
Computer Science and Information Systems 11(3):1055–1069 DOI: 10.2298/CSIS130918064H

A New Detection Scheme of Software Copyright

Infringement using Software Birthmark on Windows

Systems

Yongman Han
1
, Jongcheon Choi

1
, Seong-je Cho

1
, Haeyoung Yoo

2
,

Jinwoon Woo
2
, Yunmook Nah

3
, and Minkyu Park

4

1 Dept. of Computer Science, Dankook University

Yongin, Korea, 448-701

{grid_ym, godofslp, sjcho}@dankook.ac.kr

2 Dept. of Software Science, Dankook University

Yongin, Korea, 448-701

{yoohy, jwwoo}@dankook.ac.kr

3 Dept. of Applied Computer Engineering, Dankook University

Yongin, Korea, 448-701

ymnah@dankook.ac.kr

4 Dept. of Computer Engineering, Konkuk University

Chungju, Korea, 380-701

minkyup@kku.ac.kr

Abstract. As software is getting more valuable, unauthorized users or malicious

programmers illegally copies and distributes copyrighted software over online

service provider (OSP) and P2P networks. To detect, block, and remove pirated

software (illegal programs) on OSP and P2P networks, this paper proposes a new

filtering approach using software birthmark, which is unique characteristics of

program and can be used to identify each program. Software birthmark typically

includes constant values, library information, sequence of function calls, and call

graphs, etc. We target Microsoft Windows applications and utilize the numbers

and names of DLLs and APIs stored in a Windows executable file. Using that

information and each cryptographic hash value of the API sequence of programs,

we construct software birthmark database. Whenever a program is uploaded or

downloaded on OSP and P2P networks, we can identify the program by

comparing software birthmark of the program with birthmarks in the database. It

is possible to grasp to some extent whether software is an illegally copied one.

The experiments show that the proposed software birthmark can effectively

identify Windows applications. That is, our proposed technique can be employed

to efficiently detect and block pirated programs on OSP and P2P networks.

Keywords: Software birthmark, Import Address Table (IAT), Software piracy,

Software identification, Dynamic-Link Library (DLL), Application Programming

Interface (API), Windows PE

1056 Yongman Han et al.

1. Introduction

Though recent anti-piracy measures monitor Internet for detecting illegal upload or

download of music and movies, copyrighted software has been still illegally distributed

over Online Service Provider (OSP) and P2P networks. Software piracy is a growing

concern in today's competitive world of software. Indeed, many incidents have been

reported, and many software developers and copyright holders have been victimized by

software theft. The Business Software Alliance (BSA) publishes the yearly study about

copyright infringement of software. The Ninth Annual BSA 2011 Piracy Study reported

that 57 percent of the world's personal computer users admit to pirating software [2].

The commercial value of all these pirated software rose from $58.8 billion in 2010 to

$63.4 billion in 2011. Undoubtedly, software piracy causes severe damages to software

industries, stifling not only IT innovation but also job creation across all sectors of the

economy. In addition, a recent report of the BSA, "Competitive Advantage: The

Economic Impact of Properly Licensed Software", reported that if you use genuine

software globally 1% more, there are economic benefits of about $ 73 billion, whereas if

you use infringe copyright 1% more, there are economic benefits of about $ 20 billion

[3].

To protect the intellectual property for software developers [7], many software

protection techniques have been proposed. Among them, software birthmark is a

prominent technique. A software birthmark is a unique characteristic, or set of

characteristics, that a program inherently has and can be used to identify that program.

Existing birthmark schemes have some limitations, though. For example, a static source

code-based birthmark [17] requires source code, and is not applicable to binary

executable programs. This source code-based birthmark and other birthmarks, such as

static executable code-based birthmark [13], dynamic whole program path (WPP)-based

birthmark [12], and dynamic API-based birthmark [18], are not resilient to semantics-

preserving obfuscation attacks, such as outlining and ordering transformation [8]. Also

none of the existing static birthmarks has been evaluated on large-scale programs.

We propose a new software birthmark based on the number and names of Dynamic

Link Libraries (DLLs) and Application Programming Interfaces (APIs) used in

Windows applications.

This birthmark can be used to detect the obfuscated Microsoft Windows applications,

including large-scale programs, and consequently to detect illegal distribution of

copyrighted software over OSP and P2P networks. Windows executable programs have

Portable Executable (PE) format, and their DLL and API information is stored in a

section of PE, Import Address Table (IAT). For each application program, the number

and names of DLLs and APIs, API call sequence, and a hash value for API call

sequence can be inherent to each program and can be used as a unique birthmark.

According to the characteristics of the number and names of DLLs and APIs,

application programs can be grouped into several categories: Ftp client, Text editor,

Media player, Image viewer, Compression tool, Messenger, Cd tool, p2p, etc. A

categorization system speeds up search or identification process.

In this paper, we have first construct a birthmark database (DB) which contains the

number and names of DLLs and APIs, category information, each hash value of API

sequence of a program, and the information indicating that a corresponding program is

commercial software or not. Whenever a program, pi is uploaded or downloaded on

A New Detection Scheme of Software Copyright Infringement 1057

OSP or P2P networks, the identification process of the program consists of four steps:

(1) Classifying the pi into a category, (2) Inspecting the names of DLLs and number of

APIs of the pi targeting only programs classified in the same category, (3) Computing a

hash value using the sequence of API calls of the pi and comparing it with hash values of

programs within the identified category, and (4) In case that the categorization in step

(1) is failed and then the identification in step (3) is failed too, comparing the hash value

of the pi with the hash values of all programs in the entire DB. If the identified program

is commercial, upload or download is not permitted.

The rest of the paper is organized as follows. Section 2 outlines the background and

related work. Section 3 describes the proposed software birthmark. In Section 4, we

present typical scenario and detailed steps for identifying and filtering copyright

infringement software. Section 5 presents the experiment results, and finally we

summarize our conclusions and describe future work.

2. Background and Related Work

In this section, we give an overview on Import Address Table (IAT) of the Portable

Executable (PE) on Microsoft Windows. The PE is the format of an executable binary

on Windows OS. We also explain MD5 hash algorithm and various software birthmark

schemes.

2.1. Import Address Table

Microsoft Windows operating systems use the PE format for executable files, object

code, and DLLs [11]. The PE format contains dynamic library references for linking,

API export and import tables, resource management data and thread-local storage (TLS)

data. A PE file consists of a few headers and sections that tell the dynamic linker how to

map the file into memory.

When a program is loaded, the Windows loader loads all the DLLs the application

uses and maps them into the process address space. A DLL is simply a file that contains

one or more pre-compiled functions. That is, each DLL contains pre-compiled

implementation code for API functions. The executable file lists all the functions it

requires from each DLL. This loading and joining is accomplished by using the IAT.

The IAT is a table of function pointers filled in by the Windows loader as the DLLs are

loaded.

The IAT is a lookup table when the application is calling a function from a different

module. It can be in the form of both import by ordinal and import by name [11]. The

IAT of a PE file is used to store virtual addresses of functions that are imported from

external PE files. From the IAT, we can obtain the feature information of the program,

such as the number of DLLs, the names of DLLs, and the names of API functions in

each DLL.

1058 Yongman Han et al.

2.2. MD5 (Message-Digest algorithm5) Hash Function

MD5 hash function receives a message of arbitrary length as input and output a 128 bit

value. This function is widely used to check the integrity of an original executable file. It

also can be used to identify specific software. However, a hashing function generates a

completely different value from one bit change (Fig. 1).

Fig. 1. A one bit change can generate an entirely different hash value

2.3. Related Work

A source code-based birthmark uses names of variables and functions [4]. This

birthmark, however, no longer exists after compilation without special handling. Given

only an executable file, we cannot use this birthmark for its original purpose.

Because of this limitation, many researchers are studying on API-based or system

call-based birthmarks. These birthmarks are intact through compilation and can be used

for detecting software theft and computer forensics.

Existing birthmarks can be classified into two categories. Static birthmarks extract

statically available information in the program source code or executable files

[4,9,13,17,20], for example, the types or initial values of the fields. Dynamic birthmarks,

in contrast, rely on information gathered from the execution of a program [1,10,12,18].

Tamada et al. [17] proposed four types of static birthmark: constant values in field

variables, sequence of method calls, inheritance structure, and used classes. All the four

types are vulnerable to obfuscation techniques, such as code removal or splitting of

variables [12]. In addition, their technique needs to access the source code and only

works for an object-oriented programming language, such as Java.

Myles and Collberg proposed K-Gram-based birthmark, a static technique, which

uniquely identifies a program through instruction sequences [13]. Instruction (opcode)

sequences of length k are extracted from a program, and k-gram techniques, which were

used to detect the similarity of documents [15], are used for the opcode sequence. The k-

gram static birthmark is still fragile to some obfuscation methods, such as statement

reordering, invalid instruction insertion, and compiler optimization.

A New Detection Scheme of Software Copyright Infringement 1059

Myles and Collberg presented another dynamic birthmark called a whole program

path (WPP) and evaluated its performance on a Java program [12,14]. WPP is originally

used to represent the dynamic control flow graphs (DCFGs) of a program. It collects all

the compact DCFGs and regards them as a program’s birthmarks. However, a WPP may

not work for large-scale programs because of the overwhelming volume of WPP traces.

Also, it is vulnerable to program optimization, such as loop transformations and inline

functions.

Tamada et al. [18] introduced two types of dynamic birthmark for Windows

applications: sequence of API function calls and frequency of API function calls. The

sequence and frequency of Windows API calls are recorded during the execution of a

program. Shuler and Dallmeier [16] presented a dynamic birthmark based on the

extraction of API call sequence sets during program execution. API birthmarks are more

robust to obfuscation than WPP birthmarks [19]. However, dynamic birthmarks need

program executions which are dependent on user interactions, inputs, and environments.

Wang et al. [19] proposed two types of system call birthmark: system call short

sequence birthmark and input-dependent system call subsequence birthmark. System

call-based birthmarks can be platform-independent and are more robust to counter-

attacks than API-based ones. They also need a program execution. Moreover, there are

no easy ways to record system call traces of each application during program execution

on Microsoft Windows systems.

Choi et al. [6] suggested a static API birthmark for Windows. Their birthmark is a set

of possible API calls which are statically extracted by analyzing disassembled code.

They did not use DLL information, which can be easily obtained from the IAT.

In our previous work [5], we have proposed the similar software birthmark to one

proposed in this paper in order to identify each program. However, the previous

software birthmark did not consider the sequence of API calls and its hash value, thus

had some limitation to efficiently identify some programs of different versions. In

addition, our previous work did not use software classification, and then had to compare

the birthmark of a given program with all birthmarks in a birthmark database through the

four steps. In this paper, we introduce (1) classification scheme to group some similar

programs into a same category, and (2) API call sequence of a program and its hash

value.

Current birthmarks are limited in their capabilities: some solutions are not strong

enough to adequately prevent software theft, some cause significant performance

degradation for large-scale programs, and some need program execution or work only

for Java programs.

3. The Proposed Software Birthmark

The proposed software birthmark includes the following features (Fig. 2):

 number of DLLs and their names

 number of APIs and their names

 sequence of API calls

1060 Yongman Han et al.

We extract the first two pieces of information from the IAT of the executable file.

Fig. 2. The proposed software birthmark of Windows PE format file

Sequence of API calls can be obtained from the code segment of the executable file.

The executable file is disassembled and sequence is extracted from it. We, then,

calculate MD5 hash value on it (Fig. 3).

Fig. 3. How to caculate MD5 hash value from sequence of API calls

We store all this information to birthmark DB. The Schema of Feature Database is

shown in Fig. 4. This database is a relational database and has several tables for DLL

names, API names, and hash values. These tables are File information table, DLL

information table, and API information table. The tables can be accessed using a file

name and a DLL name.

A New Detection Scheme of Software Copyright Infringement 1061

Fig. 4. The schema of the birthmark DB

You can see more details about this approach in our preliminary version of this paper

[5].

4. Software Filtering using the Software Birthmark

4.1. Identifying and Filtering Overview

When a user tried to upload an application to an OSP, the OSP stores it at the temporary

folder and asks the checking module that implements our proposed detection scheme

whether it is commercial software distributed illegally. The checking module first

extracts the software birthmark from the executable files of the application. The module,

then, compares DLL and API information of the birthmark with category information in

the birthmark DB to categorize it. After categorization, the module compare with all

applications in the identified category using number of DLLs, their names, number of

APIs and their names. If the module cannot identify the application, the module

compares the hash value with the hash values of all applications in the same category. If

the applications are not identified, the module compares the hash value with all hash

values in the birthmark DB.

1062 Yongman Han et al.

Fig. 5. The software identification and filtering process

If the application is illegally distributed commercial one, then the OSP stops the

uploading procedure and delete the application. If the module cannot identify the

application, the OSP inserts its software birthmark into the birthmark DB.

4.2. Detailed Steps

We describe the detailed identifying procedure. We denote the application being

uploaded as pi.

Step 1: Classifying the pi into a category. Using extracted software birthmark, we tries

to identify a general kind of application. For example, if an application has software

birthmark that appears in text editor, we can conclude the application may be some kind

of text editor. We select 8 categories to identify, such as FTP client, Media player,

Image viewer, etc. We think those categories include most representative application

distributed via the Internet. This categorization helps to reduce the number of

applications in the birthmark DB to compare. Software categorization, thus, can

decrease comparison time when the size of the database is very large. If software cannot

be identified, go to Step 3.

Step 2: Inspecting the names of DLLs and number of APIs of the pi targeting only

programs classified in the same category. After the previous categorization, we compare

names of DLL and the number of API functions used in the whole executable to the

application in the same category, respectively. If the programs are not identified, go to

Step 3.

A New Detection Scheme of Software Copyright Infringement 1063

Step 3: Computing a hash value using the sequence of API calls of the pi and comparing

it with hash values of programs within the identified category. We extract the sequence

of API calls from the code segment of the executable and input to the MD5 hash

function. MD5 generate the 128 bit hash value. This hash value is compared to the hash

values of the application belonging to the previously identified software category. We

think this sequence may not change even against semantic preserving transformation

attack. If the programs are not identified, then go to Step 4.

Step 4: comparing the hash value of the pi with the hash values of all programs in the

entire DB. If an application is not identified yet, there may be some problems with

categorization in Step 1. Therefore, we compare the hash value to the hash values stored

in entire birthmark DB.

5. Experiments and Evaluation

5.1. Target Applications

To evaluate the effectiveness of our birthmark, we conduct an experiment using

sample programs listed in Table 1. Sample programs are chosen in various categories

like FTP clients, text editors, media players, etc.

Table 1. Sample applications

Group No. Program Version Size (Kb)

FTP Client

(1) Alftp 5.3.2 4,109

(2) Ncftp 3.2.5 300

(3)-a

Filezilla

3.5.3 7,994

(3)-b 3.5.2 7,993

(3)-c 3.4.0 7,463

(4)-a

WinSCP

4.3.9 6,329

(4)-b 4.3.8 6,325

(4)-c 4.0.4 4,878

Text

Editor

(5) Editplus 3.20 1,787

(6) Eclipse 1.4.9 52

(7) EXPAD 0.4 845

(8)-a

AkelPad

4.7.7 357

(8)-b 4.7.6 357

(8)-c 4.5.6 321

(9)-a

Notepad++

6.1.5 1,584

(9)-b 6.1.4 1,584

(9)-c 5.8.0 1,308

Media

Player

(10) Alshow 2.02 117

(11) Coolplayer 2.19 3,817

1064 Yongman Han et al.

(12) GOM Player 2.1.43 3,948

(13) KMPlayer 3.3.0 7,521

(14) Loongplayer 1.01 920

(15) Mplayerc 6.4.9.1 4,308

(16) Potplayer 1.51 180

(17) Winamp 5.6.3 2,156

(18)-a

Mixxx

1.10.1 3,058

(18)-b 1.10.0 3,028

(18)-c 1.07.2 2,132

Image

viewer

(19) Alsee 6.8 6,960

(20) Imagine 1.0.8 17

(21) Xnview 1.99 4,624

Compress

Tools

(22) Alzip 8.53 2,855

(23) Backzip 5.03 1,920

(24) Peazip 4.6.1 4,023

(25) TUGZip 3.5 3,361

(26)-a

7zFM

9.22 411

(26)-b 9.20 412

(26)-c 9.04 383

messenger

(27) Pidgin 2.10.6 49

(28) Psi 0.15 6,869

(29) RetroShare 0.54 14,340

Cd tool
(30) CDspace7 lite 1.02 2,191

(31) Dtlite 4.41 4,796

p2p
(32) Emul 5.0 5,624

(33) Youdonkey 2.35 240

5.2. Identifying the Target Applications

The overall comparison and identification results are shown in Table 2.

Table 2. Application identification results

Group No. Step 1 Step 2 Step 3 Step 4

FTP

Client

(1) FTP/Media Identified

(2) FTP Identified

(3)-a FTP/Text 3/17 Identified

(3)-b FTP/Text 3/17 Identified

(3)-c FTP/Text 3/17 Identified

(4)-a FTP/Media 3/19 Identified

(4)-b FTP/Media 3/19 Identified

(4)-c FTP/Media 3/19 Identified

Text

Editor

(5) Text/Media Identified

(6) Text/Zip/p2p Identified

(7) Text/Zip/Msg Identified

(8)-a Text 2/9 Identified

A New Detection Scheme of Software Copyright Infringement 1065

(8)-b Text 2/9 Identified

(8)-c Text Identified

(9)-a Text 3/9 Identified

(9)-b Text 3/9 Identified

(9)-c Text 3/9 Identified

Media

Player

(10) Media Identified

(11) Media Identified

(12) Text/Media Identified

(13) Media Identified

(14) Media/Zip/Msg Identified

(15) Media Identified

(16) Media Identified

(17) Media/Zip Identified

(18)-a Media/Zip 2/11 Identified

(18)-b Media/Zip 2/11 Identified

(18)-c Media/Zip Identified

Image

viewer

(19)
Text/Media/

Image
Identified

(20) Media/Image Identified

(21) Image Identified

Compress

Tools

(zip)

(22) Text/Media/Zip Identified

(23) Zip Identified

(24)
Text/Media/

Image
0/23 0/23 Identified

(25) FTP/Text 0/17 0/17 Identified

(26)-a Zip 2/2 Identified

(26)-b Zip 2/2 Identified

(26)-c Zip Identified

messenger

(27) Msg Identified

(28) Msg Identified

(29) Zip/Msg Identified

Cd tool
(30) Cd tool Identified

(31) Cd tool Identified

p2p
(32) p2p Identified

(33) p2p Identified

The Step 1 column of Table 1 represents the identified category after step 1

completes. Categorization is based on the assumption that programs in the same

category use common DLLs and APIs. If an application is not clearly determined and

seems to belong to two or more categories simultaneously, we compare it to all

applications in both categories.

In Step 2, we try to identify only one application and uses DLL names and the

number of APIs used. In Step 3, we extract the sequence of API calls from the

disassembled code and generate MD5 hash value on it (Fig. 5). This hash value is

compared to hash values of applications in the same category identified in Step 1.

If an application is not identified after Setp3, there are two cases we can think of.

1066 Yongman Han et al.

Case 1: A new application. In this case, there is no information of the application

considered in birthmark DB.

Case 2: Categorization failure. Step 1 fails to categorize an application. In our

experiment, Peazip and Tugzip are such a case. In this case we compare the hash value

of an application to all hash values of applications in birthmark DB.

After Step 2, we can identify most applications, but cannot identify applications with

small difference. After Step 3, those applications can be identified and so MD5 hash

function is effective for applications with small difference.

5.3. Measuring the Time to Identify an Application

We experimented with applications described in section 5.2 and obtained a detection

accuracy of 95.56%. Since the difference between measured times was about 50ms, we

repeated 3 times for one program and calculated the average time for each program. We

calculate the average time for all programs by summing up all the average times

calculated above and dividing the sum by the number of all programs. Fig.6 shows

minimum, average, and maximum detection time. The minimum and maximum time

equals to the smallest and largest average time, respectively. Longplayer is identified in

the shortest time, 1981ms, because the number of API functions and DLL files used was

small. The Peazip, on the other hand, was detected after the longest time has passed,

3345ms. In the case of Peazip, we need to complete step4 to identify. The average time

is 2545ms, and most programs were discernible after Step 2.

Fig. 6. The time required for identifying an application

A New Detection Scheme of Software Copyright Infringement 1067

6. Conclusion and Future Work

To detect software theft or piracy, a birthmark relies on the inherent characteristics of an

application, which can be used show that one program is a copy of another. In this

paper, we have proposed a new static birthmark scheme using the notion of Import

Address Table, which can be used to identify Windows executable files, and MD5 hash

values from sequence of API calls. Our birthmark is obtained by analyzing a Windows

PE executable file and disassembling the PE file. We store this birthmark into a

birthmark database and use it to compare the features of programs in concern.

We also use MD5 hash function on a sequence of API calls of an application. The

sequence is extracted from the disassembled code of the application. This sequence is

strong against the semantic preserving transformation attack.

We are working on ways to improve the efficiency of detecting illegal software and to

elaborate comparisons with frequently used DLLs.

Acknowledgements. This research project was supported by Ministry of Culture, Sports and

Tourism (MCST) and from Korea Copyright Commission in 2013, and by the MSIP(Ministry of

Science, ICT and Future Planning), Korea, under the ITRC (Information Technology Research

Center) support program (NIPA-2014-H0301-14-1023) supervised by the NIPA (National IT

Industry Promotion Agency).

References

1. Bai, Y., Sun, X., Sun, G., Deng, X., Zhou, X.: Dynamic K-gram based Software Birthmark.

In Proceedings of 19th Australian Conference on Software Engineering. IEEE Computer

Society, 644-649. (2008)

2. BSA: Shadow Market: 2011 BSA Global Software Piracy Study. Business Software

Alliance, (2012)

3. BSA: Competitive Advantage: The Economic Impact of Properly Licensed Software.

Business Software Alliance, (2013)

4. Burrows, S., Tahaghoghi, S., Zobel, J.: Efficient plagiarism detection for large code

repositories. Software-Practice and Experience, Vol. 37, No. 2, 151-175. (2007)

5. Choi, J., Han, Y., Cho, S., Yoo, H., Woo, J., Park, M.: A Static Birthmark for MS Windows

Applications Using Import Address Table. In Proceedings of the 7th International

Conference on Innovative Mobile and Internet Services in Ubiquitous Computing 2013.

IEEE, 129-134. (2013)

6. Choi, S., Park, H., Lim, H., Han, T.: A Static Birthmark of Binary Executables Based on API

Call Structure. In Proceedings of 12th Asian Computing Science Conference. Springer, 2-16.

(2007)

7. Collberg, C., Thomborson, C.: Software Watermarking: Models and Dynamic Embeddings.

In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of

Programming Languages. ACM, 311-324. (1999)

8. Kim, H., Khoo, W. M., Lio, P.: Polymorphic Attacks against Sequence-based Software

Birthmarks. In Proceedings of 2nd Software Security and Protection Workshop. ACM.

(2012)

9. Lim, H., Park, H., Choi, S., Han, T.: A Static Java Birthmark Based on Control Flow Edges.

In Proceedings of the 33rd Annual IEEE International Computer Software and Applications

Conference. IEEE Computer Society, 413-420. (2009)

1068 Yongman Han et al.

10. Lu, B., Liu, F., Ge, X., Liu, B., Luo, X.: A Software Birthmark Based on Dynamic Opcode

n-gram. In Proceedings of the First IEEE International Conference on Semantic Computing.

IEEE Computer Society, 37-44. (2007)

11. Microsoft.: Microsoft Portable Executable and Common Object File Format Specification.

Revision 8.2. (2010)

12. Myles, G., Collberg, C.: Detecting Software Theft via Whole Program Path Birthmarks. In

Proceedings of 7th International Information Security Conference. Springer, 404-415. (2004)

13. Myles, G., Collberg, C.: K-gram based software birthmarks. in Proceedings of the 2005

ACM Symposium on Applied Computing. ACM, 314-318. (2005)

14. Myles, G.: Software Theft Detection Through Program Identification. PhD thesis.

Department of Computer Science. The University of Arizona. (2006)

15. Schleimer, S., Wilkerson, D., Aiken, A.: Winnowing: Local Algorithms for Document

Fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference on

Management of data. ACM, 76-85. (2003)

16. Schuler, D., Dallmeier, V.: Detecting Software Theft with API Call Sequence Sets. In

Proceedings of the 8th Workshop on Software Reengineering. ACM German Chapter, 56-57.

(2006)

17. Tamada, H., Nakamura, M., Monden, A., Matsumoto, K.: Design and Evaluation of

Birthmarks for Detecting Theft of Java Programs. In Proceedings of IASTED International

Conference on Software Engineering. ACTA Press, 569-575. (2004)

18. Tamada, H., Okamoto, K., Nakamura, M., Monden, A., Matsumoto. K.: Dynamic Software

Birthmarks to Detect the Theft of Windows Applications. In Proceedings of International

Symposium on Future Software Technology. Software Engineers Association, 280-285.

(2004)

19. Wang, X., Jhi, Y., Zhu, S., Liu, P.: Detecting Software Theft via System Call Based

Birthmarks. In Proceedings of 25th Annual Computer Security Applications Conference.

IEEE Computer Society, 149-158. (2009)

20. Xie, X., Liu, F., Lu, B., Chen, L.: A Software Birthmark Based on Weighted K-gram. In

Proceedings of IEEE International Conference on Intelligent Computing and Intelligent

Systems. IEEE, 400-405. (2010)

Yongman Han is doing a Ph.D. in Computer Science from University of Dankook,

Korea in 2012. He has a master's degree from Dankook University. His research

interests include software similarity, software theft, software engineering, software

quality. He has authored and co-authored several journals and conference papers.

Jongcheon Choi is doing a Ph.D. in Computer Science from University of Dankook,

Korea in 2005. He has a master's degree from Dankook University. His research

interests include computer security, software theft, system software, software Protection.

He has authored and co-authored several journals and conference papers.

Seong-je Cho received the B.E., the M.E. and the Ph.D. in Computer Engineering from

Seoul National University in 1989, 1991 and 1996 respectively. He was a visiting

scholar at Department of EECS, University of California, Irvine, USA in 2001, and at

Department of Electrical and Computer Engineering, University of Cincinnati, USA in

2009 respectively. He is a Professor in Department of Computer Science, Dankook

University, Korea from 1997. His current research interests include computer security,

mobile security, operating systems, and software protection.

A New Detection Scheme of Software Copyright Infringement 1069

Haeyoung Yoo received the Ph.D. degree in Department of Computer Engineering,

Ajou University in 1994. He is now a Professor in Department of Software Science,

Dankook University, Korea. And he is now a vice-chairman of Korea Copyright

Commission. His research interests include software development methodology, content

technology policy and development, software testing and web engineering. He has

authored and co-authored several journals and conference papers and software

engineering textbook.

Jinwoon Woo received the Ph.D. degree in Department of Computer science,

University of Minnesota, USA in 1990. He is now a Professor in Department of

Software Science, Dankook University, Korea. His research interests include algorithm,

information security, software assurance. He has authored and co-authored several

journals and conference papers.

Yunmook Nah received the Ph.D. degree in Department of Applied Computer

Engineering, Seoul National University in 1993. He is now a Professor in Department of

Computer Engineering, Dankook University, Korea. His research interests include

database, data modeling, large distributed database. He has authored and co-authored

several journals and conference papers and database textbook.

Minkyu Park is the corresponding author of this paper. He received the B.E. and M.E.

degree in Computer Engineering from Seoul National University in 1991 and 1993,

respectively. He received Ph.D. degree in Computer Engineering from Seoul National

University in 2005. He is now an Associate Professor in Konkuk University, Korea. His

research interests include operating systems, real-time scheduling, embedded software,

computer system security, and HCI.

Received: September 18, 2013; Accepted: January 21, 2014.

