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Abstract. This article describes structure-preserving coding patterns to 
code arbitrary non-circular attribute grammars as syntax-directed 
translation schemes for bottom-up and top-down parser generation 
tools. In these translation schemes, semantic actions are written in 
terms of a small repertory of primitive attribution operations. By 
providing alternative implementations for these attribution operations, it 
is possible to plug in different semantic evaluation strategies in a 
seamlessly way (e.g., a demand-driven strategy, or a data-driven one). 
The pattern makes possible the direct implementation of attribute 
grammar-based specifications with widely-used translation scheme-
driven tools for the development of both bottom-up (e.g. YACC, 
BISON, CUP) and top-down (e.g., JavaCC, ANTLR) language 
translators. As a consequence, initial translation schemes can be 
successively refined to yield final efficient implementations. Since these 
implementations still preserve the ability to be extended with new 
features described at the attribute grammar level, the advantages from 
the point of view of development and maintenance become apparent.   

Keywords: Attribute Grammars, Parser Generators, Language 
Processor Development Method, Grammarware 

1. Introduction 

Attribute grammars were introduced by Donald E. Knuth [25] as an extension 
of context-free grammars for describing the syntax and semantics of context-
free languages, and are widely used as a high-level specification method for 
the first stages of the design and implementation of a computer language 
[2][35].  

In order to make an attribute grammar-based specification executable, it is 
possible to use one of the many specialized tools that support the formalism 
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(see, for instance,[12][17][31][33][35]). However, regardless the recognized 
advantages of these tools, in practice, traditional implementations of 
language processors are rarely based on artifacts directly generated from 
attribute grammars. On the contrary, attribute grammars are taken as initial 
specifications of the tasks to carry out, while final implementations are 
usually achieved by using scanner and parser generators (e.g., ANTLR, CUP, 
Flex, Bison…), general-purpose programming languages, or a suitable 
combination of the two techniques [2]. The process of transforming the initial 
specification into a final implementation is usually ill-defined, and typically 
depends solely on the programmer's art –a programmer who many times 
discards formal specifications while he or she directly hacks the final 
implementation. It seriously hinders the systematic development and 
maintenance of language processors.  

In order to bridge the gap between attribute grammar-based specifications 
and final implementations, we propose articulating the language processor 
development process as the explicit transformation of the initial attribute 
grammar-based specification to the final implementation. According to our 
proposal, the first step to convey during the implementation stage is to 
explicitly code the attribute grammar in the input language of the 
development tool (usually, a parser generator like Bison, CUP, JavaCC or 
ANTLR). This will make it possible to yield an initial running implementation, 
which subsequently could be refined to achieve greater efficiency. In 
addition, since the refined implementation still supports the explicit 
incorporation and subsequent refinement of attribute grammar-based 
features, the incremental development and subsequent maintenance of the 
language processor can be greatly facilitated. Therefore, it is important to 
notice that the rationale of the present work is not to provide new methods to 
automatically generate language processors from attribute grammars (in this 
case, undoubtedly the best choice would be one of the pre-existing tools 
based on attribute grammars). Instead, the rationale is to start from an 
attribute grammar specification and then to systematically refine it across 
several stages, finishing with a final, highly efficient implementation in a 
conventional compiler construction tool -a process which is not the aim of any 
typical attribute grammar tool. 

This paper is mainly focused on the first step of our proposal, i.e. how to 
code an attribute grammar in terms of the input language supported by a 
conventional parser generation tool, although we also illustrate some aspects 
of the latter refinement. In order to cover the most widely used parser 
generation tools, we address both bottom-up parser generators of the YACC 
and CUP type and top-down parser generators of the JavaCC or ANTLR 
style. Unlike works in L-attributed [28] or LR-attributed grammars [4] and 
similar approaches (e.g., [23]), our approach will support the implementation 
of arbitrary non-circular attribute grammars. In addition, the coding pattern 
will be independent of the final evaluation style chosen. Indeed, attribute 
grammars will be coded by using a small repertory of attribution operations. 
Finally, by providing alternative implementations for these operations, it will 
be possible to set up the semantic evaluation style that will finally be used. 
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The structure of the rest of the paper is as follows: section 2 introduces 
some preliminaries. Section 3 details the dependency description operations 
and outlines two alternative implementations, which makes apparent how to 
plug in different evaluation styles. Section 4 describes the coding pattern for 
bottom-up parser generation tools. Section 5 describes the pattern for top-
down ones.  Section 6 presents some work related to ours. Finally, section 7 
concludes the paper and outlines some lines of future work. A preliminary 
version of this work, which only deals with a former pattern for bottom-up 
translation schemes, can be found in [41]. 

2. Preliminaries 

In this section we introduce some basic concepts concerning the two main 
language-processing specification tools addressed in this paper: attribute 
grammars (subsection 2.1) and translation schemes (subsection 2.2).  

2.1. Attribute grammars 

The formalism of attribute grammars was initially proposed by Donald E. 
Knuth at the end of the 1960s to characterize the semantics of context-free 
languages [25]. Attribute grammars introduce a syntax-directed, dependency-
driven language processing style. This processing style is syntax-directed 
because the processing of each sentence is driven by its syntactic structure, 
and it is dependency-driven because it is directed by the dependencies 
among the computations involved. Figure 1 shows an example of an attribute 
grammar that models the evaluation of simple arithmetic expressions, 
followed by declarations of constants. In the formalized process, declarations 
are used to build an environment (a set of variable-value pairs), which is 
subsequently used to determine the value of variables. For the sake of 
conciseness, only the addition operator is considered. 

Attribute grammars extend context-free grammars with semantic attributes 
and semantic equations. Indeed, context-free grammars are standard 
mechanisms to define the syntax of computer languages. In a context-free 
grammar: 
- Syntax is defined by means of syntax rules (or productions), which 

determine the structure of syntactic constructions in terms of sequences 
of simpler constructions. For instance, in Figure 1 Sent::= Exp where 

Decs is a syntax rule that describes the top-level structure of the kind of 

sentences considered in this example. 

- Syntactic constructions are represented by means of syntax symbols: 
composite structures by non-terminal symbols and simple structures by 
terminal symbols. For instance, in Figure 1 Sent, Exp and Decs are 

non-terminal symbols that represent, respectively, sentences, 
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expressions and declarations. In turn, where, var or num are terminal 

symbols (these symbols represent, respectively, the where reserved 
word, variables and numbers in the language considered).  

- For each non-terminal there are one or several rules defining its 
structure. Each rule is made up of a left-hand side rule (LHS; the non-
terminal whose structure is defined) and of a right-hand side rule (RHS; 
the sequence of symbols which define such a structure). For instance, the 
previously referred to rule established that a sentence (Sent, the rule’s 

LHS) maybe (the rule’s RHS): an expression (Exp), followed by the 

where reserved word, and followed by a block of declarations (Dec). 

- There is also a distinct non-terminal (the grammar’s initial symbol or the 
grammar’s axiom), which represents the language’s highest level 
structure. In Figure 1, the grammar’s initial symbol is Sent. 

 

 Sent ::= Exp where Decs 

    Exp.env = Decs.env 

    Sent.val = Exp.val 
Exp ::= Exp + Opnd 

    Exp1.env = Exp0.env 

    Opnd.env = Exp0.env  

    Exp0.val = Exp1.val + Opnd.val 
Exp ::= Opnd 

    Opnd.env = Exp.env 

    Exp.val = Opnd.val 
Opnd ::= num 

    Opnd.val = toNum(num.lex) 

 

 

Opnd ::= var 

    Opnd.val = valOf(var.lex,Opnd.env) 

Opnd ::= (Exp) 

    Exp.env = Opnd.env 

    Opnd.val = Exp.val 
Decs ::= Decs , Dec 

  Decs0.env = extendWith(Dec.env,Decs1.env)  
Decs ::= Dec 

  Decs.env = Dec.env 
Dec ::= var = num 

  Dec.env = {(var.lex,toNum(num.lex))} 

 

Figure 1. An example of attribute grammar 

In a context-free grammar, syntax rules enable the description of the 
structure of each language’s sentence in terms of a tree, which is called the 
parse tree of the sentence. Inner nodes are non-terminals, while leaves are 
terminals. Each parent node, together with its ordered sequence of child 
nodes, corresponds to the application of a syntax rule. Finally, the root node 
corresponds to the grammar’s axiom. Figure 2a shows an example of 
sentence in the language considered in Figure 1, and Figure 2b shows the 
parse tree for this sentence. Notice how this tree makes the structure of the 
sentence explicit. Thus, subsequent processes can be driven by this 
structure. 

As indicated before, an attribute grammar adds a set of semantic attributes 
to the symbols of an underlying context-free grammar. These attributes will 
take values in the corresponding nodes of the parse trees. Attributes can be 
of two types: 
-  Synthesized attributes: their values are computed from synthesized 

attributes in the owner node’s child nodes and from the inherited 
attributes of this owner node. Thus, the value of a synthesized attribute 
represents (part of) the meaning of the symbol(s) to which this attribute is 
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associated. In the grammar of Figure 1, synthetized attributes are 
terminated with . Thus, val is an example of synthetized attribute in 

this grammar, which is used to contain the values of operands (Opnd 

non-terminal), expressions (Exp non terminal) and sentences (Sent non-

terminal). In turn, the synthesized attribute env is used to build the 

aforementioned environment from declarations. Finally, notice that 
terminal symbols can also have synthesized attributes; these synthesized 
attributes are called lexical attributes, and they should be set during 
lexical analysis. For instance, in the grammar of Figure 1 we use a lexical 

attribute, lex, which contains the actual string (the lexeme) of each 

token (e.g., for num it will contain the actual number, for var the actual 

variable, …). 

 (a) x+y+5 where x=5,y=6 

(b)                                                    Sent 

 

                 Exp                          where              Decs 

 

       Exp      +         Opnd                           Decs      ,       Dec    

 

Exp   +    Opnd       num                             Dec          var  = num     

 

Opnd        var                                       var  =  num  

 

var 

  

Figure 2. (a) A sentence of the language defined by the context-free grammar behind 
Figure 1, (b) Parse tree for the sentence in (a) 

- Inherited attributes: their values are computed from inherited attributes in 
the parent and/or from synthesized attributes in the siblings. Thus, 
inherited attributes provide additional contextual information needed to 
determine the meanings of the symbols to which they are associated. In 

the grammar of Figure 1, we use an env inherited attribute to propagate 

the environment to the expression part of the input sentence, since this 
information is necessary to correctly determine the value of the constant 
appearing in such an expression part.  

The attribute grammar will also add a set of semantic equations to each 
syntax rule. These equations will indicate how to compute the values of 
synthesized attributes in the rule’s LHS, as well as the inherited attributes in 
the RHS symbols. More precisely:  
- There will be exactly one semantic equation for each synthetized attribute 

on the LHS, and another one for each inherited attribute on the RHS.  

- Each equation will apply semantic functions to other attributes in the rule. 
We will assume that, in the computation expressed by each equation, it 
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will only be possible to use inherited attributes from the LHS and 
synthesized attributes from the RHS (i.e., we will consider attribute 
grammars in Bochmann’s normal form [9]). 

 For instance, the semantic equation Exp0.val = Exp1.val + 

Opnd.val for the syntax rule Exp ::= Exp + Opnd in the grammar of 

Figure 1 establishes that, in order to compute the value of a sum 

(Exp0.val)1, it is necessary to add the value of the first operand 

(Exp1.val) to the value of the second operand (Opnd.val). 

Attribute grammars enable semantic evaluation on attributed parse trees 
(i.e., parse trees along with the semantic attributes for each node). Semantic 
evaluation is dependency-driven, since it is solely constrained by the 
dependencies that exist among these semantic attributes (i.e., to compute the 
value of an attribute, the only rule that must be obeyed is to have the values 
available of all the other attributes required by this computation according to 
a suitable semantic equation). Aside from this basic constraint, evaluation 
order does not matter. In consequence, attribute grammars result in a high-
level specification formalism, since it is possible to specify language-
processing tasks by focusing on the meaning of the syntax structures, without 
being distracted by lower-level implementation details, like the exact order in 
which attribute instances must finally be evaluated. In addition, the formalism 
is highly modular: it facilitates the addition of new attributes and semantic 
equations without affecting the existing ones, since the dependencies among 
attribute instances will be responsible for automatically rearranging the order 
in which to carry out the evaluation.  

A convenient way of describing dependencies between attributes in an 
attributed parse tree is by means of a dependency graph. Nodes in this graph 
are the attributes in the symbols on the tree. Each arc denotes that the 
source attribute must be used to compute the value of the target one. Figure 
3 shows the attributed parse tree and the dependency graph for the sentence 
in Figure 2a.   

An attribute grammar is non-circular when it is not possible to find an 
attribute instance in a parse tree depending (directly or indirectly) on itself. 
For the contrary, the grammar is called a circular attribute grammar. Although 
semantic evaluation can be extended to manage circular attribute grammars 
(see, for instance [19]), for translation purposes non-circular attribute 
grammars usually suffice. Therefore, in this paper we will deal with non-
circular attribute grammars. Semantic evaluation in these grammars can be 
meaningfully explained as follows [2]: 
- First, find a topological order of the nodes in the dependency graph for 

the sentence being processed (since the grammar is non-circular, the 

                                                   
1 Notice that, in order to refer to particular occurrences of a non-terminal symbol in 

a rule, it is possible to use subscripts: thus, Exp0 refers to the first occurrence of Exp, 
Exp1 to the second occurrence, etc.   
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dependency graph will be acyclical). In this order, each attribute instance 
will precede all the attribute instances depending upon it.  

- Then, evaluate the attribute instances according to this order: 

 
                                                          Sent val 

 

                   env Exp val                    where                      Decs env 

 

                env  Exp val     +          env Opnd val        Decs env   ,   Dec env    

 

env Exp  val  +    env Opnd val       num lex       Dec env    var lex = num lex     

 

env Opnd val             var  lex                        var lex = num lex 

 

      var  lex 

  

Figure 3. Attributed parse tree and dependency graph for the sentence in Figure 2a 

However, it is only a conceptual execution model. In practice, semantic 
evaluation can be carried out by following different strategies which are only 
constrained by dependencies among attributes. Also, a particular evaluation 
strategy may not require the explicit construction of a parse tree. In fact, for 
remarkable subclasses of attribute grammars (many s-attributed grammars, 
which only involve synthesized attributes, and some classes of l-attributed 
grammars, in which inherited attributes of symbols only depend on the 
inherited attributes of their parents and synthesized attributes of their 
preceding siblings), it is possible to yield implementations that evaluate the 
attributes on-the-fly during parsing of the input sentence, without requiring the 
explicit construction of the syntax tree. Notice the grammar in Figure 1 is not 
s-attributed (it is needed to propagate the environment to the expression in 
order to evaluate it), nor l-attributed (because declarations are placed after 
the expression, and constant values are required to compute the value of 
such an expression).  

2.2. Translation schemes 

Translation schemes constitute another formalism that extends context-free 
grammar to allow the specification of syntax-directed processing [2]. For this 
purpose:  
- Translation schemes adopt explicit visit orders for the nodes of the parse 

trees. Although many others are possible, two well-known visit orders are 
left-to-right bottom-up and top-down ones. In both of them child nodes 
are visited from left-to-right. However, in a bottom-up visit, nodes are 
visited in post-order, while in a top-down visit are visited in pre-order. In 
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addition, in a bottom-up visit order the visit to each node has only one 
significant point, once all its children have been visited. On the other 
hand, in a top-down one there are many significant points: (i) when the 
node is entered the first time, (ii) after a child has been exited and before 
the next one is entered, and (iii) when the node itself is exited.  

- Translation schemes also adopt explicit ways of storing computed 
semantic information. For this purpose, it can be stored in semantic 
attributes, as in the case of attribute grammars, but also by using other 
means. For instance, typical execution models for bottom-up translation 
schemes use stacks for storing semantic information, while typical 
execution models for top-down ones assume implementations based on 
mutually recursive subprograms and use subprogram parameters and the 
runtime stack as a semantic storage mechanism. In addition, both 
bottom-up and top-down translation schemes can use global variables to 
facilitate some translation tasks.  

- These artifacts conceive of the syntax rules as visit plans. For this 
purpose, they introduce a semantic reference mechanism to consult and 
update semantic information, as well as interleave chunks of code 
(semantic actions) at those points of the rule’s RHS corresponding to 
significant visit points. Semantic actions will be executed each time the 
corresponding significant visit point is reached during the translation 
process. In particular, in bottom-up translators it will be possible to place 
a semantic action at the end of each syntax rule, while in top-down ones 
it will be possible to place semantic actions in any point of the rules’ 
RHSs. In consequence, the latter will allow more natural translation 
patterns than the former. This is particularly true for the managing of 
inherited semantic information.  

Although, in principle, translation schemes are independent of parser 
generation tools, as they can be conceived of as artifacts for processing 
parse trees, they are usually used as input specification formalisms for these 
tools. The resulting tree processors are then coupled with the parsing 
algorithms, and the explicit construction of the parse trees is definitively 
avoided. In particular: 
- Bottom-up translation schemes are used as input to shift-reduce, LR 

parser generation tools of the YACC type (e.g., YACC, Bison, CUP, …). 
The resulting parsers use a stack to attach a semantic value to each 
syntax symbol, and they can also use global variables to manage 
additional semantic information. These tools constrain underlying 
context-free grammars to the LR type (usually, LALR(1) grammars) [2], 
although there are tools accepting more general grammars (e.g.,30).  

- Top-down translation schemes are used as input to predictive descent 
parser generation tools of the JavaCC or ANTLR type.  Since these tools 
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usually generate recursive descent parsers2, semantic information is 
managed as parameters and return values of the subprograms 
generated, as well as in global variables, and the explicit construction of 
the parse tree is also avoided. These tools usually impose stronger 
constraints on the underlying context-free grammars: LL grammars. 
Although modern generation tools like ANTLR provide many useful 
extensions to basic LL(k) grammars (in particular, it supports the so-
called LL(*) parsing method, which provides unbounded look-ahead 
enabled by finite-state predictors [37][38]), they are unable to manage 
features like left-recursion. However, as indicated before, they enable 
more natural mechanisms for dealing with inherited information. 

Figure 4a shows an example of a bottom-up translation scheme. The 
language processed is the classical language of binary numbers proposed by 
Knuth in [25] to illustrate basic concepts in attribute grammars, and the 
processing task is to compute the values of the numbers.  As in the other 
bottom-up translation schemes in this paper, we do not commit to any 
particular generation tool, and we do use a YACC-like notation [2] to refer to 
semantic values of symbols in the parse stack. Figure 4b shows a top-down, 
predictive-recursive translation scheme for this task. The underlying grammar 
is changed to LL(1), and the semantic actions are changed in consequence. 
Therefore, it will allow its implementation by using any of the mentioned top-
down parser generation tools.  As in the case of bottom-up translation 
schemes, we will not commit to particular generators. In addition, we will use 

 to annotate input parameters and  to annotate output ones. 

 (b) 

Num ::= Num Bit {$$ := $1*2+$2} 

Num ::= Bit {$$ := $1} 

Bit ::= 0 {$$:=0} 

Bit ::= 1 {$$:=1} 

 

 

 

 

N(v) ::= Num(0,v) 
Num(cv,v) ::= Bit(vb) RNum(vb,v) 

RNum(cv,v) ::= Bit(vb) RNum(cv*2+vb,v) 

RNum(cv,v) ::= {v := cv}  

Bit(v) ::= 0 {v := 0} 

Bit(v) ::= 1 {v := 1} 
 

(a) 

 

Figure 4. (a) An example of bottom-up translation scheme 

3. The Attribute Evaluation Framework  

Our coding pattern is largely based on the explicit description of the 
attribution structure of each grammar rule. For this purpose, we needed to 
develop an attribute evaluation framework, to be used in the semantic actions 
of the translation schemes. In this section we describe such a framework. For 
this purpose:  

                                                   
2 It is also possible to generate non-recursive, table-driven descent parsers [2], but 

the mainstream in top-down parser generators is geared to the recursive model.     
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- Subsection 3.1 describes the set of basic attribution operations used in 
the translation schemes. These attribution operations make it possible to 
describe, for each syntax rule: (i) the dependencies between attribute 
occurrences in the symbols of this rule, and (ii) the functions to be used 
in order to compute the value of the attributes. They also make it possible 
to build semantic contexts for syntax rules (i.e., tables of references to 
attributes), to consult and set the value of individual attributes, and to 
control garbage collection.  

- Subsection 3.2 introduces semantic function managers as the main 
extension points of the framework. Semantic function managers are the 
components used to execute semantic functions.  

- Finally, subsections 3.3 and 3.4 describe two alternative implementations 
of the attribution operations, each based on a different evaluation style (a 
demand-driven style in subsection 3.3, and a data-driven one in 
subsection 3.4). In the demand-driven evaluation style, the values of 
attributes are computed in a lazy way, as they are required. On the other 
hand, in the data-driven style, values of attributes are computed in an 
eager way, as soon as the values of the attributes on which they depend 
become available. These implementations can be interchanged in a 
transparent way, without further changes in the translation schemes.  

3.1. Attribution Operations 

Table 1 outlines the repertory of basic attribution operations along with their 
intended meanings. As such a description makes apparent, the purpose of 
these operations is to provide the developer with the tools necessary to 
describe how the attribute dependency graph associated with a sentence can 
be built as this sentence is analyzed by the parser. In addition, it also lets the 
developer indicate the semantic functions for computing each attribute 
instance. It does not necessarily mean the graph must be fully stored in 
memory: depending on the actual implementation of the attribution 
operations, it will be possible to optimize, to a greater or lesser extent, the 
heap footprint, as the following subsections make apparent. 

Table 1. Attribution operations   

Operation Intended Meaning 

mkCtx(n) It creates and initializes a semantic context: the list of attribute instances for a 
syntax symbol.  

mkDep (a0, a1) It sets a dependency between two attribute instances. Indeed, it declares that the 
attribute instance a0 depends on the attribute instance  a1. 

inst(a,f) It instruments the attribute instance a by establishing  f as the semantic function to 
be applied during evaluation (f is actually an integer identifier of such a semantic 
function)  

release(as) It invokes garbage collection on the attribute instance list as.  

release(a) It invokes garbage collection on the attribute instance a  

set(a,val) It fixes the value of the attribute instance a to val. 

val(a) It retrieves the value of the attribute instance a.  
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3.2. Semantic Function Managers 

Before proceeding with the implementation of the attribution operations, it is 
convenient to introduce the concept of semantic function manager. In our 
approach, given a particular attribute grammar, the semantic function 
manager is an auxiliary component that supports the execution of semantic 
functions. Therefore, it is the main extension point of the evaluation 
framework, since it makes it possible to tailor it to each particular attribute 
grammar.  

A semantic function manager can be conceived as a procedure that, taking 
the semantic function’s identifier and the sequence of attribute instances as 
input, returns the result of applying the function to the attribute instances. It is 
important to remark that this component must be provided for each particular 
attribute grammar. Nevertheless, in our minimalistic conceptualization, we 
will assume this manager has the pre-established name exec. The 

implementation of this exec procedure will be changed from coding to 

coding3. 
As an example, Figure 5 depicts the pseudo-code for a semantic function 

manager for the grammar in Figure 1. Notice that, for each equation it is 
necessary to: (i) substitute attribute references in the equation’s RHS for 
values of the semantic function manager’s attribute arguments (e.g., 

Exp1.val + Opnd.val becomes val(ARGS[0])+ val(ARGS[1]), 

and (ii) associate a suitable integer number to the underlying semantic 
function (e,g., the ADD constant in  Figure 4). 

 def IDEN=0; def ADD=1; def TONUM=2; def VALOF=3; 
def EXTEND=4; def SINGLEENV=5;         

 

procedure exec(FUN,ARGS) { 

case FUN of 

  IDEN   

   return val(ARGS[0]); 

  ADD   

   return val(ARGS[0])+ val(ARGS[1]); 

  TONUM  

   return toNum(val(ARGS[0])); 

  VALOF  

   return valOf(val(ARGS[0]),val(ARGS[1])); 

  SINGLEENV  

   return {( val(ARGS[0]), toNum(val(ARGS[1])) ) } 

  EXTEND  

   return extendsWith(val(ARGS[0],val(ARGS[1])) 

end case 

}       

   

 Figure 5. Semantic function manager for the attribute grammar in Figure 1  

                                                   
3 Although it is possible to achieve more elegant solutions by using a programming language with 

minimal higher-order support (e.g., a conventional object-oriented language), our conceptualization 

is deliberately maintained as simple as possible to preserve the essence of the evaluation 

approaches.   
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3.3. Demand-Driven Evaluation  

According to the demand-driven evaluation style, semantic evaluation starts 
once the sentence has been completely parsed (see, for instance [18][29]). At 
this point, there is an in-memory representation of the part of the dependency 
graph required for performing semantic evaluation. During evaluation, the 
values of the attribute instances will be calculated only when they are 
required. For the sake of simplicity, we will ignore the detection of potential 
circularities in the underlying dependency graphs, although it would not be 
difficult to extend the framework to support it.  

The first step in setting this implementation is to decide how to represent 
semantic attributes. For this purpose, the instances of the semantic attributes 
can be conceived as records. Table 2 outlines the fields required together 
with their intended purposes. Thus, this representation makes it possible to 
build a dependency structure in which: 

Table 2. Structure of attribute instances in the demand-driven evaluation framework. 

Field Purpose Initial value 

value It keeps the value of the instance of the semantic attribute.  
available A boolean flag that indicates whether the value is available.  false 

deps It keeps the links to those attribute instances required to compute the value.  The empty 
list 

semFun It stores the integer code of the semantic function required to compute the 
value. 

 

refcount A counter of references to this attribute instance (used to enable garbage 
collection).  

1 

 
- Each attribute instance points to those attribute instances required to 

compute it (in a similar way to the reversed dependency graph used in 
[18]). 

- In addition, it explicitly stores the identifier of the semantic function to be 
used in this computation.    
Once this representation is decided, it is possible to proceed with the 

coding of the operations themselves. Table 3 outlines it using pseudo-code. 
In this pseudo-code, references are intended to work as in Java, although we 
do not assume automatic garbage collection (instead, a delete primitive is 

explicitly invoked). Indeed, this is why we explicitly include release 

attribution operations.  
The different operations behave as follows: 

- mkCtx collects, in a list, as many fresh attribute instances as needed. This 

list actually represents a semantic context for a syntax symbol, since it 
gives access to all its semantic attributes.  

- mkDep adds the second attribute instance in the deps list of the first one. 

- inst stores the semantic function code in the semFun field. 

- release, when applied to a list of semantic attribute instances, releases 

each instance and de-allocates the list itself. 
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- On the other hand, when release is applied to an attribute instance, it 

decreases its reference count by 1. If this count reaches 0, the instances 
on which it depends are released; finally, the original instance itself is de-
allocated. 

- set sets the value field and records its availability. 

- val recovers the value of an attribute instance as follows: (i) if the value is 

available, it returns such a value, (ii) otherwise, it calls the semantic 
function manager to compute such a value and sets and returns it.  

Table 3. Implementation of the attribution operations to allow a demand-driven 
evaluation style 

Operation Implementation  Operation Implementation 

mkCtx(n) as := new list  
for i := 1 to n do 

   add(as, new attribute) 
end for   
return as 

release(a) a.refcount:= a.refcount-1 
if  a.refcount = 0 then 
    foreach a’ in a.deps do 
         release(a’) 
    end foreach  
    delete a.deps 
    delete a 

end if 

mkDep (a0, a1) add (a0.deps, a1)  
a1.refcount := a1.refcount + 1  

set(a,val) a.value := val 
a.available := true 

inst(a,f) a.semFun := f val(a) if  a.available then   

  set(a,  
       exec(a.semFun,a.deps)) 
    release(a.deps)  
end if 
return a.value       

release(as) foreach a in as do 
     release(a) 
end foreach 
delete as 

  

 

Thus, the demand-driven evaluation process arises from the interplay of 
the val attribution operation and the semantic function manager. Also notice 

how explicit garbage collection can be readily interleaved in the 
implementation of the attribution operation by appropriately managing the 
reference counters and by de-allocating lists and records as soon as they 
become unreachable. Although in this evaluation style, most of the 
dependency graph remains in memory until parsing is finished, automatic 
garbage collection makes it possible to de-allocate useless parts of the graph 
when they become unreachable. This can be due to attribute instances that 
are not ultimately required in any computation, or to successive evolutions of 
the implementation, combining pure attribute grammar features with 
implementation-oriented optimizations (e.g., global variables, on-the-fly 
evaluation of semantic attributes, …). 
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3.4. Data-Driven Evaluation 

In the data-driven evaluation style, attribute instances are scheduled to be 
evaluated as soon as the values for all the instances on which it depends are 
available (see, for instance, [24]). Thus, this method can shorten the duration 
of attribute instances. Additionally, it can interleave evaluation with parsing. 
These features can be of interest while processing very long sentences, or 
sentences made available asynchronously (e.g., on a network communication 
channel). However, this method can do useless evaluations on attribute 
instances not required to yield the final results. 

Table 4 outlines the representation of attribute instances in this case. 
Notice that, in addition to the list of instances on which an instance depends, 
the reverse relationship needs to be maintained (i.e., each attribute instance 
must refer to those instances which depend on it). Indeed, this representation 
is similar to that used by networks of observables-observers in the observer 
object-oriented pattern [14]4.  

Table 4. Structure of attribute instances in the data-driven evaluation framework 

Field Purpose Initial 
value 

value It keeps the value of the instance of the semantic attribute.  
available A boolean flag that indicates whether the value is available.  false 

deps It keeps the links to those attribute instances required to compute the 
value. 

The empty list 

obs It keeps the links to those attribute instances observing it (i.e., which 
depend on it to compute their values). 

The empty list 

required Counter which records the number of attribute instances in deps 
whose values have not yet been determined. 

0 

semFun It stores the integer code of the semantic function required to compute 
the value. 

 

instrumented True if semFun was set, false otherwise. false 

refcount A counter of references to this attribute instance (used to enable 
garbage collection).  

1 

 
Table 5 outlines the pseudo-code of the attribution operations whose 

implementation differs from those in the demand-driven style. This way, we 
only need to redefine mkDep, inst, set and val: 

- In addition to updating deps in the first instance, mkDep must test whether 

the second instance has already been computed. If it is not available, the 
first instance must be added to its obs list, since such an instance depends 

on its value, which is not yet available.   
- Note inst must take care of whether the value can be computed. Indeed, 

if the corresponding attribute instance has all the instances on which it 
depends computed, it can thereby be computed. It assumes the 

                                                   
4 As with the demand-driven style, this representation could be simplified by inferring the values of 

flags (in this case, available and instrumented) from the other fields. However, we prefer to 

explicitly preserve these flags to increase the readability of pseudo-code. 



A Systematic Approach to the Implementation of Attribute Grammars with 
Conventional Compiler Construction Tools 

ComSIS Vol. 9, No. 3, Special Issue, September 2012 997 

establishment of all the required dependencies before instrumentation, 
which is ensured by our coding pattern.  

- Set must take care to decrement the required counters in all the 

instances depending on the current one. In addition, if a counter reaches 0, 
it must force the evaluation of the corresponding instance.  

- Finally, val immediately computes the value, unless the instance has not 

yet been instrumented. 
Notice how, in this case, evaluation can be interleaved with parsing. 

Indeed, evaluation is fired when the values of attribute instances are explicitly 
set, and also when attributes are instrumented. In consequence, garbage 
collection also interplays with parsing, and, therefore, this method can mean 
less heap usage. However, this method assumes all the semantic functions 
used are strict, in the sense that all their arguments must be evaluated before 
they are applied. On the contrary, the demand-driven method described in 
the previous subsection also supports non-strict functions, in which the way of 
evaluating the arguments can differ from function to function.   

Table 5. Implementation of the attribution operations to allow a data-driven 
evaluation style (only those implementations differing from Table 3 are presented) 

Operation Implementation  Operation  

mkDep (a0, a1) add (a0.deps, a1) 
a1.refcount := a1.refcount + 1  

if  a1.available then 
   add (a1.obs, a0) 
   a0.required  := a0.required + 1 
   a0.refcount  := a0.refcount + 1 
end if 

set(a,val) a.value := val 
a.available := true 

foreach a’ in a.obs do 
    a’.required := a’.required – 1 
   if a’.required = 0 then 
      val(a’) 
  end if 
end foreach 
release(a.obs)    

inst(a,f) a.semFun := f 
a.instrumented := true 
if a.required = 0 then 

    val(a) 
end if 

val(a) if  a.available    
       a.instrumented then 

   set(a, exec(a.semFun,a.deps)) 
   a.available := true 

   release(a.deps)   
end if 
return a.value 

4. A Coding Pattern for Bottom-up Parser Generation 

Tools  

In this section we introduce a coding pattern for bottom-up parser generation 
tools. In this way:  
- In order to keep the translation scheme as independent as possible of 

changes in the attribute grammar’s semantic part, we will promote an 
intermediary representation of the attribute grammar based on attribution 
functions (subsection 4.1). For this purpose, with each rule will be assigned 
a function that takes the semantic contexts of the rule’s RHS as arguments 
and builds and returns the semantic context for the rule’s LHS. In addition, 
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using the basic attribution operations introduced in the previous section, 
attribution functions establish dependencies among attributes, associate 
semantic functions with attributes as necessary, and control garbage 
collection. 

- Then, these functions will be used in the actions of the resulting bottom-up 
translation scheme (subsection 4.2). More precisely, the semantic action 
associated with each rule will invoke the attribution function for this rule 
with the suitable set of arguments.  

- The analysis of the memory footprint required by the overall method will be 
depicted in subsection 4.3 by considering both the demand-driven and the 
data-driven evaluation styles. 

- Finally, subsection 4.4 briefly illustrates some potential refinements of the 
initial implementation. These refinements will be oriented to anticipate the 
computation of inherited attributes by using marker non-terminals (i.e., new 
non-terminals defined by rules with empty RHS), and to simplify 
implementation by means of global variables. 

4.1. The attribution functions 

The implementation of the attribute grammar using a bottom-up parser 
generation tool can be naturally thought of as the bottom-up construction of 
the attribute dependency graph for each processed sentence using basic 
attribution operations. In this construction, the dependency graph for a 
syntactic structure is built by taking the dependency graphs of the 
substructures as building components. Thus, the process can be facilitated by 
introducing a set of attribution functions, which, for each rule in the grammar, 
take cares of this construction. These attribution functions will be used to set 
up the semantic actions of the bottom-up translation scheme that feeds the 
parser generation tool. Therefore, the set of attribution functions can be 
conceived of as the implementation of a sort of abstract version of the 
attribute grammar, which subsequently can be attached to a concrete syntax 
by using a suitable translation scheme.  

Each attribution function takes the semantic contexts of the symbols in the 
rule’s RHS as input, and it outputs the semantic context for the LHS non-
terminal using basic attribution operations. In order to do so, it is possible to 
apply the following guidelines:  
- First at all, we need to create the semantic context for the LHS. This is 

done by using an mkCtx operation. We only need to indicate the number 

of semantic attributes for the LHS non-terminal.  
- Next, we need to describe the dependencies among the attribute 

instances. Such dependencies are directly determined by examining the 
semantic equations, and they must be stated by using the mkDep 

operation. 
- Once this has been done, it is necessary to instrument the synthesized 

attribute instances in the rule’s LHS, as well as the inherited attribute 
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instances of the RHS symbols. Once more, the code is straightforward: an 
inst operation for each equation. Notice we need to code the semantic 

functions with integer identifiers, which can be interpreted by the semantic 
function manager.  

- Finally, we need to release the attribute instance lists for the symbols in 
the rule’s RHS. 
This process can be further facilitated by using a procedure establishing 

the corresponding dependencies for each attribute as well as the 
instrumentation. This procedure, which will be called eq (since it actually 

serves to represent semantic equations), is sketched in Figure 6. Finally, 
notice that, although we need to provide an attribution function for each rule 
in the grammar, the same function can be shared by several rules. Therefore, 
in addition to contributing to more readable translation schemes, attribution 
functions also make it possible to reuse common attribution patterns. Indeed, 
it is possible to provide attribution functions with additional parameters in 
order to increase the reuse degree.  

 procedure eq(lhsAtr,rhsAtrs,semFun) { 

   foreach rhsAtr in rhsAtrs  

     mkDep(lhsAtr,rhsAtr) 

   end foreach  

   inst(lhsAtr,semFun) 

} 

   

 Figure 6. The eq procedure 

As an example, Figure 7 depicts the attribution functions for the attribute 
grammar in Figure 1. For instance, the addition function codes the 

attribution for the rule Exp ::= Exp + Opnd in the grammar of Figure 1 as 

follows: 
- Since Exp, the rule’s LHS, has two semantic attributes (env and val), we 

need to invoke mkCtx with 2 as the number of attributes to be allocated. 

- From the first equation, we get Exp1.env depends on Exp0.env. In 

addition, the semantic function to be applied is the identity. Therefore, the 
equation is coded by eq(Exp1[env], (Exp0[env]),IDEN). 

-  The other equations are coded in a similar manner. For instance, the 
equation Exp0.val = Exp1.val + Opnd.val is coded by 

eq(Exp0[val], (Exp1[val],Opnd[val]),ADD). Notice that, for 

each equation, it is important to establish the dependencies in the order in 
which the attribute references appear in its RHS, and therefore it must be 
taken into account in the coding of each equation.  

- Finally, we include a release action for each symbol in the rule’s RHS 

having semantic attributes.  
Concerning the allocation of lexical attribute instances, it must be 

performed by the scanner, which will return the corresponding attribute 
instance list using a suitable field in the token. 
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 def env=0; def val=1; def vs=0; def lex=0; 
function init(Exp,Decs) { 

   Sent := mkCtx(1) 

   eq(Sent[vs], (Exp[val]),IDEN) 

   eq(Exp[env],(Decs[env]),IDEN) 

   release(Exp)    

   release(Decs) 

   return Sent 

} 

function addition(Exp1,Opnd){ 

   Exp0 := mkCtx(2) 

   eq(Exp1[env], (Exp0[env]),IDEN) 

   eq(Opnd[env], (Exp0[env]),IDEN) 

   eq(Exp0[val], 

        (Exp1[val],Opnd[val]),ADD) 

   release(Exp1) 

   release(Opnd) 

   return Exp0 

 } 

function chain(Child) { 

  Parent := mkCtx(2) 

  eq(Child[env],(Parent[env]),IDEN) 

  eq(Parent[val],(Child[val]),IDEN)   

  release(Child)    

  return Parent 

} 

function num(num) { 

   Opnd := mkCtx(2) 

   eq(Opnd[val], (num[lex]),TONUM) 

   release(num) 

   return Opnd 

 } 

 

 

function var(var) { 

   Opnd := mkCtx(2) 

   eq(Opnd[val], 

       (var[lex],Opnd[env]),VALOF) 

   release(var) 

   return Opnd 

 } 

function mutiEnv(Dec,Decs1) { 

  Decs0 = mkCtx(1) 

  eq(Decs0[env], 

     (Dec[env],Decs1[env]),EXTEND) 

  release(Dec) 

  release(Decs1) 

  return Decs0 

} 

function singleEnv(Dec) { 

  Decs = mkCtx(1) 

  eq(Decs[env],(Dec[env]),IDEN) 

  release(Dec) 

  return Decs 

} 

function entry(var,num) { 

  Dec = mkCtx(1) 

  eq(Dec[env], 

      (var[lex],num[lex]),SINGLEENV) 

  release(var) 

  release(num) 

  return Dec 

} 

 

 

 Figure 7. Attribution functions for the attribute grammar in Figure 1 

4.2. The bottom-up translation scheme 

In order to finish the coding, it is necessary to provide a suitable translation 
scheme. It can be done in a straightforward way, by using the attribution 

function that corresponds to each rule. Indeed, for each syntax rule A ::=  in 

the grammar, we only need to add a rule A::=  {$$ := ($)} to the translation 

scheme. Here,  is the attribution function for A::= , and $ denotes the list 
of RHS semantic contexts.  This pattern makes further advantages to using 
attribution functions apparent, instead of directly coding the semantic 
equations in the rule’s actions (like we did in our previous work [41]): the 
concrete syntax can be readily changed without changing the attribution 
functions (which, as indicated before, are actually the implementation of an 
abstract version of the original attribute grammar).   

Figure 8 exemplifies the coding pattern by showing the bottom-up 
translation scheme that implements the attribute grammar of Figure 1. Coded 
in the input language of a tool like YACC, Bison or CUP, and with a suitable 
implementation of the attribution functions and the basic attribution 
operations, it can be automatically turned onto a running implementation.  
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 Sent ::= Exp where Decs     {$$ := init($1,$3)} 

Exp ::= Exp + Opnd          {$$ := addition($1,$3)} 

Exp ::= Opnd                {$$ := chain($1)} 

Opnd ::= num                {$$ := num($1) } 

Opnd ::= var                {$$ := var($1) } 

Opnd ::= (Exp)              {$$ := chain($2) } 

Decs ::= Dec, Decs          {$$ := multiEnv($1,$3)} 

Decs ::= Dec                {$$ := singleEnv($1)} 

Dec  ::= var = num          {$$ := entry($1,$3)} 

    

Figure 8. Bottom-up translation scheme for the attribute grammar in Figure 1 

4.3. Analysis of the method 

The efficiency of the language processor generated will be manifested in the 
memory footprint of the recognition and evaluation process, which will in turn 
depend on the evaluation strategy used and on the kind of the initial attribute 
grammar: 
- If the implementation uses the demand-driven evaluation style, it will incur 

in the highest amount of auxiliary memory required by the method. Indeed, 
the memory usage will be rather independent of the kind of the grammar, 
and proportional to the length of the input sentences. Indeed, the 
dependency graph will be almost entirely built before evaluation is 
initiated, and the process will be divided into two well differentiated phases: 
(i) a first one in which the input sentence is recognized and the 
dependency graph is built, and (ii) a second one in which the attribute 
values are computed.  

- If the implementation uses the data-driven evaluation style, the 
performance will be optimal for s-attributed grammars. Indeed, the values 
of the attributes will be computed as soon as they are instrumented, and 
the amount of additional memory required for semantic evaluation will 
remain constant. However, in the presence of inherited information, the 
evaluation will be delayed until this information is injected into the process. 
The worst case happens when the overall evaluation process depends on 
inherited information to be set up in the grammar’s initial symbol. In this 
case, most of the dependency graph must be built before initiating 
evaluation, and thus the method becomes equivalent to using a demand-
driven strategy.  
This analysis does not mean the method does not provide good (even 

nearly optimal) solutions for non s-attributed attribute grammars, since 
inheritance is not required to be global. For instance, for grammars like that 
of the example, the method, in combination with a data-driven evaluation 
style, yields not only nearly optimal, but also elegant implementations.  
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4.4. Refinements  

Once the initial coding is available, the initial implementation can be 
systematically refined in an efficient implementation by using well-known 
techniques for dealing with inherited information during bottom-up parsing. In 
particular:  

 

(b) 

(a) 
Sent ::= Mo Exp where Decs  {$$ := init($1,$2,$4) } 

Mo ::=                      {$$ := mkEnv() } 

Exp ::= Exp + Opnd          {$$ := addition($1,$3)} 

Exp ::= Opnd                {$$ := chain($1)} 

Opnd ::= num                {$$ := num($1) } 

Opnd ::= var                {$$ := var($1,$0) } 

Opnd ::= (M1 Exp)           {$$ := chain($3) } 

M1 ::=                      {$$ = $-1} 

Decs ::= Dec, Decs          {$$ := multiEnv($1,$3)} 

Decs ::= Dec                {$$ := singleEnv($1)} 

Dec ::= var = num           {$$ := entry($1,$3)} 

   

 

… 
function mkEnv() { 

   return mkCtx(1) 

} 

... 

function init(ExpEnv,Exp,Decs) { 

   Sent := mkCtx(1) 

   eq(Sent[vs], (Exp[val]),IDEN) 

   eq(Exp ExpEnv[env],(Decs[env]),IDEN) 

   release(ExpEnv) 

   release(Exp)    

   release(Decs) 

   return Sent 

} 

... 

 

 

function addition(Exp1,Opnd){ 

   Exp0 := mkCtx(2 1) 

   eq(Exp1[env], (Exp0[env]),IDEN) 

   eq(Opnd[env], (Exp1[env]),IDEN) 

   eq(Exp0[val], 

        (Exp1[val],Opnd[val]),ADD) 

   release(Exp1) 

   release(Opnd) 

   return Exp0 

 } 

... 

function var(var, Env) { 

   Opnd := mkCtx(2 1) 

   eq(Opnd[val], 

       (var[lex],Opnd Env[env]),VALOF) 

   release(var) 

   return Opnd 

 } 

... 

Figure 9. (a) Refinement of the translation scheme in Figure 8 by means of marker 
non-terminals; (b) modification of some attribution functions and the addition of a 
new one (erased code appears in strikethrough light-gray text, and new added coded 
appears shaded) 

- Use of marker non-terminals (i.e., new non-terminal symbols defined by 
empty rules [2]) to mark the beginning of left spines (i.e., chains of 
elements generated by left-recursion). These non-terminals can store 
inherited attributes to which can be accessed from any point of the left 
spines without requiring explicit propagation. Using this technique, it is 
possible to deal with many l-attributed grammars with bounded memory 
footprint. The technique can be applied to the implementation exemplified 
before, yielding the translation scheme of Figure 9a. In this refinement it is 
possible to eliminate the inherited environment, since it can be remotely 
stored in the marker symbol Mo and referred from the marker symbol M1. 

In addition, the marker contexts can be passed on as an additional 
argument to the var attribution function. In Figure 9b we show the new 

attribution function mkEnv and how the old attribution functions init, 
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addition and var must be modified to fit in the new refinement. The 

other attribution functions can be modified in an analogous way, and 
therefore they will be omitted here.   

- Use of global state. In order to integrate this global state in the evaluation 
machinery, it is possible to create views of this state as semantic 
attributes. The technique can be illustrated with the example discussed 
above, since the environment can be completely managed as a global 
variable. Thus, all the machinery concerning propagation of environments 
can be completely eliminated. Figure 10a shows the resulting translation 
scheme. Notice how the environment is managed as a global variable, and 
is also exposed as a globally accessible semantic attribute. With the 
exception of init (see Figure 10b), the attribution functions coincide with 

those used in the refinement sketched in Figure 9 
 

(b) 

(a) global env =  
global aenv = mkCtx(1)  

procedure addEntry(env,Var,Num) { 

  env := extendWith({(val(var[lex]), 

                      toNum(val(Num[lex])))},env) 

}  

 

Sent ::= Exp where Decs  {set(aenv[env],env); $$ := init($1); release(aenv); } 

Exp ::= Exp + Opnd       {$$ := addition($1,$3)} 

Exp ::= Opnd             {$$ := chain($1)} 

Opnd ::= num             {$$ := num($1) } 

Opnd ::= var             {$$ := var($1,aenv) } 

Opnd ::= (Exp)           {$$ := chain($2) } 

Decs ::= Dec, Decs       {} 

Decs ::= Dec             {} 

Dec  ::= var = num       {addEntry(env,$1,$3)} 

  

 
function init(Exp) { 

   Sent := mkCtx(1) 

   eq(Sent[vs], (Exp[val]),IDEN) 

   release(Exp)    

   return Sent 

} 

 

Figure 10. (a) Use of a global environment to simplify the translation scheme in 
Figure 8; (b) the init attribution function in this refinement. 

5. A Coding Pattern for Top-Down Parser Generation 

Tools  

This section describes the coding pattern for top-down parser generation 
tools. For this purpose, it follows a similar structure to that of the previous 
one: 
- Subsection 5.1 describes the structure of attribution functions in this 

pattern. In one sense, these attribution functions arose by reversing the 
bottom-up ones. Now, each attribution function takes the semantic context 
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of the LHS as argument, and it builds and returns the semantic contexts for 
each symbol in the RHS. As in the bottom-up cases, they also use the 
basic attribution operations to set up all the attribute evaluation machinery. 

- Subsection 5.2 describes the general guidelines to code the translation 
scheme. As in the bottom-up case, it is carried out by placing attribution 
functions at strategic points in the syntax rules. 

- Subsection 5.3 describes how to deal with underlying non-LL grammars. 
Indeed, bottom-up parser generation tools usually deal with predictive 
grammars of the LL-type, in which it is possible to determine which rule to 
expand by using a finite amount of input look-ahead. However, some 
grammatical features (e.g., left-recursion, common left-factors) destroy this 
capability to predict the rule to be applied. Fortunately, many of these 
grammars can be systematically transformed to forms suitable for top-
down parsing. These transformations must be accompanied by the 
transformation of the semantic part, however. Thus, we researched how to 
perform these transformations for the case of our encoding scheme. 

-  As in the bottom-up case, subsection 5.4 briefly analyzes the method, and 
subsection 5.5 describes some subsequent refinements (the most 
prominent one deals with the systematic replacement of recursion by 
iteration in the resulting translation schemes).   

5.1. The attribution functions 

Although it is possible to undertake implementation by thinking of the bottom-
up construction of the attribute dependency graph, as in the bottom-up case, 
it is possible to obtain more advantages if we think of the top-down 
construction of this graph. In particular, it will facilitate the propagation of 
inherited information during parsing.  

 function addition(Exp0){ 
   Exp1 := mkCtx(2) 

   Opnd := mkCtx(2) 

   eq(Exp1[env], (Exp0[env]),IDEN) 

   eq(Opnd[env], (Exp0[env]),IDEN) 

   eq(Exp0[val], 

        (Exp1[val],Opnd[val]),ADD) 

   release(Exp0) 

   return (Exp1,Opnd) 

 } 

 
Figure 11. Top-down geared version of the attribution function addition 

To enable the top-down construction of the dependency graph, we need to 
reverse the flow of semantic contexts in the attribution functions. Now, these 
functions will take the LHS context as input and it will return the RHS 
contexts as output. Thus, a typical attribution function begins by creating the 
RHSs contexts. Then it establishes the dependencies between attributes and 
instruments the attributes as in the bottom-up case. Finally, it releases the 
LHS context. Figure 11 exemplifies it by showing the top-down geared 
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version of the addition attribution function. The other attribution functions 

can be adapted in a similar way, and therefore they will be not detailed here. 

5.2. The top-down translation scheme 

As in the bottom-up case, the coding of the translation scheme is carried out 
in terms of the attribution functions. In addition, due to the inversion of the 
flow of semantic contexts in the attribution functions, it is necessary to 
connect the terminal contexts created in these functions to the contexts 
created by the scanner. This can be done by using the conn  procedure 

sketched in Figure 12 (the name is an abbreviation for connect).   
 

 

Figure 12. Procedure for connecting terminal contexts. 

Thus, for each syntax rule A::=X0 .. Xn in the grammar, we need to add a 

rule A(ctxA)::={(ctx0,…,ctxn):=(ctxA) } I0 … In  where: (i)  is the rule’s 
attribution function, (ii) (ctx0,…,ctxn) collects the RHS contexts (this 
assignment is optional; it can be omitted if the attribution function does not 
return any context), and (iii) each Ii is Xi(ctxi) if Xi is a non-terminal, Xi(lexctxi) 
{conn(ctxi,lexctxi)} if it is a terminal with semantic charge, or Xi if it is a 

terminal without semantic charge (a keyword, a punctuation symbol, etc.). 
These guidelines are illustrated in Figure 13, which shows the top-down 
translation scheme for the grammar in Figure 1. 
 Sent(co) ::= {(c1,c2) := init(co)} Exp(c1) where Decs(c2)                 

Exp(co)  ::= {(c1,c2) := addition(co)} Exp(c1) + Opnd(c2)       

Exp(co)  ::= {c1 := chain(co)} Opnd(c1)                 

Opnd(co) ::= {c1 := num(co) } num(lc1) {conn(c1,lc1)}                  

Opnd(co) ::= {c1 := var(co) } var(lc1) {conn(c1,lc1)}                  

Opnd(co) ::= {c1 := chain(co) } (Exp(c1))                

Decs(co)  ::= {(c1,c2) := multiEnv(co)} Dec(c1) , Decs(c2)      

Decs(co) ::= {c1 := singleEnv(co)} Dec(c1)                 

Dec(co) ::= {(c1,c2) := entry(co)} var(lc1) {conn(c1,lc1)} = num(lc2) {conn(c2,lc2)}       

  

Figure 13. Top-down translation scheme for the attribute grammar in Figure 1 
(warning: this translation scheme is not yet implementable with a top-down parser 
generator!) 

Unfortunately, since top-down translators usually require LL underlying 
context-free grammars, translation schemes obtained according to the stated 
guidelines can require further transformation before allowing their 
implementation during parsing. In particular, the context-free grammar of the 
translation scheme in Figure 1 exhibits left-recursion, which make this coding 

procedure conn(termCtx,lexCtx) { 

   eq(termCtx[lex],(lexCtx[lex]),IDEN) 

   release(termCtx); release(lexCtx)  

} 
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unsuitable for top-down parser generation. Next subsection deals with this 
problem. 

5.3. Factoring and immediate left-recursion elimination 

In many cases the problematic top-down translation schemes and the 
associated attribution functions can be systematically tuned by applying 
similar patterns to the well-known factoring and left-recursion elimination 
transformations presented in any compiler construction textbook [2].  In 
particular:  
- Figure 14a sketches a transformation pattern for removing common factors 

in a rule-set. Notice this transformation supposes the explicit construction 
of the common factor’s semantic context. It will be carried out by a context-

construction function (denoted by mkCtx in Figure 14a). In addition, it is 

necessary to keep this context alive, regardless whether it will be released 
in the common factor. For this purpose, we need to create another twin 

context (cp in Figure 14a), and to connect it to the actual common factor’s 
semantic context. This connection is achieved with a context connection 

procedure, denoted by conn in Figure 14a. Finally, it will require explicitly 

modifying the attribution functions for each rule affected. The modified 

attribution functions (denoted by ’i in Figure 14a) do not need to create the 
semantic context for the common factor; instead, they will take it as a 
parameter. 

- Figure 14b shows a transformation pattern for removing immediate left-
recursion. The pattern requires the explicit construction of the context for 
the recursive non-terminal, which is achieved by using a context-
construction function (mkCtxA in Figure 14b). As usual, the chain 

generated by left-recursion in the original grammar is generated by using 
right-recursion in the transformed one. Each stage of this right-recursive 
process can be associated with a stage in the bottom-up construction of 
the parse tree in the original grammar. Therefore, it is possible to take the 
context associated to the root of the already constructed sub-tree as input, 
and then to modify the corresponding attribution function to take this as an 
additional argument instead of creating it (the modified functions are noted 

’i  in Figure 14b, and they must take care of releasing the semantic 
context once they are not necessary). In addition, it is necessary to provide 
a context connection procedure for performing the connection between the 
input and the last context created once the right-recursion is finished (it is 
denoted by connA in Figure 14b). 

Figure 15 illustrates the application of these patterns to the translation 
scheme of Figure 13. The grammar of the transformed scheme is LL(1) and, 
therefore, suitable for its implementation in any of the top-down parser 
generation tools mentioned.  
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A(clhs) ::= {(c,co) := 0(clhs)}(c)o(co)  

A(clhs) ::= {(c,c1) := 1(clhs)} (c)1(c1)  
… 

A(clhs) ::= {(c,cn) := n(clhs)} (c)n(cn) 

A(clhs) ::= {c := mkCtx(); cp := mkCtx();  

                                      conn(cp, c) }(c)RA(clhs,cp)  

RA(clhs,c) ::= {co := ’0(clhs,c)} o(co) 

RA(clhs,c) ::= {c1 := ’1(clhs,c)} 1(c1) 
... 

RA(clhs,c) ::= {cn := ’n(clhs,c)} n(cn) 

A(clhs) ::= {(cA,co) := 0(clhs)} A(cA)o(co)  
… 

A(clhs) ::= {(cA,cn) := n(clhs)} A(cA)n(cn)  

A(clhs) ::= {co := 0(clhs)}0(co)  
… 

A(clhs) ::= {cm := m(clhs)} m(cm)  

 

A(iclhs) ::= {clhs := mkCtxA();co := 0(clhs)}0(co)RA(iclhs,clhs)   
… 

A(iclhs) ::= {clhs := mkCtxA();cm := m(clhs)}m(cm)RA(iclhs,clhs)   

RA(iclhs, cA) ::= {clhs := mkCtxA();co := ’0(clhs, cA)}  
                                                                          

o(co)RA(iclhs,clhs) 
... 

RA(iclhs, cA) ::= {clhs := mkCtxA();cn := ’n(clhs, cA)} 
                                                                          

n(cn)RA(iclhs,clhs) 

RA(iclhs, cA) ::= {connA(iclhs, cA)} 

 

(a) (b) 

 

Figure 14. (a) Factoring pattern; (b) Immediate left-recursion elimination pattern  

 function mkCtxExp() {return mkCtx(2)} 

function mkCtxDec() {return mkCtx(1)} 

procedure connExp(ic,c) {eq(c[env],(ic[env),IDEN); eq(ic[val],(c[val]),IDEN) } 

procedure connDecs(cp,c) {eq(cp[env],(c[env),IDEN);} 

 

Sent(co) ::= {(c1,c2) := init(co)} Exp(c1) where Decs(c2)                  

Exp(ic)  ::= {co := mkCtxExp(); c1 := opnd(co)} Opnd(c1) RExp(ic,co) 

RExp(ic, c1) ::= {co := mkCtxExp(); c2 := addition(co,c1)} + Opnd(c2) RExp(ic,co) 

RExp(ic, co) ::= {connExp(ic,co)} 

Opnd(co) ::= {c1 := num(co) } num(lc1) {conn(c1,lc1)}                  

Opnd(co) ::= {c1 := var(co) } var(lc1) {conn(c1,lc1)}                  

Opnd(co) ::= {c1 := chain(co) } (Exp(c1))                

Decs(co)  ::= {c1 := mkCtxDec(); c1p := mkCtxDec(); connDecs(c1p,c1) }  
                                                              Dec(c1) RDecs(co,c1p) 

RDecs(co, c1) ::= {c2 := multiEnv(co,c1)} , Decs(c2)     

RDecs(co, c1) ::= {singleEnv(co,c1)}  

Dec(co) ::= {(c1,c2) := entry(co)} var(lc1) {conn(c1,lc1)} = num(lc2) {conn(c2,lc2)}      

 
Figure 15. Result of eliminating common factors and immediate left-recursion in the 
top-down translation scheme of Figure 13 (the transformed parts are shadowed) in 
order to obtain an artifact implementable with a top-down parser generator. 

5.4. Analysis of the method 

As in the bottom-up case, the use of a demand-driven evaluation style will 
imply explicitly constructing dependency graphs, and therefore the highest 
memory overhead. As in bottom-up implementations, it can be alleviated by 
using data-driven evaluation. In this case, the method will incur in the lowest 
auxiliary evaluation memory overhead for l-attributed grammars. Indeed, for 
these grammars, data-driven evaluation will yield a behavior equivalent to a 
one-pass, on-the-fly translation process.  
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Finally, since the initial coding encourages the explicit coding of the plain, 
BNF grammar, the resulting translators will be highly recursive, which should 
be taken into account if the final implementation language does not support 
tail recursion optimization. Fortunately, as will be indicated in the next 
section, by using EBNF notation in the underlying context-free grammars, it 
will be possible to easily turn many right-recursions into iteration. 

5.5. Refinements 

As in the bottom-up case, it is possible to use global state to simplify the 
propagation of context. Nevertheless, due to the nature of top-down 
translators, this refinement is less critical from a performance perspective. 
Concerning the use of marker non-terminals, it is nonsense in this scenario. 

However, as indicated in the previous subsection, an interesting 
refinement would be to exploit the support of EBNF notation provided by 
typical predictive recursive parser generation tools in order to overcome the 
potential stack overflow problem associated with the recursive 
implementation of genuinely iterative processes5. Indeed, it is equivalent to 
performing a tail-recursion optimization process by hand6.  

In addition, it is possible to carry out several simplifications oriented to 
minimizing the use of temporary variables (e.g., by passing complex 
expressions as parameters to non-terminal symbols).  

 Sent(co) ::= {(c1,c2) := init(co)} Exp(c1) where Decs(c2)                  

Exp(ico)  ::= {co := mkCtxExp()} Opnd(chain(co)) RExp(ico,co) 

RExp(ic, c1) ::= ({co := mkCtxExp()} + Opnd(addition(co,c1)) {c1:=co})* 
                                                                  {connExp(ic,c1)} 

Opnd(co) ::= num(lc1) {conn(num(co),lc1)}                  

Opnd(co) ::= var(lc1) {conn(var(co),lc1)}                  

Opnd(co) ::= ( Exp(chain(co)) )                

Decs(co)  ::= {c1 := mkCtxDec(); c1p := mkCtxDec(); connDecs(c1p,c1) }  
                                                              Dec(c1) RDecs(co,c1p) 

RDecs(co, c1) ::= ({co := multiEnv(co,c1)} ,  
                     {c2 := mkCtxDec(); c1 := mkCtxDec(); connDecs(c1,c2) }  

                      Dec(c2))* {singleEnv(co,c1)} 

Dec(co) ::= {(c1,c2) := entry(co)} var(lc1) {conn(c1,lc1)} = num(lc2) {conn(c2,lc2)}      

 
Figure 16. Refinement of the translation scheme in Figure 15 

Figure 16 exemplifies the result of applying these refinements on the 
translation scheme of Figure 15. The resulting scheme can be readily 
implemented on any typical recursive predictive parser generation tool (e.g., 
JavaCC or ANTLR), or directly by hand in a general-purpose programming 
language. As this example makes apparent, after applying this refinement, 

                                                   
5 Notice this problem does not affect bottom-up parsers, provided sequences are 

represented by means of left-recursion.  
6 Indeed, it could be possible to directly formulate the immediate left-recursion 

elimination pattern in iterative terms.  
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recursion will only be used to express nesting (in the example, it is due to the 
use of parenthesis in expressions), which constitutes the most natural use of 
this grammar feature. 

6. Related Work  

As indicated in the introduction, the standard way of implementing an 
attribute grammar is to use one of the tools that directly supports the 
formalism. Indeed, as [35] makes apparent, since its invention by Knuth at 
the end of the sixties of the past century, the computer language community 
has proposed many of these tools, starting with classical systems like GAG 
[22], FNC-2 [20], ELI [15] or Elegant [7], and ending with recent proposals like 
LISA [17][31][33], Silver [51] or JastAdd [29]. These tools take attribute 
grammars as input, and generate operative language processors as output. In 
addition, they support metalanguages by adding many extensions to the 
basic formalism (e.g., modules [21], generics [42], higher-order [48], object 
[16] and aspect orientation [39][40], etc.), which facilitate the production and 
maintenance of complex specifications.  

Attribute grammar-based systems as the abovementioned promote 
orchestrating the development entirely in terms of attribute grammars, and, in 
particular, in terms of the metalanguages supported. On the contrary, the 
goal of our approach is not to provide yet another attribute grammar system, 
but to propose systematic ways of integrating attribute grammars in 
conventional language implementation processes, by using conventional 
parser generation tools. In this way, in our approach attribute grammars are 
used at the initial stages of the development process, as a formal 
specification tool. In addition, our work promotes an initial design-preserving 
coding in a conventional parser generation tool, in the form of a suitable 
translation scheme. Beyond this point, the development process proceeds 
through several refinements, making use of the parser generation tool 
facilities and the tool’s target implementation language.  

In consequence, our approach promotes straightforward coding patterns, 
which can be applied by hand to get initial codings, and which make it 
possible to identify the different pieces of the original attribute grammar in 
these codings. On the other hand, the code generated by an attribute 
grammar-based tool is usually a highly optimized artifact, usually generated 
following a static approach in which evaluation and storage strategies are 
determined as the result of a static analysis of the input grammar [1], and 
which is not intended to be inspected and modified by humans.  

In addition, our approach is oriented to converge with conventional 
development processes. Because of it, on one hand we encourage the use of 
semantic evaluation methods that can be easily coupled with parsing. This is 
not necessarily true for attribute grammar-based tools, many of which 
promote final implementations that operate on (concrete or abstract) syntax 
trees. Of course the patterns described in this paper could be automated in 
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the form of attribute-grammar based tools. Indeed, tools for the processing of 
XML based on attribute grammars like those described in [43] are inspired by 
these patterns (in particular, these tools use the data-driven evaluation 
strategy to make the stream-oriented, asynchronous, processing of very wide 
XML documents possible). These tools could be used as a sort of CASE 
support during the development process model promoted in this paper, which 
in turn could imply the provision of some roundtrip support (see the future 
work description in the next section). 

The coupling of attribute evaluation and parsing has been extensively 
addressed as a way of implementing restricted classes of attribute grammars 
(see, for instance, [3] for a tutorial introduction). The works in [2][3] show how 
l-attributed grammars with underlying LL grammars can be implemented 
during top-down predictive descent parsing. In addition, different classes of 
LR-attributed grammars have been identified, which allow semantic 
evaluation to be implemented using straightforward extensions of LR parsers 
[4]. In the marriage of attribute grammars and logic programming, the class 
of logical one-pass logical attribute grammars shows how some kinds of right 
dependencies can also be managed during conventional top-down parsing 
[34][36].  Contrary to the work presented in this paper, all these approaches 
constrain the classes of allowed grammars to strict subclasses of non-circular 
attribute grammars. In contrast, our approach is able to deal with arbitrary 
non-circular attribute grammars. If the grammars are of certain types (e.g., l-
attributed grammars with an LL(1) underlying context-free grammar), and a 
suitable semantic evaluation approach is used (e.g., a data-driven strategy), 
our implementations produce artifacts comparable in performance and 
memory footprint to those promoted by the abovementioned works. In other 
cases, the approach is still able to produce running implementations, which 
can adapt the memory footprint to that required for performing semantic 
evaluation.  

The development of some attribute grammar-based systems has exploited 
the marriage between attribute grammars and parser generation tools. A 
common strategy is to build a preprocessor by translating an attribute 
grammar-based specification language into a running implementation written 
in terms of a parser generator. In [23] one of these systems is described, 
which takes an attribute grammar-like specification as input, and it turns it 
into a YACC implementation. However, since the resulting implementation 
evaluates attributes during parsing, the class of supported grammars is 
restricted to a subset of the LR-attributed ones. The Ox system [8] follows a 
similar approach, but it supports arbitrary non-circular attribute grammars. 
For this purpose, the processors generated decouple parsing and semantic 
evaluation by using an optimized implementation of the processing models 
behind attribute grammars (i.e., to build the parse tree, to arrange attribute 
instances in topological order, and then to perform evaluation according to 
this order). XLOP [43], a system developed by us to describe XML processing 
tasks as attribute grammars, also translates attribute grammar specifications 
into inputs to a parser generation tool (in this case, CUP). RIE [44], a system 
that supports a very general class of LR-attributed grammars (ECLR-
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attributed grammars [4]) adopts a different implementation approach, by 
basing the metagenerator on an explicit modification of the Bison parser 
generation tool. Regardless of the implementation strategy followed (in these 
examples, based on preprocessors for / extensions to parser generation 
tools), they ultimately fall in the category of attribute grammar-based tools. 
Therefore, the general considerations made above concerning the 
relationships between our approach and attribute grammar – based tools also 
applies here.  

Concerning parser generators, there is a plethora of systems available that 
can be used during the development of a language processor. A basic feature 
differentiating them is whether they generate top-down parsers (e.g., the 
aforementioned tools JavaCC [26] and ANTLR [38], as well as classic tools 
like COCO/R [32]), or bottom-up ones (e.g., the aformentioned YACC 
[45],Bison [27] and CUP [5], as well as tools like Tatoo [11], SableCC [13], 
Beaver7, Copper [49] or YaJco8). Also, these tools differ in the class of 
grammars allowed (e.g., JavaCC supports LL(k) grammars, while ANTLR 
supports the aforementioned LL(*) parsing method, able to deal with 
unbounded look-ahead; additionally tools like Elkhound [30], SDF [10] or, 
under certain settings, Bison, provide support to arbitrary context-free 
grammars via the GLR parsing method [46]), by the expressiveness of its 
specification language (e.g., ANTLR or Tatoo support very sophisticated 
features, like grammar modularization, rule inheritance, etc.), by whether they 
include support for lexical specification (e.g., JavaCC, ANTLR) or whether it 
must be made by using a separating tool (e.g., CUP), and by many other 
features whose detailed analysis is beyond the scope of the present work. As 
was indicated, the patterns presented in this paper are applicable to most of 
these parser generators (in particular in those tools that support deterministic 
grammars; in tools like SDF, whose outcome is parse forests that must be 
subsequently disambiguated, the applicability of these patterns vanishes). 
Also, it is important to notice that, while many of these parser generation 
tools support the concept of semantic attribute, like attribute grammars (e.g., 
this terminology is explicitly included in ANTLR), it does not mean that these 
tools give direct support for attribute grammars. Indeed, in addition to 
managing semantic attributes, the essential aspect of attribute grammars is 
the support for a dependency-driven execution style: semantic evaluation is 
not necessarily coupled with parsing, but emerges as a consequence of the 
dependencies among attributes. In this way, the patterns introduced in this 
work make it possible to incorporate this computation style into specifications 
for parser generation tools, and, in consequence, to facilitate the subsequent 
refinement into more efficient implementations.  

 Finally, as the implementations of our attribution operations make 
apparent, we avoid the explicit construction of the parse tree. While this 
construction is necessary in order to support more sophisticated evaluation 

                                                   
7 http://beaver.sourceforge.net/ 
8 http://code.google.com/p/yajco/ 
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strategies (see, for instance [1]), our simple coding patterns make it 
unnecessary, since it is centered directly on the construction of dependency 
graph-like structures. A similar technique is followed in [6], an implementation 
of circular attribute grammars in Prolog whose semantic equations are 

described by using -expressions. The execution model of the resulting 

artifact works in two stages: (i) construction of -expressions for the root’s 
synthetized attributes, and (ii) interpretation of these expressions according to 
a least fixpoint semantics to yield the final values. Thus, the resulting 
approach resembles our demand-driven implementation. In [50], Prolog is 
also used to implement attribute grammars, and two evaluation strategies are 
proposed. The first one supposes building terms representing semantic 
expressions for the root’s synthetized attributes, which are subsequently 
interpreted with a separate interpreter. The second one promotes the use of 
Prolog co-routine facilities to delay evaluation of arguments until they are 
instantiated. Thus, the first strategy is analogous to our demand-driven 
implementation (nevertheless, our implementation is optimized to avoid 
duplicated evaluations; see [47] for a similar implementation in Prolog that 
also avoids redundant evaluations). The second one is a Prolog 
implementation of a data-driven strategy.    

7. Conclusions and future work  

This paper has shown how to systematically code arbitrary non-circular 
attribute grammars in the input languages of bottom-up, LALR(1) parser 
generation tools like YACC, BISON or CUP, as well as top-down, LL parser 
generation tools like JavaCC or ANTLR. It is done by using a small set of 
attribution operations. These operations, in turn, can be implemented in 
different ways in order to enable different semantic evaluation styles. In 
particular, this paper has illustrated two alternative implementations: one 
supporting a demand-driven style, and another supporting a data-driven one. 
The results of this work can be useful to promote a systematic method of 
using conventional parser generation tools to yield final implementations. 
This method starts with the initial coding of an attribute grammar-based 
specification, and then it evolves it in a final implementation by applying 
systematic implementation patterns and techniques. Thus, by applying and 
documenting systematic refinements, it is possible, on one hand, to yield 
efficient implementations and, on the other hand, to track the refinement 
chain from these final implementations to the original attribute grammar-
based specifications. Besides, the method facilitates the incremental 
introduction of new language features, since they can be described according 
to attribute grammar conventions, then readily coded in the implementation, 
and finally optimized according to implementation-dependent criteria. 
Therefore, the method transports the attribute grammar amenability to doing 
modular and extensible specifications incrementally to an implementation 
process based on parser generation tools. 
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Currently we have successfully tested our method with several small 
examples, and we are applying it to the development of a non-trivial 
translator for a Pascal-like language. From these experiences, we have 
realized how the encoding patterns are simple enough to being applied 
without specific tooling support (although, of course, this support could be a 
very valuable facility in our methodology). Also, we have gained further 
evidence on the feasibility and usefulness of our method with its application 
in an introductory compiler construction course during the first period of the 
2011-2012 academic year at the Complutense University. Indeed, we 
proposed that our students produce initial implementations of language 
processors by taking attribute grammar specifications as a guide, and using 
the method described in this paper. We observed that they didn’t find it more 
difficult to apply than students of previous courses found while hand-coding 
conventional recursive descent translators. In addition, the quality of the final 
programs was substantially better than in previous years, since the method 
encouraged rigorous adherence to the original specification. Thus, we plan to 
further apply it as a systematic learning method in future editions of the 
course. Also, as future work, we plan to provide the aforementioned tooling 
support in order to facilitate the application of the method: automatic 
application of the coding patterns to produce the initial translation schemes, 
support for some of the transformations and refinements described in this 
paper, roundtrip support and support for tracking successive refinements, and 
support for profiling and debugging the semantic evaluation processes.     
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