
FETCH ROUND1 DEC STORE ROUND1, 1)

(WAIT i FETCH accessfile(”abc.res”) STORE TRANS1, 2)

(WAIT i FETCH connect(192.168.225.100) STORE INTER2
FETCH ROUND2 DEC STORE ROUND2
PUSH 0 FETCH ROUND2 EQ BRANCH(FETCH
connect(192.168.225.100) STORE BIKE, NOOP), 3)

(WAIT i FETCH connect(192.168.225.100) STORE INTER3
PUSH 55 FETCH ROUND3 EQ BRANCH(FETCH
connect(192.168.225.100) STORE TRANS2, NOOP)
FETCH ROUND3 DEC STORE ROUND3
PUSH 0 FETCH ROUND3 EQ BRANCH(FETCH
connect(192.168.225.100) STORE RUN, NOOP), 4)

him/her immediately. Actually, EasyTime is only of assistance to referees. All
misuses of the triathlons rules do not have any impact on its operation.

Fig. 3. Executable environment of a program in EasyTime

After the development of EasyTime another demand has arisen - drafting
detection in triathlons. This problem is especially expressive in cycling, where
competitors wishing to improve their results ride their cycles within close-knit
groups. In this way, competitors achieve a higher speed and save energy for
later efforts. Typically, within such groups of competitors the hardest work is per-
formed by the leading competitor because he needs to overcome on air resis-
tance. At the same time, other competitors may take a rest. Actually, the drafting
violation arises when one competitor rides behind the other closer than 7 me-

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1039

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

ters for more than 20 seconds. Interestingly, this phenomenon is only pursued
during long-distance triathlons, whilst drafting is allowed over short-distances.
Any competitor who violates this drafting rule is punished by the referees with 5
minutes of elimination from the cycling race. The referees observe the race from
motorcycles and determine the drafting violations according to their feelings. In
this sense only, this assessment is very subjective. On the other hand, the ref-
erees can control one competitor a time. Consequently, an automatic system
is needed for detecting drafting violations during triathlons. A drafting detec-
tion system is proposed in order to track this violation. This system is based
on smart-phones because these incorporate the following features: informa-
tion access via wireless networks and GPS navigation. Smart-phones need to
be borne by competitors on their bicycles (Fig. 4). These determine informa-
tion about competitor current GPS positions and transmit these over wireless
modems to a web-service. From the positions of all competitors the web-service
calculates whether a particular competitor is violating the drafting rule. In ad-
dition, these violations can be tackled by the referees on motorcycles using
smart-phones.

Fig. 4. Proposed system for drafting detection in triathlons

Normally, the organizers of triathlons demand the integration of EasyTime
within the system for drafting violation. At a glance, this integration can be per-
formed at the computer-system level, i.e., the mobile agent is added to the
existing EasyTime agents. This mobile agent acts as a web-service and runs
on an application server. Like EasyTime, it uses its own database. Each record
in this database represents a competitor’s current GPS position that can be de-
fined as tuple ⟨#, x, y, z, t, l⟩, where # denotes the competitor’s starting number,
x, y, z his current position within the coordinate system UTM, t the registration
time in the mobile device, and l the calculated path-length. This length l is ob-

1040 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

tained by projecting the current position of the #-th competitor on the line that
connects the points gained by tracking the cycling course with a precise GPS
device, at each second. This has an impact on the competitor’s current posi-
tion, from which the distance is calculated to the competitor in front of him. At
the moment, both systems run on the same server separately. However, further
development of a wireless technology and pervasive computing [29] indicates
that EasyTime should have the ability to run on an application server as well.

Interestingly, the measuring time in biathlons represents another great chal-
lenge for EasyTime. Here, competitors ski on cross-country skiis and stop at
certain places to shoot at targets with rifles carried by them. In order to measure
time during biathlons, EasyTime needs to be modified slightly. In line with this,
two measuring devices are need, and a special measuring device for counting
hits. The first measuring device is dedicated to measuring the four laps of ski-
ing, whilst the second is applied for counting the penalty laps. Each missed shot
attracts one additional penalty lap. The measuring device for counting hits is de-
scribed in EasyTime as a new agent. This agent is responsible for setting the
number of additional penalty laps to be measured using the second measuring
device. In contrast to the static initialization of the laps counter in EasyTime, a
new request is demanded, i.e, a dynamic initialization of this laps counter needs
to be implemented.

EasyTime could also be extended and used in some other application do-
mains. For example, EasyTime could be employed as an electric shepherd for
tracking livestock (cows, sheep, etc.) in the mountains. In this case, each animal
would be labeled with a RFID tag that is controlled by crossing the measuring
place twice a day. First, in the morning, when the animals go from their stalls
and, second, in the evening, when they return to their stalls. Each crossing of
the measuring place by the animal decrements a counter of herd-size for one.
Essentially, the EasyTime tracking system reports an error, when the counter
is not decreased to zero within a specified time interval. In order for this track-
ing system to work properly, the herd-size counter has to be initialized twice a
day (for example, at 12:00 am and 12:00 pm). Additionally, EasyTime could be
used in the clothing industry for tracking cloth through the production. Clothing
production consists of the following phases: preparing, sewing, ironing, adjust-
ing, quality-control and packing [7, 8]. The particular cloth origins during the
preparation stage, where the parts of cutting patterns are collected into bun-
dles, labeled with the RFID tags, and delivered for sewing. This transition of
the bundle into the sewing room presents a starting point for the EasyTime
tracking system. The other control points are, as follows: transition from sewing
room into ironing, transition from ironing into adjusting, transition from adjusting
into quality-control, and transition from quality-control into packing room that
represents the finishing point of the cloth production. Note that these transi-
tions act similarly to those transition areas in Ironman competitions. Usually,
the cloth does not traverse through the production in any one-way because
quality-control can return it to any of the past production phases. In this case,
EasyTime could be used for tracking errors during clothing production.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1041

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

6. Conclusion

The flexibility of the measuring system is a crucial objective in the development
of universal software for measuring time in sporting competitions. Therefore, the
domain-specific language EasyTime was formally designed, which enables the
quick adaptation of a measuring system to the new requests of different sporting
competitions. Preparing the measuring system for a new sporting competition
with EasyTime requires the following: changing a program’s source code that
controls the processing of an agent, compiling a source code and restarting the
agent. Using EasyTime in the real-world has shown that when measuring times
in small sporting competitions, the organizers do not need to employ specialized
and expensive companies any more. On the other hand, EasyTime can reduce
the heavy configuration tasks of a measuring system for larger competitions,
as well. In this paper, we explained how the formal semantics of EasyTime
are mapped into LISA specifications from which a compiler is automatically
generated. Despite the fact that mapping is not difficult, it is not trivial either,
as some additional rules must be defined for attribute propagation. Moreover,
we need to take care of error reporting (e.g., multiple declarations of variables).
In future work, EasyTime could be replaced by the domain-specific modeling
language (DSML) [24, 26, 28] that could additionally simplify the programming
of a measuring system.

References

1. A.V. Aho and J.D. Ullman. The theory of parsing, translation, and compiling. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1972.

2. P. Arpaia, L. Fiscarelli, G. La Commara, and C. Petrone. A model-driven domain-
specific scripting language for measurement-system frameworks. IEEE Transac-
tions on Instrumentation and Measurement, 60(12):3756–3766, 2011.

3. I. Attali and D. Parigot. Integrating natural semantics and attribute grammars: the
minotaur system. Technical Report 2339, INRIA, 1994.

4. Championchip website, 2010.
5. A. van Deursen and P. Klint. Domain-specific language design requires feature

descriptions. Journal of Computing and Information Technology, 10:1–17, 2002.
6. K. Finkenzeller. RFID Handbook. John Wiley & Sons, Chichester, UK, 2010.
7. I. Fister, M. Mernik, and B. Filipič. Optimization of markers in clothing industry.

Engineering Application of Artificial Intelligence, 21(4):669–678, 2008.
8. I. Fister, M. Mernik, and B. Filipič. A hybrid self-adaptive evolutionary algorithm for

marker optimization in the clothing industry. Applied Soft Computing, 10(2):409–
422, 2010.

9. I. Jr. Fister, I. Fister, M. Mernik, and J. Brest. Design and implementation of
domain-specific language Easytime. Computer Languages, Systems & Structures,
37(4):276–304, 2011.

10. I. Jr. Fister, M. Mernik, I. Fister, and D. Hrnčič. Implementation of the domain-
specific language easy time using a LISA compiler generator. In Proceedings of
the Federated Conference on Computer Science and Information Systems, pages
809–816, Szczecin, Poland, 2011.

1042 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Implementation of EasyTime Formal Semantics

11. P. Hudak. Building domain-specific embedded languages. ACM computing surveys,
28, 1996.

12. D. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968.

13. T. Kos, T. Kosar, and M. Mernik. Development of data acquisition systems by using
a domain-specific modeling language. Computers in industry, 63(3):181–192, 2012.

14. T. Kosar, M. Mernik, and J.C. Carver. Program comprehension of domain-specific
and general-purpose languages: comparison using a family of experiments. Empir-
ical software engineering, 17(3):276–304, 2012.

15. I. Lukovič, M.J. Varanda Pereira, N. Oliveira, D. da Cruz, and P.R. Henriques. A
DSL for PIM specifications: Design and attribute grammar based implementation.
Computer Science and Information Systems, 8(2):379–403, 2011.

16. S. Mauw, W. Wiersma, and T. Willemse. Language-driven system design. Interna-
tional Journal of Software Engineering and Knowledge Engineering, 14:1–39, 2004.

17. M. Mernik, J. Heering, and A. Sloane. When and how to develop domain-specific
languages. ACM computing surveys, 37(4):316–344, 2005.

18. M. Mernik, M. Lenič, E. Avdičauševič, and V. Žumer. Lisa: an interactive environment
for programming language development. In 11th International Conference Compiler
Construction, volume 2304 of Lecture Notes in Computer Science, pages 1–4, 2002.

19. M. Mernik and V. Žumer. Incremental programming language development. Com-
puter Languages, Systems and Structures, 31(1):1–16, 2005.

20. J. Paakki. Attribute grammar paradigms - a high-level methodology in language
implementation. ACM Computing Surveys, 27(2):196–255, 1995.

21. S. Pakin. The design and implementation of a domain-specific language for net-
work performance testing. IEEE Transactions on Parallel and Distributed Systems,
18(10):1436–1449, 2007.

22. L. Paulson. A semantics-directed compiler generator. In Proceedings of the 9th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’82, pages 224–233, 1982.

23. Rfid timing system website, 2010.

24. J. Sprinkle, M. Mernik, J-P. Tolvanen, and D. Spinellis. What kinds of nails need a
domain-specific hammer? IEEE Software, 26(4):15–18, 2009.

25. V. Štuikys and R. Damaševicius. Measuring complexity of domain models repre-
sented by feature diagrams. Information Technology And Control, Kaunas, Tech-
nologija, 38(3):179–187, 2009.

26. V. Štuikys, R. Damaševicius, and A. Targamadze. A model-driven view to meta-
program development process. Information Technology And Control, Kaunas, Tech-
nologija, 39(3):89–99, 2010.

27. M. Viroli, J. Beal, and M. Casadei. Core operational semantics of proto. In Pro-
ceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11, pages
1325–1332, New York, NY, USA, 2011. ACM.

28. R. Vitiutinas, D. Silingas, and L. Telksnys. Model-driven plug-in development for
uml based modeling systems. Information Technology And Control, Kaunas, Tech-
nologija, 40(3):191–201, 2011.

29. M. Weiser. The computer for the 21st century. Scientific American, 3:94–104, 1991.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1043

Iztok Fister Jr., Marjan Mernik, Iztok Fister, Dejan Hrnčič

Iztok Fister Jr. is a first-year post-graduate student in Computer Science and
Information Technologies at the Faculty of Electrical Engineering and Computer
Science, University of Maribor. Besides his study and research activities, espe-
cially in the field of web-oriented programming, he is an enthusiastic competitor
in triathlons. He is a student member of IEEE.

Mernik Marjan received his M.Sc., and Ph.D. degrees in computer science
from the University of Maribor in 1994 and 1998 respectively. He is currently
a professor at the University of Maribor, Faculty of Electrical Engineering and
Computer Science. He is also a visiting professor at the University of Alabama
in Birmingham, Department of Computer and Information Sciences, and at
the University of Novi Sad, Faculty of Technical Sciences. His research inter-
ests include programming languages, compilers, domain-specific (modeling)
languages, grammar-based systems, grammatical inference, and evolutionary
computations. He is a member of the IEEE, ACM and EAPLS.

Iztok Fister graduated in computer science from the University of Ljubljana in
1983. In 2007, he received his Ph.D. degree from the Faculty of Electrical En-
gineering and Computer Science, University of Maribor. Since 2010, he has
worked as a Teaching Assistant in the Computer Architecture and Languages
Laboratory at the same faculty. His research interests include computer archi-
tectures, program languages, operational research, artificial intelligence, and
evolutionary algorithms. He is a member of IEEE.

Dejan Hrnčič received his B.Sc. degree from the Faculty of Electrical Engi-
neering and Computer Science, University of Maribor, in 2007. Currently he is
working on his Ph.D. thesis in computer science. His research interests include
evolutionary computation, grammatical inference, and optimization techniques.

Received: November 10, 2011; Accepted: March 6, 2012.

1044 ComSIS Vol. 9, No. 3, Special Issue, September 2012

