
DOI:10.2298/CSIS111223022R

A Systematic Approach to the Implementation of

Attribute Grammars with Conventional Compiler

Construction Tools

Daniel Rodríguez-Cerezo
1
, Antonio Sarasa-Cabezuelo

1
, and

José-Luis Sierra
1

1 Computer Science School,
Complutense University of Madrid

Calle Profesor José García Santesmases, s/n
28040 Madrid, Spain

{drcerezo, asarasa, jlsierra}@fdi.ucm.es

Abstract. This article describes structure-preserving coding patterns to
code arbitrary non-circular attribute grammars as syntax-directed
translation schemes for bottom-up and top-down parser generation
tools. In these translation schemes, semantic actions are written in
terms of a small repertory of primitive attribution operations. By
providing alternative implementations for these attribution operations, it
is possible to plug in different semantic evaluation strategies in a
seamlessly way (e.g., a demand-driven strategy, or a data-driven one).
The pattern makes possible the direct implementation of attribute
grammar-based specifications with widely-used translation scheme-
driven tools for the development of both bottom-up (e.g. YACC,
BISON, CUP) and top-down (e.g., JavaCC, ANTLR) language
translators. As a consequence, initial translation schemes can be
successively refined to yield final efficient implementations. Since these
implementations still preserve the ability to be extended with new
features described at the attribute grammar level, the advantages from
the point of view of development and maintenance become apparent.

Keywords: Attribute Grammars, Parser Generators, Language
Processor Development Method, Grammarware

1. Introduction

Attribute grammars were introduced by Donald E. Knuth [25] as an extension
of context-free grammars for describing the syntax and semantics of context-
free languages, and are widely used as a high-level specification method for
the first stages of the design and implementation of a computer language
[2][35].

In order to make an attribute grammar-based specification executable, it is
possible to use one of the many specialized tools that support the formalism

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 984

(see, for instance,[12][17][31][33][35]). However, regardless the recognized
advantages of these tools, in practice, traditional implementations of
language processors are rarely based on artifacts directly generated from
attribute grammars. On the contrary, attribute grammars are taken as initial
specifications of the tasks to carry out, while final implementations are
usually achieved by using scanner and parser generators (e.g., ANTLR, CUP,
Flex, Bison…), general-purpose programming languages, or a suitable
combination of the two techniques [2]. The process of transforming the initial
specification into a final implementation is usually ill-defined, and typically
depends solely on the programmer's art –a programmer who many times
discards formal specifications while he or she directly hacks the final
implementation. It seriously hinders the systematic development and
maintenance of language processors.

In order to bridge the gap between attribute grammar-based specifications
and final implementations, we propose articulating the language processor
development process as the explicit transformation of the initial attribute
grammar-based specification to the final implementation. According to our
proposal, the first step to convey during the implementation stage is to
explicitly code the attribute grammar in the input language of the
development tool (usually, a parser generator like Bison, CUP, JavaCC or
ANTLR). This will make it possible to yield an initial running implementation,
which subsequently could be refined to achieve greater efficiency. In
addition, since the refined implementation still supports the explicit
incorporation and subsequent refinement of attribute grammar-based
features, the incremental development and subsequent maintenance of the
language processor can be greatly facilitated. Therefore, it is important to
notice that the rationale of the present work is not to provide new methods to
automatically generate language processors from attribute grammars (in this
case, undoubtedly the best choice would be one of the pre-existing tools
based on attribute grammars). Instead, the rationale is to start from an
attribute grammar specification and then to systematically refine it across
several stages, finishing with a final, highly efficient implementation in a
conventional compiler construction tool -a process which is not the aim of any
typical attribute grammar tool.

This paper is mainly focused on the first step of our proposal, i.e. how to
code an attribute grammar in terms of the input language supported by a
conventional parser generation tool, although we also illustrate some aspects
of the latter refinement. In order to cover the most widely used parser
generation tools, we address both bottom-up parser generators of the YACC
and CUP type and top-down parser generators of the JavaCC or ANTLR
style. Unlike works in L-attributed [28] or LR-attributed grammars [4] and
similar approaches (e.g., [23]), our approach will support the implementation
of arbitrary non-circular attribute grammars. In addition, the coding pattern
will be independent of the final evaluation style chosen. Indeed, attribute
grammars will be coded by using a small repertory of attribution operations.
Finally, by providing alternative implementations for these operations, it will
be possible to set up the semantic evaluation style that will finally be used.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 985

The structure of the rest of the paper is as follows: section 2 introduces
some preliminaries. Section 3 details the dependency description operations
and outlines two alternative implementations, which makes apparent how to
plug in different evaluation styles. Section 4 describes the coding pattern for
bottom-up parser generation tools. Section 5 describes the pattern for top-
down ones. Section 6 presents some work related to ours. Finally, section 7
concludes the paper and outlines some lines of future work. A preliminary
version of this work, which only deals with a former pattern for bottom-up
translation schemes, can be found in [41].

2. Preliminaries

In this section we introduce some basic concepts concerning the two main
language-processing specification tools addressed in this paper: attribute
grammars (subsection 2.1) and translation schemes (subsection 2.2).

2.1. Attribute grammars

The formalism of attribute grammars was initially proposed by Donald E.
Knuth at the end of the 1960s to characterize the semantics of context-free
languages [25]. Attribute grammars introduce a syntax-directed, dependency-
driven language processing style. This processing style is syntax-directed
because the processing of each sentence is driven by its syntactic structure,
and it is dependency-driven because it is directed by the dependencies
among the computations involved. Figure 1 shows an example of an attribute
grammar that models the evaluation of simple arithmetic expressions,
followed by declarations of constants. In the formalized process, declarations
are used to build an environment (a set of variable-value pairs), which is
subsequently used to determine the value of variables. For the sake of
conciseness, only the addition operator is considered.

Attribute grammars extend context-free grammars with semantic attributes
and semantic equations. Indeed, context-free grammars are standard
mechanisms to define the syntax of computer languages. In a context-free
grammar:
- Syntax is defined by means of syntax rules (or productions), which

determine the structure of syntactic constructions in terms of sequences
of simpler constructions. For instance, in Figure 1 Sent::= Exp where

Decs is a syntax rule that describes the top-level structure of the kind of

sentences considered in this example.

- Syntactic constructions are represented by means of syntax symbols:
composite structures by non-terminal symbols and simple structures by
terminal symbols. For instance, in Figure 1 Sent, Exp and Decs are

non-terminal symbols that represent, respectively, sentences,

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 986

expressions and declarations. In turn, where, var or num are terminal

symbols (these symbols represent, respectively, the where reserved
word, variables and numbers in the language considered).

- For each non-terminal there are one or several rules defining its
structure. Each rule is made up of a left-hand side rule (LHS; the non-
terminal whose structure is defined) and of a right-hand side rule (RHS;
the sequence of symbols which define such a structure). For instance, the
previously referred to rule established that a sentence (Sent, the rule’s

LHS) maybe (the rule’s RHS): an expression (Exp), followed by the

where reserved word, and followed by a block of declarations (Dec).

- There is also a distinct non-terminal (the grammar’s initial symbol or the
grammar’s axiom), which represents the language’s highest level
structure. In Figure 1, the grammar’s initial symbol is Sent.

 Sent ::= Exp where Decs

 Exp.env = Decs.env

 Sent.val = Exp.val
Exp ::= Exp + Opnd

 Exp1.env = Exp0.env

 Opnd.env = Exp0.env

 Exp0.val = Exp1.val + Opnd.val
Exp ::= Opnd

 Opnd.env = Exp.env

 Exp.val = Opnd.val
Opnd ::= num

 Opnd.val = toNum(num.lex)

Opnd ::= var

 Opnd.val = valOf(var.lex,Opnd.env)

Opnd ::= (Exp)

 Exp.env = Opnd.env

 Opnd.val = Exp.val
Decs ::= Decs , Dec

 Decs0.env = extendWith(Dec.env,Decs1.env)
Decs ::= Dec

 Decs.env = Dec.env
Dec ::= var = num

 Dec.env = {(var.lex,toNum(num.lex))}

Figure 1. An example of attribute grammar

In a context-free grammar, syntax rules enable the description of the
structure of each language’s sentence in terms of a tree, which is called the
parse tree of the sentence. Inner nodes are non-terminals, while leaves are
terminals. Each parent node, together with its ordered sequence of child
nodes, corresponds to the application of a syntax rule. Finally, the root node
corresponds to the grammar’s axiom. Figure 2a shows an example of
sentence in the language considered in Figure 1, and Figure 2b shows the
parse tree for this sentence. Notice how this tree makes the structure of the
sentence explicit. Thus, subsequent processes can be driven by this
structure.

As indicated before, an attribute grammar adds a set of semantic attributes
to the symbols of an underlying context-free grammar. These attributes will
take values in the corresponding nodes of the parse trees. Attributes can be
of two types:
- Synthesized attributes: their values are computed from synthesized

attributes in the owner node’s child nodes and from the inherited
attributes of this owner node. Thus, the value of a synthesized attribute
represents (part of) the meaning of the symbol(s) to which this attribute is

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 987

associated. In the grammar of Figure 1, synthetized attributes are
terminated with . Thus, val is an example of synthetized attribute in

this grammar, which is used to contain the values of operands (Opnd

non-terminal), expressions (Exp non terminal) and sentences (Sent non-

terminal). In turn, the synthesized attribute env is used to build the

aforementioned environment from declarations. Finally, notice that
terminal symbols can also have synthesized attributes; these synthesized
attributes are called lexical attributes, and they should be set during
lexical analysis. For instance, in the grammar of Figure 1 we use a lexical

attribute, lex, which contains the actual string (the lexeme) of each

token (e.g., for num it will contain the actual number, for var the actual

variable, …).

 (a) x+y+5 where x=5,y=6

(b) Sent

 Exp where Decs

 Exp + Opnd Decs , Dec

Exp + Opnd num Dec var = num

Opnd var var = num

var

Figure 2. (a) A sentence of the language defined by the context-free grammar behind
Figure 1, (b) Parse tree for the sentence in (a)

- Inherited attributes: their values are computed from inherited attributes in
the parent and/or from synthesized attributes in the siblings. Thus,
inherited attributes provide additional contextual information needed to
determine the meanings of the symbols to which they are associated. In

the grammar of Figure 1, we use an env inherited attribute to propagate

the environment to the expression part of the input sentence, since this
information is necessary to correctly determine the value of the constant
appearing in such an expression part.

The attribute grammar will also add a set of semantic equations to each
syntax rule. These equations will indicate how to compute the values of
synthesized attributes in the rule’s LHS, as well as the inherited attributes in
the RHS symbols. More precisely:
- There will be exactly one semantic equation for each synthetized attribute

on the LHS, and another one for each inherited attribute on the RHS.

- Each equation will apply semantic functions to other attributes in the rule.
We will assume that, in the computation expressed by each equation, it

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 988

will only be possible to use inherited attributes from the LHS and
synthesized attributes from the RHS (i.e., we will consider attribute
grammars in Bochmann’s normal form [9]).

 For instance, the semantic equation Exp0.val = Exp1.val +

Opnd.val for the syntax rule Exp ::= Exp + Opnd in the grammar of

Figure 1 establishes that, in order to compute the value of a sum

(Exp0.val)1, it is necessary to add the value of the first operand

(Exp1.val) to the value of the second operand (Opnd.val).

Attribute grammars enable semantic evaluation on attributed parse trees
(i.e., parse trees along with the semantic attributes for each node). Semantic
evaluation is dependency-driven, since it is solely constrained by the
dependencies that exist among these semantic attributes (i.e., to compute the
value of an attribute, the only rule that must be obeyed is to have the values
available of all the other attributes required by this computation according to
a suitable semantic equation). Aside from this basic constraint, evaluation
order does not matter. In consequence, attribute grammars result in a high-
level specification formalism, since it is possible to specify language-
processing tasks by focusing on the meaning of the syntax structures, without
being distracted by lower-level implementation details, like the exact order in
which attribute instances must finally be evaluated. In addition, the formalism
is highly modular: it facilitates the addition of new attributes and semantic
equations without affecting the existing ones, since the dependencies among
attribute instances will be responsible for automatically rearranging the order
in which to carry out the evaluation.

A convenient way of describing dependencies between attributes in an
attributed parse tree is by means of a dependency graph. Nodes in this graph
are the attributes in the symbols on the tree. Each arc denotes that the
source attribute must be used to compute the value of the target one. Figure
3 shows the attributed parse tree and the dependency graph for the sentence
in Figure 2a.

An attribute grammar is non-circular when it is not possible to find an
attribute instance in a parse tree depending (directly or indirectly) on itself.
For the contrary, the grammar is called a circular attribute grammar. Although
semantic evaluation can be extended to manage circular attribute grammars
(see, for instance [19]), for translation purposes non-circular attribute
grammars usually suffice. Therefore, in this paper we will deal with non-
circular attribute grammars. Semantic evaluation in these grammars can be
meaningfully explained as follows [2]:
- First, find a topological order of the nodes in the dependency graph for

the sentence being processed (since the grammar is non-circular, the

1 Notice that, in order to refer to particular occurrences of a non-terminal symbol in

a rule, it is possible to use subscripts: thus, Exp0 refers to the first occurrence of Exp,
Exp1 to the second occurrence, etc.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 989

dependency graph will be acyclical). In this order, each attribute instance
will precede all the attribute instances depending upon it.

- Then, evaluate the attribute instances according to this order:

 Sent val

 env Exp val where Decs env

 env Exp val + env Opnd val Decs env , Dec env

env Exp val + env Opnd val num lex Dec env var lex = num lex

env Opnd val var lex var lex = num lex

 var lex

Figure 3. Attributed parse tree and dependency graph for the sentence in Figure 2a

However, it is only a conceptual execution model. In practice, semantic
evaluation can be carried out by following different strategies which are only
constrained by dependencies among attributes. Also, a particular evaluation
strategy may not require the explicit construction of a parse tree. In fact, for
remarkable subclasses of attribute grammars (many s-attributed grammars,
which only involve synthesized attributes, and some classes of l-attributed
grammars, in which inherited attributes of symbols only depend on the
inherited attributes of their parents and synthesized attributes of their
preceding siblings), it is possible to yield implementations that evaluate the
attributes on-the-fly during parsing of the input sentence, without requiring the
explicit construction of the syntax tree. Notice the grammar in Figure 1 is not
s-attributed (it is needed to propagate the environment to the expression in
order to evaluate it), nor l-attributed (because declarations are placed after
the expression, and constant values are required to compute the value of
such an expression).

2.2. Translation schemes

Translation schemes constitute another formalism that extends context-free
grammar to allow the specification of syntax-directed processing [2]. For this
purpose:
- Translation schemes adopt explicit visit orders for the nodes of the parse

trees. Although many others are possible, two well-known visit orders are
left-to-right bottom-up and top-down ones. In both of them child nodes
are visited from left-to-right. However, in a bottom-up visit, nodes are
visited in post-order, while in a top-down visit are visited in pre-order. In

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 990

addition, in a bottom-up visit order the visit to each node has only one
significant point, once all its children have been visited. On the other
hand, in a top-down one there are many significant points: (i) when the
node is entered the first time, (ii) after a child has been exited and before
the next one is entered, and (iii) when the node itself is exited.

- Translation schemes also adopt explicit ways of storing computed
semantic information. For this purpose, it can be stored in semantic
attributes, as in the case of attribute grammars, but also by using other
means. For instance, typical execution models for bottom-up translation
schemes use stacks for storing semantic information, while typical
execution models for top-down ones assume implementations based on
mutually recursive subprograms and use subprogram parameters and the
runtime stack as a semantic storage mechanism. In addition, both
bottom-up and top-down translation schemes can use global variables to
facilitate some translation tasks.

- These artifacts conceive of the syntax rules as visit plans. For this
purpose, they introduce a semantic reference mechanism to consult and
update semantic information, as well as interleave chunks of code
(semantic actions) at those points of the rule’s RHS corresponding to
significant visit points. Semantic actions will be executed each time the
corresponding significant visit point is reached during the translation
process. In particular, in bottom-up translators it will be possible to place
a semantic action at the end of each syntax rule, while in top-down ones
it will be possible to place semantic actions in any point of the rules’
RHSs. In consequence, the latter will allow more natural translation
patterns than the former. This is particularly true for the managing of
inherited semantic information.

Although, in principle, translation schemes are independent of parser
generation tools, as they can be conceived of as artifacts for processing
parse trees, they are usually used as input specification formalisms for these
tools. The resulting tree processors are then coupled with the parsing
algorithms, and the explicit construction of the parse trees is definitively
avoided. In particular:
- Bottom-up translation schemes are used as input to shift-reduce, LR

parser generation tools of the YACC type (e.g., YACC, Bison, CUP, …).
The resulting parsers use a stack to attach a semantic value to each
syntax symbol, and they can also use global variables to manage
additional semantic information. These tools constrain underlying
context-free grammars to the LR type (usually, LALR(1) grammars) [2],
although there are tools accepting more general grammars (e.g.,30).

- Top-down translation schemes are used as input to predictive descent
parser generation tools of the JavaCC or ANTLR type. Since these tools

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 991

usually generate recursive descent parsers2, semantic information is
managed as parameters and return values of the subprograms
generated, as well as in global variables, and the explicit construction of
the parse tree is also avoided. These tools usually impose stronger
constraints on the underlying context-free grammars: LL grammars.
Although modern generation tools like ANTLR provide many useful
extensions to basic LL(k) grammars (in particular, it supports the so-
called LL(*) parsing method, which provides unbounded look-ahead
enabled by finite-state predictors [37][38]), they are unable to manage
features like left-recursion. However, as indicated before, they enable
more natural mechanisms for dealing with inherited information.

Figure 4a shows an example of a bottom-up translation scheme. The
language processed is the classical language of binary numbers proposed by
Knuth in [25] to illustrate basic concepts in attribute grammars, and the
processing task is to compute the values of the numbers. As in the other
bottom-up translation schemes in this paper, we do not commit to any
particular generation tool, and we do use a YACC-like notation [2] to refer to
semantic values of symbols in the parse stack. Figure 4b shows a top-down,
predictive-recursive translation scheme for this task. The underlying grammar
is changed to LL(1), and the semantic actions are changed in consequence.
Therefore, it will allow its implementation by using any of the mentioned top-
down parser generation tools. As in the case of bottom-up translation
schemes, we will not commit to particular generators. In addition, we will use

 to annotate input parameters and to annotate output ones.

 (b)

Num ::= Num Bit {$$:= $1*2+$2}

Num ::= Bit {$$:= $1}

Bit ::= 0 {$$:=0}

Bit ::= 1 {$$:=1}

N(v) ::= Num(0,v)
Num(cv,v) ::= Bit(vb) RNum(vb,v)

RNum(cv,v) ::= Bit(vb) RNum(cv*2+vb,v)

RNum(cv,v) ::= {v := cv}

Bit(v) ::= 0 {v := 0}

Bit(v) ::= 1 {v := 1}

(a)

Figure 4. (a) An example of bottom-up translation scheme

3. The Attribute Evaluation Framework

Our coding pattern is largely based on the explicit description of the
attribution structure of each grammar rule. For this purpose, we needed to
develop an attribute evaluation framework, to be used in the semantic actions
of the translation schemes. In this section we describe such a framework. For
this purpose:

2 It is also possible to generate non-recursive, table-driven descent parsers [2], but

the mainstream in top-down parser generators is geared to the recursive model.

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 992

- Subsection 3.1 describes the set of basic attribution operations used in
the translation schemes. These attribution operations make it possible to
describe, for each syntax rule: (i) the dependencies between attribute
occurrences in the symbols of this rule, and (ii) the functions to be used
in order to compute the value of the attributes. They also make it possible
to build semantic contexts for syntax rules (i.e., tables of references to
attributes), to consult and set the value of individual attributes, and to
control garbage collection.

- Subsection 3.2 introduces semantic function managers as the main
extension points of the framework. Semantic function managers are the
components used to execute semantic functions.

- Finally, subsections 3.3 and 3.4 describe two alternative implementations
of the attribution operations, each based on a different evaluation style (a
demand-driven style in subsection 3.3, and a data-driven one in
subsection 3.4). In the demand-driven evaluation style, the values of
attributes are computed in a lazy way, as they are required. On the other
hand, in the data-driven style, values of attributes are computed in an
eager way, as soon as the values of the attributes on which they depend
become available. These implementations can be interchanged in a
transparent way, without further changes in the translation schemes.

3.1. Attribution Operations

Table 1 outlines the repertory of basic attribution operations along with their
intended meanings. As such a description makes apparent, the purpose of
these operations is to provide the developer with the tools necessary to
describe how the attribute dependency graph associated with a sentence can
be built as this sentence is analyzed by the parser. In addition, it also lets the
developer indicate the semantic functions for computing each attribute
instance. It does not necessarily mean the graph must be fully stored in
memory: depending on the actual implementation of the attribution
operations, it will be possible to optimize, to a greater or lesser extent, the
heap footprint, as the following subsections make apparent.

Table 1. Attribution operations

Operation Intended Meaning

mkCtx(n) It creates and initializes a semantic context: the list of attribute instances for a
syntax symbol.

mkDep (a0, a1) It sets a dependency between two attribute instances. Indeed, it declares that the
attribute instance a0 depends on the attribute instance a1.

inst(a,f) It instruments the attribute instance a by establishing f as the semantic function to
be applied during evaluation (f is actually an integer identifier of such a semantic
function)

release(as) It invokes garbage collection on the attribute instance list as.

release(a) It invokes garbage collection on the attribute instance a

set(a,val) It fixes the value of the attribute instance a to val.

val(a) It retrieves the value of the attribute instance a.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 993

3.2. Semantic Function Managers

Before proceeding with the implementation of the attribution operations, it is
convenient to introduce the concept of semantic function manager. In our
approach, given a particular attribute grammar, the semantic function
manager is an auxiliary component that supports the execution of semantic
functions. Therefore, it is the main extension point of the evaluation
framework, since it makes it possible to tailor it to each particular attribute
grammar.

A semantic function manager can be conceived as a procedure that, taking
the semantic function’s identifier and the sequence of attribute instances as
input, returns the result of applying the function to the attribute instances. It is
important to remark that this component must be provided for each particular
attribute grammar. Nevertheless, in our minimalistic conceptualization, we
will assume this manager has the pre-established name exec. The

implementation of this exec procedure will be changed from coding to

coding3.
As an example, Figure 5 depicts the pseudo-code for a semantic function

manager for the grammar in Figure 1. Notice that, for each equation it is
necessary to: (i) substitute attribute references in the equation’s RHS for
values of the semantic function manager’s attribute arguments (e.g.,

Exp1.val + Opnd.val becomes val(ARGS[0])+ val(ARGS[1]),

and (ii) associate a suitable integer number to the underlying semantic
function (e,g., the ADD constant in Figure 4).

 def IDEN=0; def ADD=1; def TONUM=2; def VALOF=3;
def EXTEND=4; def SINGLEENV=5;

procedure exec(FUN,ARGS) {

case FUN of

 IDEN

 return val(ARGS[0]);

 ADD

 return val(ARGS[0])+ val(ARGS[1]);

 TONUM

 return toNum(val(ARGS[0]));

 VALOF

 return valOf(val(ARGS[0]),val(ARGS[1]));

 SINGLEENV

 return {(val(ARGS[0]), toNum(val(ARGS[1]))) }

 EXTEND

 return extendsWith(val(ARGS[0],val(ARGS[1]))

end case

}

 Figure 5. Semantic function manager for the attribute grammar in Figure 1

3 Although it is possible to achieve more elegant solutions by using a programming language with

minimal higher-order support (e.g., a conventional object-oriented language), our conceptualization

is deliberately maintained as simple as possible to preserve the essence of the evaluation

approaches.

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 994

3.3. Demand-Driven Evaluation

According to the demand-driven evaluation style, semantic evaluation starts
once the sentence has been completely parsed (see, for instance [18][29]). At
this point, there is an in-memory representation of the part of the dependency
graph required for performing semantic evaluation. During evaluation, the
values of the attribute instances will be calculated only when they are
required. For the sake of simplicity, we will ignore the detection of potential
circularities in the underlying dependency graphs, although it would not be
difficult to extend the framework to support it.

The first step in setting this implementation is to decide how to represent
semantic attributes. For this purpose, the instances of the semantic attributes
can be conceived as records. Table 2 outlines the fields required together
with their intended purposes. Thus, this representation makes it possible to
build a dependency structure in which:

Table 2. Structure of attribute instances in the demand-driven evaluation framework.

Field Purpose Initial value

value It keeps the value of the instance of the semantic attribute.
available A boolean flag that indicates whether the value is available. false

deps It keeps the links to those attribute instances required to compute the value. The empty
list

semFun It stores the integer code of the semantic function required to compute the
value.

refcount A counter of references to this attribute instance (used to enable garbage
collection).

1

- Each attribute instance points to those attribute instances required to

compute it (in a similar way to the reversed dependency graph used in
[18]).

- In addition, it explicitly stores the identifier of the semantic function to be
used in this computation.
Once this representation is decided, it is possible to proceed with the

coding of the operations themselves. Table 3 outlines it using pseudo-code.
In this pseudo-code, references are intended to work as in Java, although we
do not assume automatic garbage collection (instead, a delete primitive is

explicitly invoked). Indeed, this is why we explicitly include release

attribution operations.
The different operations behave as follows:

- mkCtx collects, in a list, as many fresh attribute instances as needed. This

list actually represents a semantic context for a syntax symbol, since it
gives access to all its semantic attributes.

- mkDep adds the second attribute instance in the deps list of the first one.

- inst stores the semantic function code in the semFun field.

- release, when applied to a list of semantic attribute instances, releases

each instance and de-allocates the list itself.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 995

- On the other hand, when release is applied to an attribute instance, it

decreases its reference count by 1. If this count reaches 0, the instances
on which it depends are released; finally, the original instance itself is de-
allocated.

- set sets the value field and records its availability.

- val recovers the value of an attribute instance as follows: (i) if the value is

available, it returns such a value, (ii) otherwise, it calls the semantic
function manager to compute such a value and sets and returns it.

Table 3. Implementation of the attribution operations to allow a demand-driven
evaluation style

Operation Implementation Operation Implementation

mkCtx(n) as := new list
for i := 1 to n do

 add(as, new attribute)
end for
return as

release(a) a.refcount:= a.refcount-1
if a.refcount = 0 then
 foreach a’ in a.deps do
 release(a’)
 end foreach
 delete a.deps
 delete a

end if

mkDep (a0, a1) add (a0.deps, a1)
a1.refcount := a1.refcount + 1

set(a,val) a.value := val
a.available := true

inst(a,f) a.semFun := f val(a) if a.available then

 set(a,
 exec(a.semFun,a.deps))
 release(a.deps)
end if
return a.value

release(as) foreach a in as do
 release(a)
end foreach
delete as

Thus, the demand-driven evaluation process arises from the interplay of
the val attribution operation and the semantic function manager. Also notice

how explicit garbage collection can be readily interleaved in the
implementation of the attribution operation by appropriately managing the
reference counters and by de-allocating lists and records as soon as they
become unreachable. Although in this evaluation style, most of the
dependency graph remains in memory until parsing is finished, automatic
garbage collection makes it possible to de-allocate useless parts of the graph
when they become unreachable. This can be due to attribute instances that
are not ultimately required in any computation, or to successive evolutions of
the implementation, combining pure attribute grammar features with
implementation-oriented optimizations (e.g., global variables, on-the-fly
evaluation of semantic attributes, …).

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 996

3.4. Data-Driven Evaluation

In the data-driven evaluation style, attribute instances are scheduled to be
evaluated as soon as the values for all the instances on which it depends are
available (see, for instance, [24]). Thus, this method can shorten the duration
of attribute instances. Additionally, it can interleave evaluation with parsing.
These features can be of interest while processing very long sentences, or
sentences made available asynchronously (e.g., on a network communication
channel). However, this method can do useless evaluations on attribute
instances not required to yield the final results.

Table 4 outlines the representation of attribute instances in this case.
Notice that, in addition to the list of instances on which an instance depends,
the reverse relationship needs to be maintained (i.e., each attribute instance
must refer to those instances which depend on it). Indeed, this representation
is similar to that used by networks of observables-observers in the observer
object-oriented pattern [14]4.

Table 4. Structure of attribute instances in the data-driven evaluation framework

Field Purpose Initial
value

value It keeps the value of the instance of the semantic attribute.
available A boolean flag that indicates whether the value is available. false

deps It keeps the links to those attribute instances required to compute the
value.

The empty list

obs It keeps the links to those attribute instances observing it (i.e., which
depend on it to compute their values).

The empty list

required Counter which records the number of attribute instances in deps
whose values have not yet been determined.

0

semFun It stores the integer code of the semantic function required to compute
the value.

instrumented True if semFun was set, false otherwise. false

refcount A counter of references to this attribute instance (used to enable
garbage collection).

1

Table 5 outlines the pseudo-code of the attribution operations whose

implementation differs from those in the demand-driven style. This way, we
only need to redefine mkDep, inst, set and val:

- In addition to updating deps in the first instance, mkDep must test whether

the second instance has already been computed. If it is not available, the
first instance must be added to its obs list, since such an instance depends

on its value, which is not yet available.
- Note inst must take care of whether the value can be computed. Indeed,

if the corresponding attribute instance has all the instances on which it
depends computed, it can thereby be computed. It assumes the

4 As with the demand-driven style, this representation could be simplified by inferring the values of

flags (in this case, available and instrumented) from the other fields. However, we prefer to

explicitly preserve these flags to increase the readability of pseudo-code.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 997

establishment of all the required dependencies before instrumentation,
which is ensured by our coding pattern.

- Set must take care to decrement the required counters in all the

instances depending on the current one. In addition, if a counter reaches 0,
it must force the evaluation of the corresponding instance.

- Finally, val immediately computes the value, unless the instance has not

yet been instrumented.
Notice how, in this case, evaluation can be interleaved with parsing.

Indeed, evaluation is fired when the values of attribute instances are explicitly
set, and also when attributes are instrumented. In consequence, garbage
collection also interplays with parsing, and, therefore, this method can mean
less heap usage. However, this method assumes all the semantic functions
used are strict, in the sense that all their arguments must be evaluated before
they are applied. On the contrary, the demand-driven method described in
the previous subsection also supports non-strict functions, in which the way of
evaluating the arguments can differ from function to function.

Table 5. Implementation of the attribution operations to allow a data-driven
evaluation style (only those implementations differing from Table 3 are presented)

Operation Implementation Operation

mkDep (a0, a1) add (a0.deps, a1)
a1.refcount := a1.refcount + 1

if a1.available then
 add (a1.obs, a0)
 a0.required := a0.required + 1
 a0.refcount := a0.refcount + 1
end if

set(a,val) a.value := val
a.available := true

foreach a’ in a.obs do
 a’.required := a’.required – 1
 if a’.required = 0 then
 val(a’)
 end if
end foreach
release(a.obs)

inst(a,f) a.semFun := f
a.instrumented := true
if a.required = 0 then

 val(a)
end if

val(a) if a.available
 a.instrumented then

 set(a, exec(a.semFun,a.deps))
 a.available := true

 release(a.deps)
end if
return a.value

4. A Coding Pattern for Bottom-up Parser Generation

Tools

In this section we introduce a coding pattern for bottom-up parser generation
tools. In this way:
- In order to keep the translation scheme as independent as possible of

changes in the attribute grammar’s semantic part, we will promote an
intermediary representation of the attribute grammar based on attribution
functions (subsection 4.1). For this purpose, with each rule will be assigned
a function that takes the semantic contexts of the rule’s RHS as arguments
and builds and returns the semantic context for the rule’s LHS. In addition,

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 998

using the basic attribution operations introduced in the previous section,
attribution functions establish dependencies among attributes, associate
semantic functions with attributes as necessary, and control garbage
collection.

- Then, these functions will be used in the actions of the resulting bottom-up
translation scheme (subsection 4.2). More precisely, the semantic action
associated with each rule will invoke the attribution function for this rule
with the suitable set of arguments.

- The analysis of the memory footprint required by the overall method will be
depicted in subsection 4.3 by considering both the demand-driven and the
data-driven evaluation styles.

- Finally, subsection 4.4 briefly illustrates some potential refinements of the
initial implementation. These refinements will be oriented to anticipate the
computation of inherited attributes by using marker non-terminals (i.e., new
non-terminals defined by rules with empty RHS), and to simplify
implementation by means of global variables.

4.1. The attribution functions

The implementation of the attribute grammar using a bottom-up parser
generation tool can be naturally thought of as the bottom-up construction of
the attribute dependency graph for each processed sentence using basic
attribution operations. In this construction, the dependency graph for a
syntactic structure is built by taking the dependency graphs of the
substructures as building components. Thus, the process can be facilitated by
introducing a set of attribution functions, which, for each rule in the grammar,
take cares of this construction. These attribution functions will be used to set
up the semantic actions of the bottom-up translation scheme that feeds the
parser generation tool. Therefore, the set of attribution functions can be
conceived of as the implementation of a sort of abstract version of the
attribute grammar, which subsequently can be attached to a concrete syntax
by using a suitable translation scheme.

Each attribution function takes the semantic contexts of the symbols in the
rule’s RHS as input, and it outputs the semantic context for the LHS non-
terminal using basic attribution operations. In order to do so, it is possible to
apply the following guidelines:
- First at all, we need to create the semantic context for the LHS. This is

done by using an mkCtx operation. We only need to indicate the number

of semantic attributes for the LHS non-terminal.
- Next, we need to describe the dependencies among the attribute

instances. Such dependencies are directly determined by examining the
semantic equations, and they must be stated by using the mkDep

operation.
- Once this has been done, it is necessary to instrument the synthesized

attribute instances in the rule’s LHS, as well as the inherited attribute

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 999

instances of the RHS symbols. Once more, the code is straightforward: an
inst operation for each equation. Notice we need to code the semantic

functions with integer identifiers, which can be interpreted by the semantic
function manager.

- Finally, we need to release the attribute instance lists for the symbols in
the rule’s RHS.
This process can be further facilitated by using a procedure establishing

the corresponding dependencies for each attribute as well as the
instrumentation. This procedure, which will be called eq (since it actually

serves to represent semantic equations), is sketched in Figure 6. Finally,
notice that, although we need to provide an attribution function for each rule
in the grammar, the same function can be shared by several rules. Therefore,
in addition to contributing to more readable translation schemes, attribution
functions also make it possible to reuse common attribution patterns. Indeed,
it is possible to provide attribution functions with additional parameters in
order to increase the reuse degree.

 procedure eq(lhsAtr,rhsAtrs,semFun) {

 foreach rhsAtr in rhsAtrs

 mkDep(lhsAtr,rhsAtr)

 end foreach

 inst(lhsAtr,semFun)

}

 Figure 6. The eq procedure

As an example, Figure 7 depicts the attribution functions for the attribute
grammar in Figure 1. For instance, the addition function codes the

attribution for the rule Exp ::= Exp + Opnd in the grammar of Figure 1 as

follows:
- Since Exp, the rule’s LHS, has two semantic attributes (env and val), we

need to invoke mkCtx with 2 as the number of attributes to be allocated.

- From the first equation, we get Exp1.env depends on Exp0.env. In

addition, the semantic function to be applied is the identity. Therefore, the
equation is coded by eq(Exp1[env], (Exp0[env]),IDEN).

- The other equations are coded in a similar manner. For instance, the
equation Exp0.val = Exp1.val + Opnd.val is coded by

eq(Exp0[val], (Exp1[val],Opnd[val]),ADD). Notice that, for

each equation, it is important to establish the dependencies in the order in
which the attribute references appear in its RHS, and therefore it must be
taken into account in the coding of each equation.

- Finally, we include a release action for each symbol in the rule’s RHS

having semantic attributes.
Concerning the allocation of lexical attribute instances, it must be

performed by the scanner, which will return the corresponding attribute
instance list using a suitable field in the token.

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1000

 def env=0; def val=1; def vs=0; def lex=0;
function init(Exp,Decs) {

 Sent := mkCtx(1)

 eq(Sent[vs], (Exp[val]),IDEN)

 eq(Exp[env],(Decs[env]),IDEN)

 release(Exp)

 release(Decs)

 return Sent

}

function addition(Exp1,Opnd){

 Exp0 := mkCtx(2)

 eq(Exp1[env], (Exp0[env]),IDEN)

 eq(Opnd[env], (Exp0[env]),IDEN)

 eq(Exp0[val],

 (Exp1[val],Opnd[val]),ADD)

 release(Exp1)

 release(Opnd)

 return Exp0

 }

function chain(Child) {

 Parent := mkCtx(2)

 eq(Child[env],(Parent[env]),IDEN)

 eq(Parent[val],(Child[val]),IDEN)

 release(Child)

 return Parent

}

function num(num) {

 Opnd := mkCtx(2)

 eq(Opnd[val], (num[lex]),TONUM)

 release(num)

 return Opnd

 }

function var(var) {

 Opnd := mkCtx(2)

 eq(Opnd[val],

 (var[lex],Opnd[env]),VALOF)

 release(var)

 return Opnd

 }

function mutiEnv(Dec,Decs1) {

 Decs0 = mkCtx(1)

 eq(Decs0[env],

 (Dec[env],Decs1[env]),EXTEND)

 release(Dec)

 release(Decs1)

 return Decs0

}

function singleEnv(Dec) {

 Decs = mkCtx(1)

 eq(Decs[env],(Dec[env]),IDEN)

 release(Dec)

 return Decs

}

function entry(var,num) {

 Dec = mkCtx(1)

 eq(Dec[env],

 (var[lex],num[lex]),SINGLEENV)

 release(var)

 release(num)

 return Dec

}

 Figure 7. Attribution functions for the attribute grammar in Figure 1

4.2. The bottom-up translation scheme

In order to finish the coding, it is necessary to provide a suitable translation
scheme. It can be done in a straightforward way, by using the attribution

function that corresponds to each rule. Indeed, for each syntax rule A ::= in

the grammar, we only need to add a rule A::= {$$:= ($)} to the translation

scheme. Here, is the attribution function for A::= , and $ denotes the list
of RHS semantic contexts. This pattern makes further advantages to using
attribution functions apparent, instead of directly coding the semantic
equations in the rule’s actions (like we did in our previous work [41]): the
concrete syntax can be readily changed without changing the attribution
functions (which, as indicated before, are actually the implementation of an
abstract version of the original attribute grammar).

Figure 8 exemplifies the coding pattern by showing the bottom-up
translation scheme that implements the attribute grammar of Figure 1. Coded
in the input language of a tool like YACC, Bison or CUP, and with a suitable
implementation of the attribution functions and the basic attribution
operations, it can be automatically turned onto a running implementation.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1001

 Sent ::= Exp where Decs {$$:= init($1,$3)}

Exp ::= Exp + Opnd {$$:= addition($1,$3)}

Exp ::= Opnd {$$:= chain($1)}

Opnd ::= num {$$:= num($1) }

Opnd ::= var {$$:= var($1) }

Opnd ::= (Exp) {$$:= chain($2) }

Decs ::= Dec, Decs {$$:= multiEnv($1,$3)}

Decs ::= Dec {$$:= singleEnv($1)}

Dec ::= var = num {$$:= entry($1,$3)}

Figure 8. Bottom-up translation scheme for the attribute grammar in Figure 1

4.3. Analysis of the method

The efficiency of the language processor generated will be manifested in the
memory footprint of the recognition and evaluation process, which will in turn
depend on the evaluation strategy used and on the kind of the initial attribute
grammar:
- If the implementation uses the demand-driven evaluation style, it will incur

in the highest amount of auxiliary memory required by the method. Indeed,
the memory usage will be rather independent of the kind of the grammar,
and proportional to the length of the input sentences. Indeed, the
dependency graph will be almost entirely built before evaluation is
initiated, and the process will be divided into two well differentiated phases:
(i) a first one in which the input sentence is recognized and the
dependency graph is built, and (ii) a second one in which the attribute
values are computed.

- If the implementation uses the data-driven evaluation style, the
performance will be optimal for s-attributed grammars. Indeed, the values
of the attributes will be computed as soon as they are instrumented, and
the amount of additional memory required for semantic evaluation will
remain constant. However, in the presence of inherited information, the
evaluation will be delayed until this information is injected into the process.
The worst case happens when the overall evaluation process depends on
inherited information to be set up in the grammar’s initial symbol. In this
case, most of the dependency graph must be built before initiating
evaluation, and thus the method becomes equivalent to using a demand-
driven strategy.
This analysis does not mean the method does not provide good (even

nearly optimal) solutions for non s-attributed attribute grammars, since
inheritance is not required to be global. For instance, for grammars like that
of the example, the method, in combination with a data-driven evaluation
style, yields not only nearly optimal, but also elegant implementations.

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1002

4.4. Refinements

Once the initial coding is available, the initial implementation can be
systematically refined in an efficient implementation by using well-known
techniques for dealing with inherited information during bottom-up parsing. In
particular:

(b)

(a)
Sent ::= Mo Exp where Decs {$$:= init($1,$2,$4) }

Mo ::= {$$:= mkEnv() }

Exp ::= Exp + Opnd {$$:= addition($1,$3)}

Exp ::= Opnd {$$:= chain($1)}

Opnd ::= num {$$:= num($1) }

Opnd ::= var {$$:= var($1,$0) }

Opnd ::= (M1 Exp) {$$:= chain($3) }

M1 ::= {$$ = $-1}

Decs ::= Dec, Decs {$$:= multiEnv($1,$3)}

Decs ::= Dec {$$:= singleEnv($1)}

Dec ::= var = num {$$:= entry($1,$3)}

…
function mkEnv() {

 return mkCtx(1)

}

...

function init(ExpEnv,Exp,Decs) {

 Sent := mkCtx(1)

 eq(Sent[vs], (Exp[val]),IDEN)

 eq(Exp ExpEnv[env],(Decs[env]),IDEN)

 release(ExpEnv)

 release(Exp)

 release(Decs)

 return Sent

}

...

function addition(Exp1,Opnd){

 Exp0 := mkCtx(2 1)

 eq(Exp1[env], (Exp0[env]),IDEN)

 eq(Opnd[env], (Exp1[env]),IDEN)

 eq(Exp0[val],

 (Exp1[val],Opnd[val]),ADD)

 release(Exp1)

 release(Opnd)

 return Exp0

 }

...

function var(var, Env) {

 Opnd := mkCtx(2 1)

 eq(Opnd[val],

 (var[lex],Opnd Env[env]),VALOF)

 release(var)

 return Opnd

 }

...

Figure 9. (a) Refinement of the translation scheme in Figure 8 by means of marker
non-terminals; (b) modification of some attribution functions and the addition of a
new one (erased code appears in strikethrough light-gray text, and new added coded
appears shaded)

- Use of marker non-terminals (i.e., new non-terminal symbols defined by
empty rules [2]) to mark the beginning of left spines (i.e., chains of
elements generated by left-recursion). These non-terminals can store
inherited attributes to which can be accessed from any point of the left
spines without requiring explicit propagation. Using this technique, it is
possible to deal with many l-attributed grammars with bounded memory
footprint. The technique can be applied to the implementation exemplified
before, yielding the translation scheme of Figure 9a. In this refinement it is
possible to eliminate the inherited environment, since it can be remotely
stored in the marker symbol Mo and referred from the marker symbol M1.

In addition, the marker contexts can be passed on as an additional
argument to the var attribution function. In Figure 9b we show the new

attribution function mkEnv and how the old attribution functions init,

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1003

addition and var must be modified to fit in the new refinement. The

other attribution functions can be modified in an analogous way, and
therefore they will be omitted here.

- Use of global state. In order to integrate this global state in the evaluation
machinery, it is possible to create views of this state as semantic
attributes. The technique can be illustrated with the example discussed
above, since the environment can be completely managed as a global
variable. Thus, all the machinery concerning propagation of environments
can be completely eliminated. Figure 10a shows the resulting translation
scheme. Notice how the environment is managed as a global variable, and
is also exposed as a globally accessible semantic attribute. With the
exception of init (see Figure 10b), the attribution functions coincide with

those used in the refinement sketched in Figure 9

(b)

(a) global env =
global aenv = mkCtx(1)

procedure addEntry(env,Var,Num) {

 env := extendWith({(val(var[lex]),

 toNum(val(Num[lex])))},env)

}

Sent ::= Exp where Decs {set(aenv[env],env); $$:= init($1); release(aenv); }

Exp ::= Exp + Opnd {$$:= addition($1,$3)}

Exp ::= Opnd {$$:= chain($1)}

Opnd ::= num {$$:= num($1) }

Opnd ::= var {$$:= var($1,aenv) }

Opnd ::= (Exp) {$$:= chain($2) }

Decs ::= Dec, Decs {}

Decs ::= Dec {}

Dec ::= var = num {addEntry(env,$1,$3)}

function init(Exp) {

 Sent := mkCtx(1)

 eq(Sent[vs], (Exp[val]),IDEN)

 release(Exp)

 return Sent

}

Figure 10. (a) Use of a global environment to simplify the translation scheme in
Figure 8; (b) the init attribution function in this refinement.

5. A Coding Pattern for Top-Down Parser Generation

Tools

This section describes the coding pattern for top-down parser generation
tools. For this purpose, it follows a similar structure to that of the previous
one:
- Subsection 5.1 describes the structure of attribution functions in this

pattern. In one sense, these attribution functions arose by reversing the
bottom-up ones. Now, each attribution function takes the semantic context

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1004

of the LHS as argument, and it builds and returns the semantic contexts for
each symbol in the RHS. As in the bottom-up cases, they also use the
basic attribution operations to set up all the attribute evaluation machinery.

- Subsection 5.2 describes the general guidelines to code the translation
scheme. As in the bottom-up case, it is carried out by placing attribution
functions at strategic points in the syntax rules.

- Subsection 5.3 describes how to deal with underlying non-LL grammars.
Indeed, bottom-up parser generation tools usually deal with predictive
grammars of the LL-type, in which it is possible to determine which rule to
expand by using a finite amount of input look-ahead. However, some
grammatical features (e.g., left-recursion, common left-factors) destroy this
capability to predict the rule to be applied. Fortunately, many of these
grammars can be systematically transformed to forms suitable for top-
down parsing. These transformations must be accompanied by the
transformation of the semantic part, however. Thus, we researched how to
perform these transformations for the case of our encoding scheme.

- As in the bottom-up case, subsection 5.4 briefly analyzes the method, and
subsection 5.5 describes some subsequent refinements (the most
prominent one deals with the systematic replacement of recursion by
iteration in the resulting translation schemes).

5.1. The attribution functions

Although it is possible to undertake implementation by thinking of the bottom-
up construction of the attribute dependency graph, as in the bottom-up case,
it is possible to obtain more advantages if we think of the top-down
construction of this graph. In particular, it will facilitate the propagation of
inherited information during parsing.

 function addition(Exp0){
 Exp1 := mkCtx(2)

 Opnd := mkCtx(2)

 eq(Exp1[env], (Exp0[env]),IDEN)

 eq(Opnd[env], (Exp0[env]),IDEN)

 eq(Exp0[val],

 (Exp1[val],Opnd[val]),ADD)

 release(Exp0)

 return (Exp1,Opnd)

 }

Figure 11. Top-down geared version of the attribution function addition

To enable the top-down construction of the dependency graph, we need to
reverse the flow of semantic contexts in the attribution functions. Now, these
functions will take the LHS context as input and it will return the RHS
contexts as output. Thus, a typical attribution function begins by creating the
RHSs contexts. Then it establishes the dependencies between attributes and
instruments the attributes as in the bottom-up case. Finally, it releases the
LHS context. Figure 11 exemplifies it by showing the top-down geared

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1005

version of the addition attribution function. The other attribution functions

can be adapted in a similar way, and therefore they will be not detailed here.

5.2. The top-down translation scheme

As in the bottom-up case, the coding of the translation scheme is carried out
in terms of the attribution functions. In addition, due to the inversion of the
flow of semantic contexts in the attribution functions, it is necessary to
connect the terminal contexts created in these functions to the contexts
created by the scanner. This can be done by using the conn procedure

sketched in Figure 12 (the name is an abbreviation for connect).

Figure 12. Procedure for connecting terminal contexts.

Thus, for each syntax rule A::=X0 .. Xn in the grammar, we need to add a

rule A(ctxA)::={(ctx0,…,ctxn):=(ctxA) } I0 … In where: (i) is the rule’s
attribution function, (ii) (ctx0,…,ctxn) collects the RHS contexts (this
assignment is optional; it can be omitted if the attribution function does not
return any context), and (iii) each Ii is Xi(ctxi) if Xi is a non-terminal, Xi(lexctxi)
{conn(ctxi,lexctxi)} if it is a terminal with semantic charge, or Xi if it is a

terminal without semantic charge (a keyword, a punctuation symbol, etc.).
These guidelines are illustrated in Figure 13, which shows the top-down
translation scheme for the grammar in Figure 1.
 Sent(co) ::= {(c1,c2) := init(co)} Exp(c1) where Decs(c2)

Exp(co) ::= {(c1,c2) := addition(co)} Exp(c1) + Opnd(c2)

Exp(co) ::= {c1 := chain(co)} Opnd(c1)

Opnd(co) ::= {c1 := num(co) } num(lc1) {conn(c1,lc1)}

Opnd(co) ::= {c1 := var(co) } var(lc1) {conn(c1,lc1)}

Opnd(co) ::= {c1 := chain(co) } (Exp(c1))

Decs(co) ::= {(c1,c2) := multiEnv(co)} Dec(c1) , Decs(c2)

Decs(co) ::= {c1 := singleEnv(co)} Dec(c1)

Dec(co) ::= {(c1,c2) := entry(co)} var(lc1) {conn(c1,lc1)} = num(lc2) {conn(c2,lc2)}

Figure 13. Top-down translation scheme for the attribute grammar in Figure 1
(warning: this translation scheme is not yet implementable with a top-down parser
generator!)

Unfortunately, since top-down translators usually require LL underlying
context-free grammars, translation schemes obtained according to the stated
guidelines can require further transformation before allowing their
implementation during parsing. In particular, the context-free grammar of the
translation scheme in Figure 1 exhibits left-recursion, which make this coding

procedure conn(termCtx,lexCtx) {

 eq(termCtx[lex],(lexCtx[lex]),IDEN)

 release(termCtx); release(lexCtx)

}

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1006

unsuitable for top-down parser generation. Next subsection deals with this
problem.

5.3. Factoring and immediate left-recursion elimination

In many cases the problematic top-down translation schemes and the
associated attribution functions can be systematically tuned by applying
similar patterns to the well-known factoring and left-recursion elimination
transformations presented in any compiler construction textbook [2]. In
particular:
- Figure 14a sketches a transformation pattern for removing common factors

in a rule-set. Notice this transformation supposes the explicit construction
of the common factor’s semantic context. It will be carried out by a context-

construction function (denoted by mkCtx in Figure 14a). In addition, it is

necessary to keep this context alive, regardless whether it will be released
in the common factor. For this purpose, we need to create another twin

context (cp in Figure 14a), and to connect it to the actual common factor’s
semantic context. This connection is achieved with a context connection

procedure, denoted by conn in Figure 14a. Finally, it will require explicitly

modifying the attribution functions for each rule affected. The modified

attribution functions (denoted by ’i in Figure 14a) do not need to create the
semantic context for the common factor; instead, they will take it as a
parameter.

- Figure 14b shows a transformation pattern for removing immediate left-
recursion. The pattern requires the explicit construction of the context for
the recursive non-terminal, which is achieved by using a context-
construction function (mkCtxA in Figure 14b). As usual, the chain

generated by left-recursion in the original grammar is generated by using
right-recursion in the transformed one. Each stage of this right-recursive
process can be associated with a stage in the bottom-up construction of
the parse tree in the original grammar. Therefore, it is possible to take the
context associated to the root of the already constructed sub-tree as input,
and then to modify the corresponding attribution function to take this as an
additional argument instead of creating it (the modified functions are noted

’i in Figure 14b, and they must take care of releasing the semantic
context once they are not necessary). In addition, it is necessary to provide
a context connection procedure for performing the connection between the
input and the last context created once the right-recursion is finished (it is
denoted by connA in Figure 14b).

Figure 15 illustrates the application of these patterns to the translation
scheme of Figure 13. The grammar of the transformed scheme is LL(1) and,
therefore, suitable for its implementation in any of the top-down parser
generation tools mentioned.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1007

A(clhs) ::= {(c,co) := 0(clhs)}(c)o(co)

A(clhs) ::= {(c,c1) := 1(clhs)} (c)1(c1)
…

A(clhs) ::= {(c,cn) := n(clhs)} (c)n(cn)

A(clhs) ::= {c := mkCtx(); cp := mkCtx();

 conn(cp, c) }(c)RA(clhs,cp)

RA(clhs,c) ::= {co := ’0(clhs,c)} o(co)

RA(clhs,c) ::= {c1 := ’1(clhs,c)} 1(c1)
...

RA(clhs,c) ::= {cn := ’n(clhs,c)} n(cn)

A(clhs) ::= {(cA,co) := 0(clhs)} A(cA)o(co)
…

A(clhs) ::= {(cA,cn) := n(clhs)} A(cA)n(cn)

A(clhs) ::= {co := 0(clhs)}0(co)
…

A(clhs) ::= {cm := m(clhs)} m(cm)

A(iclhs) ::= {clhs := mkCtxA();co := 0(clhs)}0(co)RA(iclhs,clhs)
…

A(iclhs) ::= {clhs := mkCtxA();cm := m(clhs)}m(cm)RA(iclhs,clhs)

RA(iclhs, cA) ::= {clhs := mkCtxA();co := ’0(clhs, cA)}

o(co)RA(iclhs,clhs)
...

RA(iclhs, cA) ::= {clhs := mkCtxA();cn := ’n(clhs, cA)}

n(cn)RA(iclhs,clhs)

RA(iclhs, cA) ::= {connA(iclhs, cA)}

(a) (b)

Figure 14. (a) Factoring pattern; (b) Immediate left-recursion elimination pattern

 function mkCtxExp() {return mkCtx(2)}

function mkCtxDec() {return mkCtx(1)}

procedure connExp(ic,c) {eq(c[env],(ic[env),IDEN); eq(ic[val],(c[val]),IDEN) }

procedure connDecs(cp,c) {eq(cp[env],(c[env),IDEN);}

Sent(co) ::= {(c1,c2) := init(co)} Exp(c1) where Decs(c2)

Exp(ic) ::= {co := mkCtxExp(); c1 := opnd(co)} Opnd(c1) RExp(ic,co)

RExp(ic, c1) ::= {co := mkCtxExp(); c2 := addition(co,c1)} + Opnd(c2) RExp(ic,co)

RExp(ic, co) ::= {connExp(ic,co)}

Opnd(co) ::= {c1 := num(co) } num(lc1) {conn(c1,lc1)}

Opnd(co) ::= {c1 := var(co) } var(lc1) {conn(c1,lc1)}

Opnd(co) ::= {c1 := chain(co) } (Exp(c1))

Decs(co) ::= {c1 := mkCtxDec(); c1p := mkCtxDec(); connDecs(c1p,c1) }
 Dec(c1) RDecs(co,c1p)

RDecs(co, c1) ::= {c2 := multiEnv(co,c1)} , Decs(c2)

RDecs(co, c1) ::= {singleEnv(co,c1)}

Dec(co) ::= {(c1,c2) := entry(co)} var(lc1) {conn(c1,lc1)} = num(lc2) {conn(c2,lc2)}

Figure 15. Result of eliminating common factors and immediate left-recursion in the
top-down translation scheme of Figure 13 (the transformed parts are shadowed) in
order to obtain an artifact implementable with a top-down parser generator.

5.4. Analysis of the method

As in the bottom-up case, the use of a demand-driven evaluation style will
imply explicitly constructing dependency graphs, and therefore the highest
memory overhead. As in bottom-up implementations, it can be alleviated by
using data-driven evaluation. In this case, the method will incur in the lowest
auxiliary evaluation memory overhead for l-attributed grammars. Indeed, for
these grammars, data-driven evaluation will yield a behavior equivalent to a
one-pass, on-the-fly translation process.

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1008

Finally, since the initial coding encourages the explicit coding of the plain,
BNF grammar, the resulting translators will be highly recursive, which should
be taken into account if the final implementation language does not support
tail recursion optimization. Fortunately, as will be indicated in the next
section, by using EBNF notation in the underlying context-free grammars, it
will be possible to easily turn many right-recursions into iteration.

5.5. Refinements

As in the bottom-up case, it is possible to use global state to simplify the
propagation of context. Nevertheless, due to the nature of top-down
translators, this refinement is less critical from a performance perspective.
Concerning the use of marker non-terminals, it is nonsense in this scenario.

However, as indicated in the previous subsection, an interesting
refinement would be to exploit the support of EBNF notation provided by
typical predictive recursive parser generation tools in order to overcome the
potential stack overflow problem associated with the recursive
implementation of genuinely iterative processes5. Indeed, it is equivalent to
performing a tail-recursion optimization process by hand6.

In addition, it is possible to carry out several simplifications oriented to
minimizing the use of temporary variables (e.g., by passing complex
expressions as parameters to non-terminal symbols).

 Sent(co) ::= {(c1,c2) := init(co)} Exp(c1) where Decs(c2)

Exp(ico) ::= {co := mkCtxExp()} Opnd(chain(co)) RExp(ico,co)

RExp(ic, c1) ::= ({co := mkCtxExp()} + Opnd(addition(co,c1)) {c1:=co})*
 {connExp(ic,c1)}

Opnd(co) ::= num(lc1) {conn(num(co),lc1)}

Opnd(co) ::= var(lc1) {conn(var(co),lc1)}

Opnd(co) ::= (Exp(chain(co)))

Decs(co) ::= {c1 := mkCtxDec(); c1p := mkCtxDec(); connDecs(c1p,c1) }
 Dec(c1) RDecs(co,c1p)

RDecs(co, c1) ::= ({co := multiEnv(co,c1)} ,
 {c2 := mkCtxDec(); c1 := mkCtxDec(); connDecs(c1,c2) }

 Dec(c2))* {singleEnv(co,c1)}

Dec(co) ::= {(c1,c2) := entry(co)} var(lc1) {conn(c1,lc1)} = num(lc2) {conn(c2,lc2)}

Figure 16. Refinement of the translation scheme in Figure 15

Figure 16 exemplifies the result of applying these refinements on the
translation scheme of Figure 15. The resulting scheme can be readily
implemented on any typical recursive predictive parser generation tool (e.g.,
JavaCC or ANTLR), or directly by hand in a general-purpose programming
language. As this example makes apparent, after applying this refinement,

5 Notice this problem does not affect bottom-up parsers, provided sequences are

represented by means of left-recursion.
6 Indeed, it could be possible to directly formulate the immediate left-recursion

elimination pattern in iterative terms.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1009

recursion will only be used to express nesting (in the example, it is due to the
use of parenthesis in expressions), which constitutes the most natural use of
this grammar feature.

6. Related Work

As indicated in the introduction, the standard way of implementing an
attribute grammar is to use one of the tools that directly supports the
formalism. Indeed, as [35] makes apparent, since its invention by Knuth at
the end of the sixties of the past century, the computer language community
has proposed many of these tools, starting with classical systems like GAG
[22], FNC-2 [20], ELI [15] or Elegant [7], and ending with recent proposals like
LISA [17][31][33], Silver [51] or JastAdd [29]. These tools take attribute
grammars as input, and generate operative language processors as output. In
addition, they support metalanguages by adding many extensions to the
basic formalism (e.g., modules [21], generics [42], higher-order [48], object
[16] and aspect orientation [39][40], etc.), which facilitate the production and
maintenance of complex specifications.

Attribute grammar-based systems as the abovementioned promote
orchestrating the development entirely in terms of attribute grammars, and, in
particular, in terms of the metalanguages supported. On the contrary, the
goal of our approach is not to provide yet another attribute grammar system,
but to propose systematic ways of integrating attribute grammars in
conventional language implementation processes, by using conventional
parser generation tools. In this way, in our approach attribute grammars are
used at the initial stages of the development process, as a formal
specification tool. In addition, our work promotes an initial design-preserving
coding in a conventional parser generation tool, in the form of a suitable
translation scheme. Beyond this point, the development process proceeds
through several refinements, making use of the parser generation tool
facilities and the tool’s target implementation language.

In consequence, our approach promotes straightforward coding patterns,
which can be applied by hand to get initial codings, and which make it
possible to identify the different pieces of the original attribute grammar in
these codings. On the other hand, the code generated by an attribute
grammar-based tool is usually a highly optimized artifact, usually generated
following a static approach in which evaluation and storage strategies are
determined as the result of a static analysis of the input grammar [1], and
which is not intended to be inspected and modified by humans.

In addition, our approach is oriented to converge with conventional
development processes. Because of it, on one hand we encourage the use of
semantic evaluation methods that can be easily coupled with parsing. This is
not necessarily true for attribute grammar-based tools, many of which
promote final implementations that operate on (concrete or abstract) syntax
trees. Of course the patterns described in this paper could be automated in

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1010

the form of attribute-grammar based tools. Indeed, tools for the processing of
XML based on attribute grammars like those described in [43] are inspired by
these patterns (in particular, these tools use the data-driven evaluation
strategy to make the stream-oriented, asynchronous, processing of very wide
XML documents possible). These tools could be used as a sort of CASE
support during the development process model promoted in this paper, which
in turn could imply the provision of some roundtrip support (see the future
work description in the next section).

The coupling of attribute evaluation and parsing has been extensively
addressed as a way of implementing restricted classes of attribute grammars
(see, for instance, [3] for a tutorial introduction). The works in [2][3] show how
l-attributed grammars with underlying LL grammars can be implemented
during top-down predictive descent parsing. In addition, different classes of
LR-attributed grammars have been identified, which allow semantic
evaluation to be implemented using straightforward extensions of LR parsers
[4]. In the marriage of attribute grammars and logic programming, the class
of logical one-pass logical attribute grammars shows how some kinds of right
dependencies can also be managed during conventional top-down parsing
[34][36]. Contrary to the work presented in this paper, all these approaches
constrain the classes of allowed grammars to strict subclasses of non-circular
attribute grammars. In contrast, our approach is able to deal with arbitrary
non-circular attribute grammars. If the grammars are of certain types (e.g., l-
attributed grammars with an LL(1) underlying context-free grammar), and a
suitable semantic evaluation approach is used (e.g., a data-driven strategy),
our implementations produce artifacts comparable in performance and
memory footprint to those promoted by the abovementioned works. In other
cases, the approach is still able to produce running implementations, which
can adapt the memory footprint to that required for performing semantic
evaluation.

The development of some attribute grammar-based systems has exploited
the marriage between attribute grammars and parser generation tools. A
common strategy is to build a preprocessor by translating an attribute
grammar-based specification language into a running implementation written
in terms of a parser generator. In [23] one of these systems is described,
which takes an attribute grammar-like specification as input, and it turns it
into a YACC implementation. However, since the resulting implementation
evaluates attributes during parsing, the class of supported grammars is
restricted to a subset of the LR-attributed ones. The Ox system [8] follows a
similar approach, but it supports arbitrary non-circular attribute grammars.
For this purpose, the processors generated decouple parsing and semantic
evaluation by using an optimized implementation of the processing models
behind attribute grammars (i.e., to build the parse tree, to arrange attribute
instances in topological order, and then to perform evaluation according to
this order). XLOP [43], a system developed by us to describe XML processing
tasks as attribute grammars, also translates attribute grammar specifications
into inputs to a parser generation tool (in this case, CUP). RIE [44], a system
that supports a very general class of LR-attributed grammars (ECLR-

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1011

attributed grammars [4]) adopts a different implementation approach, by
basing the metagenerator on an explicit modification of the Bison parser
generation tool. Regardless of the implementation strategy followed (in these
examples, based on preprocessors for / extensions to parser generation
tools), they ultimately fall in the category of attribute grammar-based tools.
Therefore, the general considerations made above concerning the
relationships between our approach and attribute grammar – based tools also
applies here.

Concerning parser generators, there is a plethora of systems available that
can be used during the development of a language processor. A basic feature
differentiating them is whether they generate top-down parsers (e.g., the
aforementioned tools JavaCC [26] and ANTLR [38], as well as classic tools
like COCO/R [32]), or bottom-up ones (e.g., the aformentioned YACC
[45],Bison [27] and CUP [5], as well as tools like Tatoo [11], SableCC [13],
Beaver7, Copper [49] or YaJco8). Also, these tools differ in the class of
grammars allowed (e.g., JavaCC supports LL(k) grammars, while ANTLR
supports the aforementioned LL(*) parsing method, able to deal with
unbounded look-ahead; additionally tools like Elkhound [30], SDF [10] or,
under certain settings, Bison, provide support to arbitrary context-free
grammars via the GLR parsing method [46]), by the expressiveness of its
specification language (e.g., ANTLR or Tatoo support very sophisticated
features, like grammar modularization, rule inheritance, etc.), by whether they
include support for lexical specification (e.g., JavaCC, ANTLR) or whether it
must be made by using a separating tool (e.g., CUP), and by many other
features whose detailed analysis is beyond the scope of the present work. As
was indicated, the patterns presented in this paper are applicable to most of
these parser generators (in particular in those tools that support deterministic
grammars; in tools like SDF, whose outcome is parse forests that must be
subsequently disambiguated, the applicability of these patterns vanishes).
Also, it is important to notice that, while many of these parser generation
tools support the concept of semantic attribute, like attribute grammars (e.g.,
this terminology is explicitly included in ANTLR), it does not mean that these
tools give direct support for attribute grammars. Indeed, in addition to
managing semantic attributes, the essential aspect of attribute grammars is
the support for a dependency-driven execution style: semantic evaluation is
not necessarily coupled with parsing, but emerges as a consequence of the
dependencies among attributes. In this way, the patterns introduced in this
work make it possible to incorporate this computation style into specifications
for parser generation tools, and, in consequence, to facilitate the subsequent
refinement into more efficient implementations.

 Finally, as the implementations of our attribution operations make
apparent, we avoid the explicit construction of the parse tree. While this
construction is necessary in order to support more sophisticated evaluation

7 http://beaver.sourceforge.net/
8 http://code.google.com/p/yajco/

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1012

strategies (see, for instance [1]), our simple coding patterns make it
unnecessary, since it is centered directly on the construction of dependency
graph-like structures. A similar technique is followed in [6], an implementation
of circular attribute grammars in Prolog whose semantic equations are

described by using -expressions. The execution model of the resulting

artifact works in two stages: (i) construction of -expressions for the root’s
synthetized attributes, and (ii) interpretation of these expressions according to
a least fixpoint semantics to yield the final values. Thus, the resulting
approach resembles our demand-driven implementation. In [50], Prolog is
also used to implement attribute grammars, and two evaluation strategies are
proposed. The first one supposes building terms representing semantic
expressions for the root’s synthetized attributes, which are subsequently
interpreted with a separate interpreter. The second one promotes the use of
Prolog co-routine facilities to delay evaluation of arguments until they are
instantiated. Thus, the first strategy is analogous to our demand-driven
implementation (nevertheless, our implementation is optimized to avoid
duplicated evaluations; see [47] for a similar implementation in Prolog that
also avoids redundant evaluations). The second one is a Prolog
implementation of a data-driven strategy.

7. Conclusions and future work

This paper has shown how to systematically code arbitrary non-circular
attribute grammars in the input languages of bottom-up, LALR(1) parser
generation tools like YACC, BISON or CUP, as well as top-down, LL parser
generation tools like JavaCC or ANTLR. It is done by using a small set of
attribution operations. These operations, in turn, can be implemented in
different ways in order to enable different semantic evaluation styles. In
particular, this paper has illustrated two alternative implementations: one
supporting a demand-driven style, and another supporting a data-driven one.
The results of this work can be useful to promote a systematic method of
using conventional parser generation tools to yield final implementations.
This method starts with the initial coding of an attribute grammar-based
specification, and then it evolves it in a final implementation by applying
systematic implementation patterns and techniques. Thus, by applying and
documenting systematic refinements, it is possible, on one hand, to yield
efficient implementations and, on the other hand, to track the refinement
chain from these final implementations to the original attribute grammar-
based specifications. Besides, the method facilitates the incremental
introduction of new language features, since they can be described according
to attribute grammar conventions, then readily coded in the implementation,
and finally optimized according to implementation-dependent criteria.
Therefore, the method transports the attribute grammar amenability to doing
modular and extensible specifications incrementally to an implementation
process based on parser generation tools.

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1013

Currently we have successfully tested our method with several small
examples, and we are applying it to the development of a non-trivial
translator for a Pascal-like language. From these experiences, we have
realized how the encoding patterns are simple enough to being applied
without specific tooling support (although, of course, this support could be a
very valuable facility in our methodology). Also, we have gained further
evidence on the feasibility and usefulness of our method with its application
in an introductory compiler construction course during the first period of the
2011-2012 academic year at the Complutense University. Indeed, we
proposed that our students produce initial implementations of language
processors by taking attribute grammar specifications as a guide, and using
the method described in this paper. We observed that they didn’t find it more
difficult to apply than students of previous courses found while hand-coding
conventional recursive descent translators. In addition, the quality of the final
programs was substantially better than in previous years, since the method
encouraged rigorous adherence to the original specification. Thus, we plan to
further apply it as a systematic learning method in future editions of the
course. Also, as future work, we plan to provide the aforementioned tooling
support in order to facilitate the application of the method: automatic
application of the coding patterns to produce the initial translation schemes,
support for some of the transformations and refinements described in this
paper, roundtrip support and support for tracking successive refinements, and
support for profiling and debugging the semantic evaluation processes.

Acknowledgements. Thanks are due to project grants TIN2010-21288-C02-01 and

Santander-UCM GR 42/10, group reference 962022. Also, Daniel Rodriguez-
Cerezo was supported by the Spanish University Teacher Training Program
(EDU/3445/2011).

References

1. Ablas, H. Attribute Evaluation Methods. In Ablas, H., Melichar, B (eds.).:
Attribute Grammars, Applications and Systems, Lecture Notes in Computer
Science Vol. 545, Springer, 48-113. (1991)

2. Aho A.V, Lam M.S, Sethi R, Ullman J.D.: Compilers: principles, techniques and
tools (2

nd
 Edition). Addison-Wesley. (2006)

3. Akker, R., Melichar, B., Tarhio, J. Attribute Evaluation and Parsing. In Ablas, H.,
Melichar, B (eds.).: Attribute Grammars, Applications and Systems, Lecture
Notes in Computer Science 545, Springer, 187-214. (1991)

4. Akker, R., Melichar, B., Tarhio, J.: The Hierarchy of LR-attributed grammars. In
Deransart, P., Jourdan, M (eds.): Attribute Grammars and their Applications –
Proceedings of the International Workshop on Attribute Grammars and their
Applications (WAGA’90), Paris, France, Lecture Notes in Computer Science 461,
Springer, 13-28. (1990)

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1014

5. Appel, A.W. Modern Compiler Implementation in Java. Cambridge University
Press. (2002)

6. Arbab, B. Compiling Circular Attribute Grammars into Prolog. IBM Journal of
Research and Development, Vol. 30, No. 3, 294-309. 1986

7. Augusteijn, L. The Elegant Compiler Generator System. In Deransart, P.,
Jourdan, M (eds.): Attribute Grammars and their Applications – Proceedings of
the International Workshop on Attribute Grammars and their Applications
(WAGA’90), Paris, France, Lecture Notes in Computer Science 461, Springer,
238-254. (1990)

8. Bischoff, K.M. Design, Implementation, Use and Evaluation of Ox: An Attribute-
Grammar Compiling System based on Yacc, Lex and C. TR #92-31, Dp. Of
Computer Science, Iowa State University, (1992)

9. Bochmann, G.V.: Semantic Evaluation from Left to Right. Communications of
the ACM, Vol. 19, No. 2, 55-62. (1976)

10. Brand, M.G.J v.d., Deursen, A, v., Heering, J., Jong, H.A.d., Jonge, M.d.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, JJ., Visser,
E., Visser, J. The Asf +Sdf Meta-environment: A Component-Based Language
Development Environment. In Wilhelm, R (ed.): Compiler Construction -
Proceedings of the 10

th
 International Conference on Compiler Construction

CC’01, Genova, Italy, Lecture Notes in Computer Science, 2027, Springer, 365-
370. (2001)

11. Cervelle, J., Forax, R., Roussel, G. Tatoo: an innovative parser generator. 4
th

International Symposium on Principles and Practice of Programming in Java
PPPJ’06, Mannheim, Germany, ACM, 13-20. (2006)

12. Ekman, T., Hedin, G. The JastAdd system - modular extensible compiler
construction. Science of Computer Programming, Vol. 69, No. 1-3, 14-26. (2007)

13. Gagnon, E.M., Hendren, L.J. SableCC, an Object-Oriented Compiler
Framework. International Conference on Technology of Object-Oriented
Languages TOOLS’98, Sta Barbara, CA, USA, IEEE, 140-154. (1998)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley. (1995)

15. Gray, R.W., Heuring, V.P., Levi, S.P., Sloane, A.M., Waite, W.M.: Eli: A
Complete, Flexible Compiler Construction System. Communications of the ACM,
Vol. 35, 121-131. (1992)

16. Hedin, G. An Object-Oriented Notation for Attribute Grammars. 3
rd

 European
Conference on Object-Oriented Programming, Nottingham, UK, Cambridge
University Press, 329-345. (1989)

17. Henriques, P.R., Varanda-Pereira, M.J., Mernik, M., Lenic, M., Gray, J.G., Wu,
H. Automatic Generation of Language-Based Tools using the LISA System. IEE
Proceedings – Software, Vol. 152, No. 2, 54-69. (2005)

18. Jalili, F.: A general linear-time evaluator for attribute grammars. ACM SIGPLAN
Notices, Vol. 18, No. 9, 35-44. (1983)

19. Jones, L.G.: Efficient Evaluation of Circular Attribute Grammars. ACM
Transactions on Programming Languages and Systems, Vol. 12, No. 3, 429-
462. (1990)

20. Jourdan, M., Parigot, D.: Internals and Externals of the FNC-2 Attribute
Grammar System. In Ablas, H., Melichar, B (eds.).: Attribute Grammars,
Applications and Systems, Lecture Notes in Computer Science 545, Springer,
485-504. (1991)

21. Kastens, U., Waite, W.M.: Modularity and Reusability in Attribute Grammars.
Acta Informatica, Vol. 31, No. 7, 601-627. (1994)

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1015

22. Kastens, U.: GAG: A Practical Compiler Generator. Lecture Notes in Computer
Science 141, Springer. (1982)

23. Katwijk, J.: A preprocessor for YACC or a poor man's approach to parsing
attributed grammar. ACM SIGPLAN Notices, Vol. 18, No. 10, 12-15. (1983)

24. Kennedy, K., Ramanathan, J.: A Deterministic Attribute Grammar Evaluator
Based on Dynamic Sequencing. ACM Transaction of Programming Languages
and Systems, Vol. 1, No. 1, 142-160. (1979)

25. Knuth, D. E.: Semantics of Context-free Languages. Mathematical System
Theory, Vol. 2, No. 2, 127–145. (1968). See also the correction published in
Mathematical System Theory, Vol. 5, No. 1, 95–96.

26. Kodaganallur, V. Incorporating language processing into Java applications: a
JavaCC tutorial. IEEE Software, Vol. 21, No. 4, 70-77. (2004)

27. Levine, J. Flex & Bison: Text Processing Tools. O'Reilly Media. (2009)
28. Lewis, P.M., Rosenkrantz, D.J., Stearns, R.E.: Attributed Translations. Journal of

Computer and System Sciences, Vol. 9, No. 3, 279-307. (1974)
29. Magnusson, E. Hedin, G.: Circular Reference Attributed Grammars—Their

Evaluation and Applications. Science of Computer Programming, Vol. 68, No. 1,
21-37. (2007)

30. McPeak, S., Necula, G.C. Elkhound: A Fast, Practical GLR Parser Generator.
International Conference on Compiler Construction (CC’04), Barcelona, Spain,
Lecture Notes in Computer Science, Vol. 2985, 73-88. (2005)

31. Mernik, M., Lenic, M., Acdicausevic, E., Zumer, V.: LISA: An Interactive
Environment for Programming Language Development. 11

th
 International

Conference on Compiler Construction (CC’02), Grenoble, France, Lecture Notes
in Computer Science, Vol. 2304, Springer, 1-4. (2002)

32. Mössenböck, H. A Generator for Production Quality Compilers. 3rd intl.
workshop on Compiler Compilers (CC'90), Schwerin, Lecture Notes in Computer
Science Vol. 477, 42–55. (1990)

33. Oliveira, N., Varanda-Pereira, M.J., Henriques, P.R., da Cruz, D., Cramer, B.:
VisualLISA: A Visual Environment to Develop Attribute Grammars. Computer
Science and Information Systems Journal, Vol. 7, No. 2, 266-289. (2010)

34. Paakki, J. Prolog in Practical Compiler Writing. Computer Journal, Vol. 34, No.
1, 64-72. (1991)

35. Paakki, J.: Attribute Grammar Paradigms – A High-Level Methodology in
Language Implementation. ACM Computing Surveys, Vol. 27, No. 2, 196-255.
(1995)

36. Paakki, J.: PROFIT: A System Integrating Logic Programming and Attribute
Grammars. 3

rd
 International Symposium on Programming Language

Implementation and Logic Programming (PLILP’91), Passau, Germany, Lecture
Notes in Computer Science Vol. 528, 243-254. (1991)

37. Parr, T., Fisher, K. LL(*): the Foundation of the ANTLR Parser Generator. ACM
SIGPLAN Notices - PLDI '11, Vol. 46, No. 6, 425-436. (2011)

38. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf. (2007)

39. Rebernak, D., Mernik, M., Henriques, P.R., Carneiro, D., Varanda-Pereira, M.J.
Specifying Languages Using Aspect-oriented Approach: AspectLISA. Journal of
Computing and Information Technology, Vol. 4, 343-350. (2006)

40. Rebernak, D., Mernik, M., Henriques, P.R., Varanda-Pereira, M.J.: AspectLISA:
An Aspect-oriented Compiler Construction System Based on Attribute
Grammars. Electronics Notes in Theoretical Computer Science – LDTA’06, Vol.
164, 37-53. (2006)

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, and José-Luis Sierra

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1016

41. Rodriguez-Cerezo, D., Sarasa, A., Sierra, J.L.: Implementing Attribute
Grammars Using Conventional Compiler Construction Tools. 3rd Workshop on
Advances in Programming Languages (WAPL'11), Szczezin, Poland, IEEE, 855-
862. (2011)

42. Saraiva, J., Swiestra, D.: Generic Attribute Grammars. 2
nd

 Workshop on
Attribute Grammars and Their Applications (WAGA’99), Amsterdam, The
Netherlands. (1999)

43. Sarasa, A., Temprado-Battad, B., Sierra, J.L, Fernández-Valmayor, A.: XML
Language-Oriented Processing with XLOP. 5th International Symposium on Web
and Mobile Information Services, Bradford, UK, Proceedings of AINA’09
Workshops, IEEE, 322-327. (2009)

44. Sassa, M., Ishizuka, H., Nakata, I. Rie, a compiler generator based on a one-
pass-type attribute grammar. Software – Practice & Experience, Vol. 25, No. 3,
229-250, (1995)

45. Schreiner, A.T., Friedman, H.G. Introduction to Compiler Construction with Unix.
Prentice-Hall. (1985)

46. Scott, E., Johnstone, A. Right nulled GLR parsers. ACM Transactions on
Programming Languages and Systems, Vol. 28, No. 4, 577-618. (2006)

47. Sierra, J.L., Fernández-Valmayor, A. A Prolog Framework for the Rapid
Prototyping of Language Processors with Attribute Grammars. Electronics Notes
in Theoretical Computer Science – LDTA’06, Vol. 164, 19-36. (2006)

48. Vogt, H.H., Swierstra, S.D., Kuiper, M.F.: Higher-Order Attribute Grammars.
ACM SIGPLAN Notices Vol. 24, No. 7. (1989)

49. Vyk, E.R.v., Schwerdfeger, A.C. Context-aware scanning for Parsing Extensible
Languages. 6th International Conference on Generative Programming and
Component Engineering GPCE’06, Portland, Oregon, USA, ACM, 63-72. (2006)

50. Walsteijn, M.J., Kuiper, M.F.: Attribute Grammars in Prolog. Technical Report,
RU-CS-86-14, Utrecht University. (1986)

51. Wyk, E.V., Bodin, D., Gao, J., Krishnan, L.: Silver: An Extensible Attribute
Grammar System. Science of Computer Programming, Vol. 75, No. 1-2, 39-54.
(2010)

Daniel Rodríguez-Cerezo is a PhD student in the Computer Science School
at UCM, and a member of the research group ILSA (Implementation of
Language-Driven Software and Applications: http://ilsa.fdi.ucm.es). His
research is focused on the use of several e-Learning techniques (simulations,
interactive prototyping tools, recommendation systems for learning object
repositories, etc.) to improve teaching and learning of the Software Language
Engineering discipline. Besides, he is interested in the development and
improvement of software language engineering techniques.

Antonio Sarasa-Cabezuelo is a full-time Lecturer in the Computer Science
School at Complutense University of Madrid, Spain (UCM). His research is
focused on the language-oriented development of XML-processing
applications, and on the development of applications in the fields of digital
humanities and e-Learning. He was one of the developers of the Agrega
project on digital repositories (a pioneer project in this field in Spain). He is a
member of ILSA. He has participated in several research projects in the fields

A Systematic Approach to the Implementation of Attribute Grammars with
Conventional Compiler Construction Tools

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1017

of software language engineering, digital humanities and e-learning, and he
has published over 50 research papers in national and international
conferences.

José-Luis Sierra is an Associate Professor at the UCM's Computer Science
School, where he leads the ILSA Research Group. His research is focused on
the development and practical uses of computer language description tools
and on the language-oriented development of interactive and web
applications in the fields of digital humanities and e-Learning. Prof. Sierra has
leaded and participated in several research projects in the fields of digital
humanities, e-learning and software language engineering, the results of
which have been published in over 100 research papers in international
journals, conferences and book chapters. He serves regularly as reviewer /
PC Member for several international reputed journals and conferences.

Received: December 23, 2011 Accepted: June 1, 2012.

