
Computer Science and Information Systems 14(3):611–627 https://doi.org/10.2298/CSIS170202019T

BHyberCube: a MapReduce Aware Heterogeneous

Architecture for Data Center

Tao Jiang, Huaxi Gu, Kun Wang, Xiaoshan Yu, Yunfeng Lu

State Key Laboratory of ISN, Xidian University, Xi’an, China

taojiang127@foxmail.com

Abstract. Some applications, like MapReduce, ask for heterogeneous network in

data center network. However, the traditional network topologies, like fat tree and

BCube, are homogeneous. MapReduce is a distributed data processing

application. In this paper, we propose a BHyberCube network (BHC), which is a

new heterogeneous network for MapReduce. Heterogeneous nodes and scalability

issues are addressed considering the implementation of MapReduce in the

existing topologies. Mathematical model is established to demonstrate the

procedure of building a BHC. Comparisons of BHC and other topologies show

the good properties BHC possesses for MapReduce. We also do simulations of

BHC in multi-job injection and different probability of worker servers’

communications scenarios respectively. The result and analysis show that the

BHC could be a viable interconnection topology in today’s data center for

MapReduce.

Keywords: Data center, MapReduce, topology.

1. Introduction

In a data center network, up to a few thousands of servers are interconnected via

switches to form the network infrastructure. Data center networks (DCN) possess the

characteristic of high performance computing (HPC) and mass storage naturally [1].

Based on these properties, data center is used as distributed storage and computing

infrastructures for some online applications such as search, social networks, E-learning

[2], and web 2.0 technology [3]. In addition, these data centers also support

infrastructure services, such as distributed file systems (e.g., GFS [4, 5] and Chubby

[6]), structured storage (e.g., BigTable [7], and Megastore [8]), distributed execution

engine (e.g., MapReduce, Dryad and percolator) and large computing units’ schedulers

(e.g., Omega [9]). Traditional resource efficient architecture has become a barrier to

meet the diverse application requirements, and it is inevitable that the future network

should be application driven [10]. A data center should be equipped with specific

infrastructure services to manage and process massive data efficiently [11]. MapReduce

is one of the most important distributed execution engines for data processing.

MapReduce works by dividing input files into chunks and processing these in a series of

parallelizable steps in a good control and execution model. MapReduce is used by

companies such as Facebook, IBM, and Google to process or analyze massive data sets

[12].

612 Tao Jiang et al.

In recent years, the scale of data center is growing at an exponential rate. Some

Internet service providers, like Microsoft, are even doubling the number of servers every

14 months, exceeding Moore’s Law. Additionally, diverse services emerged in data

centers, calls for an improvement of the topological performances of a data center

network, including scalability and reliability, etc. But the current DCN interconnects all

the servers using a tree hierarchy of edge-switches, core-switches or core-routers

generally. It is increasingly difficult to meet the requirements, such as scalability and

high network capability. As some solutions, several new DCN architectures have been

proposed, such as DCell [13], FiConn [14], and BCube [15]. These architectures have

optimized some fundamental topological properties and provide good scalability and

reliability. However, considering the distributed data processing mechanisms running on

them, they may not have good performance. There are two main reasons. First, many

distributed data processing mechanisms, especially MapReduce, require that all servers

being partitioned into master servers and worker servers [16]. However, most data

center architectures treat all the servers equally [17]. Second, as suggested by the name,

mapping and reducing constitute the essential phases for a MapReduce job. Therefore, it

requires a strong inner relationship among the servers that execute these operations to

exchange the intermediate results. However, these new architectures ignore this

relationship in MapReduce job. Obviously, we need dedicated data center architecture

to meet users’ increasing new service requirements in a complex MapReduce.

In this paper, a new network, called BHyberCube network (BHC) is proposed. BHC

is a recursively defined topology to interconnect servers. Each worker server connects

several other worker servers in a hypercube unit and one master server. Each master

server not only connects several worker servers, but also connects other master servers

via a high level switch. The interconnection relationships among master servers and

worker servers are determined according to the procedure of MapReduce. A high-level

BHC is recursively built from many low-level ones. Due to its heterogeneous

architecture, it is well suited to support the data processing procedure of MapReduce.

The evaluation and analysis results show that BHC has good topological performance

with scalability.

A routing algorithm designed for BHC is also proposed in this paper. This routing

algorithm is designed for four scenarios for MapReduce on BHC, routing between a

master worker and its worker servers, routing between two worker servers belonging to

the same master server, routing between master servers and routing between two worker

servers belonging to different smallest recursive units. This routing algorithm is

designed to utilize the recursively-defined structure, and accelerate the procedure of

MapReduce by loop iterations.

The rest of this paper is organized as follows. Section 2 introduces the related work

and our motivation. Section 3 proposes the physical structure and a construction method

for BHC and evaluates several topological properties of BHC. Section 4 describes the

routing algorithm for MapReduce on the BHC. Section 5 shows the procedure of

MapReduce executing in BHC. Section 6 presents simulation results of multi-job

injection and different probability of worker servers with dependency relationship.

Section 7 concludes this paper.

BHyberCube: A MapReduce Aware Heterogeneous Architecture for Data Center 613

2. Related Work

In these section, we will introduce the existing datacenters architectures, and the details

of MapReduce. The motivation will be also demonstrated.

2.1. Data Center Network Architectures

Existing datacenters generally adopt traditional tree architectures, like Fat tree [18] to

interconnect servers [19] [20]. In 0, a generic Fat tree network is presented. This

architecture supports a variety of links between the aggregation switches and the core

switches, which makes it an architecture with high connectivity and reliability. However,

this traditional tree architecture does not scale well.

Some of architectures, like DCell [13] and BCube [15], are recursively constructed,

as demonstrated in Figure 1. A high-level structure utilizes a lower-level structure as a

unit and connects many such units by means of a given recursive rule [21]. One of this

recursive rule’s advantages is that more servers can be added into a hierarchical DCN

without destroying the existing structure when the level of a network is increasing.

Hence, the hierarchical topology is scalable naturally.

2.3 2.2 2.1 2.0

Server

Switch

0 1 nk-1 0 1 nk-1 0 1 nk-1

Bcubek-1

n-1

0 1 nk-1

BCubeDCellFat Tree

Bcubek-1

1

Bcubek-1

0

DCell0[2]

DCell0[1]

DCell0[0]DCell0[4]

DCell0[3]
Pod 0 Pod 1 Pod 2 Pod 3

Core

Arregation

Edge

Fig. 1. Fat Tree, DCell and BCube architectures in DCN

2.2. MapReduce

The MapReduce paradigm has emerged as a highly successful programming model for

large-scale data-intensive computing applications [22]. A complex MapReduce

procedure processes a sequence of jobs, and each job consists of a map phase and a

reduce phase [23 24].A unit based on MapReduce is composed of two server types: a

master server and several worker servers. A master server controls many worker servers

in executing map and reduce tasks. The master server coordinates MapReduce jobs. The

worker server is responsible for running map tasks and reduces tasks. The map phase

performs a map function where the master server partitions the input datasets into

multiple even-sized smaller chunks and distributes them to the worker servers. Each

chunk of the input is first processed by a map task, which will generate an enormous

amount of intermediate (key, value) pairs on the local disks and report the keys and their

614 Tao Jiang et al.

locations to the master server. The master node then partitions the (key, value) into

different worker servers based on the keys. The reduce tasks will be activated to first

pull the data from the map worker servers, and then apply a reduce function to the list of

(key, value) pairs on each key [25]. Reduce tasks merge the intermediate values with the

same key by means of predefined reduce programs and then generate the output values.

Considering implementation of MapReduce, the existing architectures addressed

above, do not support the distribution data management or processing mechanisms like

MapReduce very well. The reasons are as follows:

Homogeneous nodes. Existing DCN architectures do not partition servers into

master servers and worker servers [26]. They simply assume that all servers possess the

same function and interconnect all the servers in the same way. However, servers are

classified into masters and workers based on the different functions in MapReduce [27].

Therefore, servers of different roles should be interconnected in dedicated ways.

Collective communication. In the MapReduce procedure, a master will control

several worker servers, and assign different tasks to different worker servers

simultaneously [28]. And among these worker servers, they will collect and transmit the

intermediate information. Heavy collective operations communications happen in these

phases. Hence, the topology for MapReduce should have a good performance on

collective communications.

Network diameter. The topological properties should be sufficiently suitable in the

DCN with the expanding of their scales. There will be a large number of data

transmissions in a complex MapReduce [29]. Hence, it requires a low network diameter

to shorten the transmission length between any pair of servers when the network is

scaling up [30].

The BHC is motivated from the above analysis. It will treat the servers as a master

server or a worker server, according to the function they will perform in the

MapReduce. Leveraging the deployment of homogeneous nodes, BHC strongly supports

the collective communications in the mapping and reducing phases. Furthermore, BHC

employs recursive units, resulting a relatively low network diameter when the network

scaling.

3. The BHC Architecture

Heterogeneous nodes, collective communications and network diameter are the main

focus on network topologies proposed for DCN to support MapReduce. Servers are

classified into masters and workers based on the different functions in MapReduce [27].

Servers in different roles should be interconnected in dedicated ways. If each master

server interconnects its worker servers, it will improve collective communication

greatly. Units are also implemented because they support collective communication

naturally. The recursively defined architecture is implemented to reduce the network

diameter when the scale increases.

Based on these observations, BHC is proposed for DCN to support MapReduce.

BHC is a recursively-defined architecture with units attached.

BHyberCube: A MapReduce Aware Heterogeneous Architecture for Data Center 615

3.1. BHC Architecture Specification

BHC uses servers, equipped with multiple network ports, and switches to construct its

recursively defined architecture. In BHC, servers and switches are connected via

communication links, which are assumed to be bidirectional. A high-level BHC is

constructed from low-level BHCs. BHCk (k≥0) denotes a level-k BHC. The smallest

recursive unit of BHC and how to construct a high-level BHC recursively is presented as

follows:

level-0 level-1 level-2

Fig. 2. level-0, 1, 2 worker units

1. Smallest recursive unit and worker units

BHC0 is the smallest recursive unit. Meanwhile, it is also the building block to

construct larger BHCs. It has W worker servers, M master servers also M switches with

P+1 ports, and P worker units.

The worker unit is constructed by several worker servers. These worker servers are

interconnected by a level-k hypercube, for some different applications’ requirements. 0

illustrates the level-0, 1, 2 worker units.

In the BHC0, each master server connects to a switch. The master servers do not

connect each other directly. Neither do the switches. Each switch connects to P worker

servers in each worker unit. So the number of worker unit in the BHC0 is P.

The construction of a BHC0 is as follows. A BHC0 is constructed from P worker units

and
22i
 switches.

22i
 switches are numbered from 0 to 22 1i . The P worker units are

numbered from 0 to P-1 and the worker servers in each worker unit are numbered from

0 to 22 1i . The jth (j∈ [0, P-1]) port of the ith (i∈ [0, 22 1i]) switch is connected to

the ith (i∈ [0, 22 1i]) worker servers in the jth (j∈ [0, P-1]) worker unit.

There are four advantages for designing the smallest recursive unit in such a way.

Scalability. The worker unit is designed as a hypercube, which makes the worker unit

increase exponentially. It means that BHC can scale the worker servers quickly and

efficiently, to support different applications’ requirement.

Collective communication. The worker servers can transmit intermediate

information in the worker unit, which will support good collective communication

performance.

Heterogeneous nodes. This recursive unit treats servers as masters and workers

naturally, compared with the current recursive units, like in BCube and DCell.

616 Tao Jiang et al.

Low percentage of switches. The switch connects with more worker servers, and a

master server can control as many worker servers as possible. The evaluation will be

presented in the following sections.

2. Bild BHC: the Procedure

As assumed above, the BHC0 has W worker servers, M master servers also connect M

switches with P+1 ports, and P worker units. Besides, the worker unit is assumed in the

level i (i≥0). More generally, a BHCk (k≥1) is constructed from P BHCk-1 and P level-

k P+1-port switches.

Worker Server

Master Server

Worker Cluster

Fig. 3. An example of BHC1 with k =1, P = 4 and i = 0

The construction of a BHCk is as follows. BHCk-1 is numbered from 0 to P-1, the
22i

level-k switches from 0 to 22i -1 and the 22i master servers in each BHCk-1 are

numbered from 0 to 22i -1. The ith (i∈ [0, 22 1i]) master servers in the jth (j∈ [0,P-

1]) BHCk-1 is connected to the jth (j∈ [0,P-1]) port of the ith (i∈ [0, 22 1i]) level-k

switch. 0 illustrates an example with k=1, P= 4 and i=0, and 0 shows an example of

BHCk.

3.2. Properties of BHC

For a high-level BHCk, it is constructed in the same way as stated above. If BHCk-1 has

been built and each BHCk-1 has M
k-1

 master servers and W
k-1

 worker servers. Each BHCk-

1 is treated as a virtual node, and fully connects these virtual nodes to form a BHCk.

Theorem 1.

The number of master servers in a BHCk is Mk, and 22K i

kM P ;

The number of worker servers in a BHCk is Wk, and 1 22K i

kW P

Based on the recursively defined structure of BHC, Mk depends on the P and Mk-1,

and Wk also depends on the P and Wk-1. Equations 1 and 2 can be derived as follows:

The number of master servers in a BHCk is MK:

BHyberCube: A MapReduce Aware Heterogeneous Architecture for Data Center 617

2

1 0

1

2
k

K i

k k

i

M P M P M P

 (1)

The number of worker servers in a BHCk is WK:

1 2

1 0

1

2
k

K i

k k

i

W P W P W P

 (2)

Theorem 1 shows that the number of worker servers and master servers scales based

on the number of switch’s ports and the worker unit’s level. For example, when K=3,

P=6 and i=2, a BHC3 have as many as 3456 master servers and 20736 worker servers

BHCK-1

0 1

level-k switch master server

0 1 0 1

Fig. 4. BHCk, a BHyberCube network

Bisection width denotes the minimal number of links to be removed to partition a

network into parts of equal size. A large bisection width implies high network capacity

and a more resilient structure against failures.

Theorem 2. The bisection width of BHC is 12iP .

As the procedure of building a BHCk addressed above, each of the P level-k switches

has
22i

 links connected to the level-k-1 switches. Hence, it is easy to figure out that the

bisection width of BHC is 12iP .

Theorem 3. The network diameter of BHC is

3 2BHCD P (3)

The network diameter is the longest path between any two servers. In the uniform

traffic model, the maximal number of hops between any two master servers in a BHCk is

P, if they are in hi BHC0s. For BHC0, the maximal number of hops is 2. While in the

MapReduce application, the master server distributes job chunks to the workers, and the

workers process a map task to generate intermediate and report intermediate to the

master. The master partitions the intermediate into workers and workers process a

reduce task to generate the output values. Hence, three hops is the minimal distance to

complete a job. Theorem 3 is proven.

MasterK, j denotes the any master server in a BHCK, and s denote the sequence of a

BHCk which contains MasterK, j in the BHCK. The value of s is given as follows:

Theorem 4. The sequence of BHCK MasterK, j belongs to in the BHCK is
2/ 2k is j P (4)

618 Tao Jiang et al.

According to Theorem 1 and Equation 1, the number of master servers is 22K iP in a

BHCK. j is assumed as the sequence of MasterK, j in the BHCK. Therefore, s is the

sequence of BHCK MasterK, j belongs to in the BHCK.

Theorem 5. The number of master servers between MasterK, x and MasterK,y is
22K ix y P (5)

We assume that two master servers, denoted as MasterK, x and MasterK, y, connect to

the same switch at levelk+1, and belongs to a pair of adjacent BHCks in a BHCk+1.

|x-y| means the absolute value of x minus y in the Equation 5. Based on recursive

rules, in this pair of adjacent BHCks, MasterK, x and MasterK,y are the only two master

servers connected to the same switch at levelk+1. For a BHCk+1, the number of switches at

levelk+1 is 22iP , and other master servers between MasterK, x and MasterK, y, are

connected to the other 22 1iP switches. So the number of master servers between

MasterK, x and MasterK, y is 22 1iP , namely |x-y| = 22iP .

4. Routing in a BHC

According to the procedure of MapReduce in the DCN and the roles of the servers in

MapReduce, the routing algorithm is designed for four scenarios [31]. The first is the

routing algorithm between a master server and its worker servers, used for assigning

map and reduce tasks. The second one is the routing algorithm between two worker

servers that are controlled by the same master server, used for transmitting intermediate

data. The third one is the routing algorithm among master servers, used for assigning

jobs. The fourth one is the routing algorithm between two worker servers that belong to

different smallest recursive units, used for transmitting the necessary data that are not

stored on local disks. Because there are only one or two hops in the second routings,

which can be addressed only in the smallest recursive unit, this paper mainly focuses on

the third and fourth scenarios.

Algorithm 1 :AssigningJobs (int j, int L)

List ServersSought;

for l=0; l＜L; l++

 if MasterI,y’s worker severs hold the data for Jobl ;

 assign Jobl to MasterI ,y;

 MasterI,y.RoutingPath={ MasterI,j };

 MasterI,y.RoutingPath=FindRouting1(I- 1,j ,y);

 ServersSought.add(MasterI ,y);

4.1. Master-to-master Routing

The routing algorithm among master servers depends on the job-assigning scheme of

MapReduce service [32]. A master server that receives a multijob MapReduce request

sends each job to the nearest master server, which controls the worker servers containing

the necessary data for the job.

BHyberCube: A MapReduce Aware Heterogeneous Architecture for Data Center 619

Algorithms 1 and 2 are proposed to implement the master-to-master routing algorithm

for assigning MapReduce jobs on BHC. Here MasterI,j means the jth master server in the

BHCI. MasterI,j is supposed to receives a MapReduce service request, which needs to be

assigned to L (L＞ 1) master servers. Algorithm 1 demonstrates the algorithm of

assigning jobs. In Algorithm 1, Jobl (0≤l≤L) denotes the jobs that need to be assigned

to a master server. Algorithm 1 first finds the master server, denoted as MasterI,y which

controls the worker servers with the data required by Jobl. It then assigns Jobl to

MasterI,y and finds a routing path from MasterI,j to MasterI,y by citing Algorithm 2 and

adds the routing path to the Path attribute of MasterI,y. Finally, it adds MasterI, y to the

object list ServersSought.

Algorithm 2 is designed to find a master-to-master routing path for assigning jobs.

Algorithm 2 recursively records each node in the routing path from MasterI,j to MasterI,y

from level I to level 0, For level I, Algorithm 2 takes MasterI,j and MasterI,y as the

source and destination nodes of the routing path, respectively. It determines if MasterI,j

and MasterI,y connect to the same switch at level I through Theorem 3. Otherwise,

according to Theorem 4 and Equation 3 and 4, Algorithm 2 records the master server,

namely MasterI,x, which not only connects to the same switch at level I with MasterI,j,

but also belongs to the same BHCI-1 with MasterI,y. Above process is performed again

for level I-1.with taking MasterI,x as the new source node, also denoted as MasterI,j. This

process is performed recursively until MasterI,y is taken as the new source node or

MasterI,j and MasterI,y belong to the same BHC0. For the latter event, if the number of

hops from MasterI,j to MasterI,y is larger than one, minimal master servers are further

recorded in order in the routing path from MasterI,j to MasterI,y. Otherwise, Algorithm 2

just records MasterI,y as the last node and returns the whole routing path.

Algorithm 2 : FindRouting1 (int f , int j , int y)

int k = 0; int x = 0;

for i = f ; i ≥ 0; i--

 if i ＞ 0

 if j/ 22iP ≠ y/j/ 22iP ;

 int h = (y-j) / 22iP ;

 x = j + h × 22iP ;

 add MasterI ,x to MasterI ,y.RoutingPath;

 if x == y

 return MasterI ,y.RoutingPath;

 k = i ;

 break;

 if i = 0

 if j-y ＞2;

 for x = j - 2; x＞y; x-=2

 add MasterI ,x to MasterI ,y.RoutingPath;

 if y -j ＞2

 for x = j +2; x ＜y; x+=2

 add MasterI ,x to MasterI ,y.RoutingPath;

 add MasterI ,y to MasterI ,y.RoutingPath;

 return MasterI ,y.RoutingPath;

FindRouting1 (k,x,y);

620 Tao Jiang et al.

4.2. Worker-to-worker Routing

A worker server may need the data stored at another worker server, when it is executing

a map or reduce task. Based on the master-to-master routing algorithm, Algorithm 3 is

proposed as the worker-to-worker routing algorithm in BHC. Algorithm 3 adds two

worker servers and the routing path between their master servers. Routing path can be

obtained from Algorithm 2. Workerj,m1 denotes any worker server which are controlled

by MasterI,j, and Workery,m2 denotes any worker server controlled by MasterI,y.

Workerj,m1 and Workery,m2 are assumed not to be controlled by the same master server.

Algorithm 3: FindRouting2 (int j , int y , int m1, int m2)

 Workerj,m1.RoutingPath = { Workerj,m1, MasterI,j };

 Workerj,m1.RoutingPath = FindRouting1(I-1,j,y);

 add Workery,m2 to Workerj,m1.RoutingPath;

 return Workerj,m1.RoutingPath;

5. Map and Reduce on BHC

Based on routing algorithm described above, the jobs of a complex MapReduce are

assigned to several master servers. These master servers will control a number of worker

servers to execute the received jobs. Map and reduce operations are involved in the

execution of each job. This procedure is demonstrated in Figure 5.

worker

worker

worker

output

data 0

output

data 1

MasterI,y

User Job

split 0

split 1

split 2

split 3

split 4

worker

worker

Input

data

Map

phase

Intermedia data

(on local disks)

Reduce

phase

Output

data

assign

Map tasks

assign

Map tasks

Read

(key/value)

 Write

(key/value)

Read

(key/value)

Write

(key/value)

Fig. 5. The procedure of Map and Reduce on BHC

5.1. Map on BHC

Suppose that MasterI,y receives a job. The number of map tasks is determined by the

number of data chunks that job needs to process. The default mapping approach, which

consists of three steps, is one map task for one data chunk. In the first step, MasterI,y

chooses some idle worker servers, named map worker servers, and assigns a map task to

each of them. In the second step, map worker servers divide the corresponding input

data into intermediate key/value pairs by means of predefined map programs and store

BHyberCube: A MapReduce Aware Heterogeneous Architecture for Data Center 621

the intermediate data on local hard disks. In the third step, map worker servers feedback

the keys of intermediate data to MasterI,y and then send the number of waiting tasks in

their local queues, namely their state information, to the corresponding master servers.

5.2. Reduce on BHC

The number of reduce tasks is determined by the types of intermediate data’ keys. One

reduce task can process one or several types of key/value pairs. But one type of

key/value pairs is usually processed by only one reduce task. The default reducing

approach consists of four steps. In the first step, MasterI,y chooses some idle or not busy

worker servers, named reduce worker servers, and assigns a reduce task to each of them.

In the second step, according to the types of keys of their received reduce tasks, reduce

worker servers fetch the intermediate data from the corresponding map worker servers.

In the third step, reduce worker servers merge the same type of key/value pairs by means

of predefined reduce programs to generate output values. In the fourth step, reduce

worker servers feedback the output values to MasterI,y. They also send their state

information to the corresponding master servers. The output data of some jobs might be

the input data of other jobs. When MasterI,y has finished its job, it sends the result

directly to the master server that receives the next job, namely the next object in the

object list FindedServers, which is derived from Algorithm 1. The routing algorithm

between MasterI,y and that master server can be obtained by means of Algorithm 2. The

master server that executes the final job forwards its result to MasterI,j through the

routing path recorded in its Path attribute.

6. Properties and Simulation

In this section, a comparison of properties of BHC and BCube is demonstrated.

Additionally, the performance of two scenarios: different numbers of jobs and different

probability of communications in worker servers is shown respectively.

Fig. 6. The network size and percentage of switches of BCube and BHC in case that N = 4 servers

in BCube0 and P = 8 and i = 0 in BHCi.

622 Tao Jiang et al.

6.1. Comparison of Properties

Based on the Theorem 1, the network size and percentage of switches can be figured out

with the level increasing. The comparison between BCube and BHC is illustrated by

Figure 6.

Figure 6 shows the number of servers versus the number of levels in the network. The

scalability of BHC is better than the BCube structure, when the level is higher than 3.

Figure 6 also shows the percentage of switches in BCube and BHC. The result of

BHC is lower than BCube, which implies that BHC needs much less switches than

BCube while the same number of servers can be connected.

Fig. 7. The comparison of bisection width and diameter in BCube, DCell, 2D Torus and BHC in

case that N = 4 servers in BCube0 and DCell0 and P = 8 and i = 2 in BHCi.

Based on the Theorem 2 and 3, the diameter and bisection width can be figured out

with the number of servers increasing. The comparison of bisection width is illustrated

by Figure 7.

Figure 7 illustrates the comparison of bisection width in BCube, DCell, 2D Torus and

BHC. BHC has the highest bisection width with about 100 servers. However, as network

scale growing, the BCube’s bisection is the highest and BHC still keeps a fixed value,

and is just better than 2D Torus.

The comparison of network diameter illustrates the comparison of diameter in

BCube, DCell, 2D Torus and BHC. The diameter of BHC is close to BCube and DCell,

but 2D Torus gets worse when the network size grows.

Table 1. Parameters in simulations

Parameter Value

Traffic pattern Uniform

Switching mechanism Wormhole

Packet length(flits) 3

Flit length(bits) 256

Cycle period(ns) 50

Number of Virtual channels 8

Offered load(flits/cycle/node) 0.01~0.4

BHyberCube: A MapReduce Aware Heterogeneous Architecture for Data Center 623

6.2. Simulations on BHC

In this section, a simulator based on OPNET is built to evaluate the performance of

BHC on MapReduce. Every simulated node is configured to use wormhole switching

mechanism. The routing algorithm presented in section 4 is implemented in the

simulations. We set P = 4, i = 0 and K=2 to build a BHC2 with 64 master servers and

256 worker servers. Our results quantify two metrics: ETE (End to End) delay and

throughput. The ETE delay is the elapsed time (in ns) between the generation of a

packet at a source host and its delivery at a destination host. The throughput sum of the

data rates (in Gaps) that are delivered to all terminals in a network. The simulation

parameters are set as Table 1. Offered load denotes the traffic injection of each node in

per cycle.

Performance of different numbers of jobs. The more jobs are injected in the network

in the same time, the heavier pressure is exerted on the network. It is essential to test

different numbers of jobs injected in the same time on BHC. BHC0 is the unity to be

injected. Hence, BHC0 is chose as our test unity.

Figure 8 plots the throughput and ETE delay in different numbers of jobs. The single

job’s saturation point is offered load = 0.2 and the dual jobs’ and four jobs’ saturation

point is about offered load = 0.05, which is about 1/4 of single job’s saturation point.

This verifies the theoretical value. The results also imply that BHC has a graceful

performance even all of the master servers are injected jobs at the same time.

Fig. 8. The comparison of throughput and ETE delay in different numbers of jobs

Fig. 9. The comparison of throughput and ETE delay in different P

624 Tao Jiang et al.

Performance of different probability of communications in worker servers. As

proposed in section IV, when a worker server is executing a map or reduce task, it may

need the data stored at another worker server. P is supposed as the probability that a

worker server needs the intermediate data stored at another worker server. If the P is

getting higher, the more communications will happen in the worker servers. Hence, the

simulation results under different P can be one of the metrics of worker-to-worker

communication performance.

Figure 9 plots the throughput and ETE delay in different P of workers servers’

communications. With the P growth, the performance of BHC is deteriorating. For

example, when offered load is 0.3, the throughput with P = 20% is three times of the

throughput with P = 60%. When P is getting higher, it is more probable that the a

worker server, executing a map or reduce task, needs the data stored at the another

worker server, and this dependency relationship will reduce the efficiency of handling a

job, even turn into congestion to deteriorate the performance. Hence, this dependency

relationship should be cut down as much as possible in practical, and we can improve

the routing algorithm of BHC in future work.

7. Conclusion

Several new DCN architectures have been proposed to improve the topological

properties of data centers, however, they do not match well with the specific

requirements of some dedicated applications. This paper presents a MapReduce-

supported DCN network, named BHC. Through comprehensive analysis and evaluation,

BHC is a scalable topology with excellent topological properties and communication

performance. It is proven that BHC is competent for MapReduce under different traffic

characteristics. The simulation results show that BHC has a graceful performance in

multi-job injection. But when the worker servers have a high probability (60% or

higher) of dependency relationship, the performance is deteriorating because the

efficiency of handling a job is dropping, even resulting in congestion. Hence, this

dependency relationship should be cut down as much as possible in practical.

Acknowledgments. This work was supported by the National Science Foundation of China Grant

No.61472300, the Fundamental Research Funds for the Central Universities Grant No.

JB150318, the 111 Project Grant No.B08038

References

1. Dede, E., Fadika, Z., Govindaraju, M., Ramakrishnan, L.: Benchmarking MapReduce

implementations under different application scenarios. Future Generation Computer Systems,

36, 389-399. (2014)

2. Klašnja-Milićević, A., Vesin, B., Ivanović, M., Budimac, Z.: E-Learning personalization

based on hybrid recommendation strategy and learning style identification. Computers &

Education, 56(3), 885-899. (2011)

3. Zdravkova, K., Ivanović, M., Putnik, Z.: Experience of integrating web 2.0 technologies.

Educational Technology Research and Development, 60(2), 361-381. (2012)

BHyberCube: A MapReduce Aware Heterogeneous Architecture for Data Center 625

4. McKusick, K., Quinlan, S.: GFS: evolution on fast-forward. Communications of the ACM,

53(3), 42-49. (2010)

5. Ghemawat, S., Gobioff, H., Leung, S. T.: The Google file system. In ACM SIGOPS operating

systems review (Vol. 37, No. 5, pp. 29-43). ACM. (2003)

6. Burrows, M.: The Chubby lock service for loosely-coupled distributed systems. In

Proceedings of the 7th symposium on Operating systems design and implementation (pp.

335-350). USENIX Association. (2006)

7. Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Gruber, R.

E.: Bigtable: A distributed storage system for structured data. ACM Transactions on

Computer Systems (TOCS), 26(2), 4. (2008)

8. Baker, J., Bond, C., Corbett, J. C., Furman, J. J., Khorlin, A., Larson, J., Yushprakh, V.:

Megastore: Providing scalable, highly available storage for interactive services. In CIDR

(Vol. 11, pp. 223-234). (2011, January)

9. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible, scalable

schedulers for large compute clusters. In Proceedings of the 8th ACM European Conference

on Computer Systems (pp. 351-364). ACM. (2013,)

10. Wang, Y., Lin, D., Li, C., Zhang, J., Liu, P., Hu, C., Zhang, G.: Application Driven Network:

providing On-Demand Services for Applications. In Proceedings of the 2016 conference on

ACM SIGCOMM 2016 Conference (pp. 617-618). ACM. (2016)

11. Xu, K., Qu, Y., Yang, K.: A tutorial on the internet of things: from a heterogeneous network

integration perspective. IEEE Network, 30(2), 102-108. (2016)

12. Fehér, P., Asztalos, M., Vajk, T., Mészáros, T., Lengyel, L. Detecting subgraph isomorphism

with MapReduce. The Journal of Supercomputing, 1-42.

13. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: Dcell: a scalable and fault-tolerant

network structure for data centers. In ACM SIGCOMM Computer Communication Review

(Vol. 38, No. 4, pp. 75-86). ACM. (2008)

14. Li, D., Guo, C., Wu, H., Tan, K., Zhang, Y., Lu, S.: FiConn: Using backup port for server

interconnection in data centers. In Infocom 2009, ieee (pp. 2276-2285). IEEE. (2009)

15. Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Lu, S.: BCube: a high performance,

server-centric network architecture for modular data centers. ACM SIGCOMM Computer

Communication Review, 39(4), 63-74. (2009)

16. Liu, B., Huang, K., Li, J., Zhou, M.: An incremental and distributed inference method for

large-scale ontologies based on mapreduce paradigm. IEEE transactions on cybernetics,

45(1), 53-64. (2015)

17. Mohammed, E. A., Far, B. H., Naugler, C.: Applications of the mapreduce programming

framework to clinical big data analysis: current landscape and future trends. BioData Mining,

7(1), 22. (2014).

18. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network

architecture. ACM SIGCOMM Computer Communication Review, 38(4), 63-74. (2008).

19. Ding, M., Tian, H.: PCA-based network Traffic anomaly detection. Tsinghua Science and

Technology, 21(5), 500-509. (2016)

20. Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R. The nature of data center

traffic: measurements & analysis. ACM SIGCOMM Conference on Internet Measurement

Conference (Vol.9, pp.202-208). ACM. (2009).

21. Guo, D., Chen, T., Li, D., Liu, Y.: BCN: Expansible network structures for data centers using

hierarchical compound graphs. INFOCOM 2011. IEEE International Conference on

Computer Communications, Joint Conference of the IEEE Computer and Communications

Societies, 10-15 April 2011, Shanghai, China (Vol.21, pp.61-65). DBLP. (2011).

22. Wang, L., Tao, J., Ranjan, R., Marten, H., Streit, A., Chen, J., et al.: G-hadoop: mapreduce

across distributed data centers for data-intensive computing. Future Generation Computer

Systems, 29(3), 739–750. (2013).

626 Tao Jiang et al.

23. Morla, R., Gonçalves, P., Barbosa, J. G.: High-performance network traffic analysis for

continuous batch intrusion detection. Journal of Supercomputing, 72(11), 1-22. (2016).

24. Cohen, J.: Graph twiddling in a mapreduce world. Computing in Science & Engineering,

11(4), 29-41. (2009).

25. Fadika, Z., Dede, E., Govindaraju, M., Ramakrishnan, L. Mariane: using mapreduce in hpc

environments. Future Generation Computer Systems, 36(3), 379-388. (2014)

26. Slagter, K., Hsu, C. H., Chung, Y. C., Zhang, D.: An improved partitioning mechanism for

optimizing massive data analysis using mapreduce. The Journal of Supercomputing, 66(1),

539-555. (2013)

27. Jiang, H., Chen, Y., Qiao, Z., Li, K. C., Ro, W., Gaudiot, J. L.: Accelerating mapreduce

framework on multi-gpu systems. Cluster Computing, 17(2), 293-301. (2014)

28. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

Communications of the ACM, 51(1), 107-113. (2008).

29. Kaashoek, F., Morris, R., Mao, Y.: Optimizing mapreduce for multicore architectures.

(2010).

30. Yu, Z., Xiang, D., Wang, X.: Balancing virtual channel utilization for deadlock-free routing

in torus networks. The Journal of Supercomputing, 71(8), 3094-3115. (2015)

31. Lin, X. Y., Chung, Y. C.: Master–worker model for mapreduce paradigm on the tile64 many-

core platform. Future Generation Computer Systems, 36(3), 19–30. (2014).

32. Chen, R., Chen, H., Zang, B.: Tiled-MapReduce: optimizing resource usages of data-parallel

applications on multicore with tiling. International Conference on Parallel Architectures and

Compilation Techniques (pp.523-534). IEEE Computer Society. (2010).

Tao Jiang received the B.E. degree in Electronics and Communications Engineering

from Xidian University in 2015. Now he is doing the M.E. Programme in

Telecommunication and information system in the State key lab of ISN, Xidian

University. His main research interests are related to optical interconnected networks

and data center networks.

Huaxi Gu received B.E., M.E., and Ph.D. in Telecommunication Engineering and

Telecommunication and Information Systems from Xidian University, Xidian in 2000,

2003 and 2005 respectively. He is a Full Professor in the State Key Laboratory of ISN,

Telecommunication Department, Xidian University, Xidian, China. His current interests

include interconnection networks, networks on chip and optical intrachip

communication. He has more than 100 publications in refereed journals and

conferences. He has been working as a reviewer of IEEE Transaction on Computer,

IEEE Transactions on Dependable and Secure Computing, IEEE System Journal, IEEE

Communication Letters, Information Sciences, Journal of Supercomputing, Journal of

System Architecture, Journal of Parallel and Distributed Computing, Microprocessors

and Microsystems etc.

Kun Wang received the B.E. degree and M.E. degree in Computer Science and

Technology from Xidian University, Xi’an in 2003 and 2006 respectively. Now she is a

lecturer in the Dept. of Computer Science, Xidian University, Xi’an China. Her Current

interests include high performance computing and cloud computing, the network

vitulization technology.

BHyberCube: A MapReduce Aware Heterogeneous Architecture for Data Center 627

Xiaoshan Yu received the M.E. degree in Electronics and Communications Engineering

from Xidian University in 2013. Now he is doing the Ph.D. Programme in

Telecommunication and information system in the State key lab of ISN, Xidian

University. His main research interests are related to optical interconnected networks,

data center networks.

Yunfeng Lu received the bachelor's degree in Information Engineering from Jilin

University in 2016. Now he is doing the M.S. degree in Telecommunication and

information system in the State key lab of ISN, Xidian University. His main research

interests are related to optical interconnected networks, high performance computing.

Received: February 2, 2017; Accepted: June 15, 2017.

