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Abstract. The snapshot problem addresses a collection of important algorithmic
issues related to distributed computations, which are used for debugging or recov-
ering distributed programs. Among existing solutions, Chandy and Lamport have
proposed a simple distributed algorithm. In this paper, we explore the correct-by-
construction process to formalize the snapshot algorithms in distributed system.
The formalization process is based on a modeling language Event B, which sup-
ports a refinement-based incremental development using RODIN platform. These
refinement-based techniques help to derive correct distributed algorithms. More-
over, we demonstrate how other distributed algorithms can be revisited. A conse-
quence is to provide a fully mechanized proof of the resulting distributed algo-
rithms.

Keywords: Distributed algorithms, correctness-by-construction, refinement, snap-
shot, verification.

1. Introduction

The snapshot problem is a fundamental aspect of distributed computations and distributed
applications, since it produces a global state of a distributed system at a particular instant.
It is a photography of a global state made up of local states of each process and com-
munication channels. Several solutions for the snapshot problem have been published,
among them we consider the seminal algorithm of Chandy and Lamport [13, 28, 30]. The
snapshot computation is motivated by several applications as, for instance, the verifi-
cation of stable properties like deadlock, successful termination and debugging of the
distributed program using safe configuration. Snapshot algorithms constitute a pertinent
collection of case studies for evaluating strengths and weaknesses of formal techniques
like model-checking [14, 15] and theorem prover [14, 25, 29]. The correct-by-construction
paradigm [18] offers an alternative approach to prove distributed algorithms and to derive
the correct distributed algorithms through the reconstruction of a target algorithm us-
ing stepwise refinement and validated methodological techniques [2, 6, 20, 21]. It appears
that the refinement is a key concept for organizing the re-development of an existing dis-
tributed algorithm [2] to discover a new set of distributed algorithms [9] by reusing or
replaying with the former development.
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In this paper, we focus on the distributed snapshots for specific problems. The prime
objective is to solve a problem using refinement techniques and to provide an evidence
of correctness of given solutions, which are obtained through the correct-by-construction
process. We are mainly interested by providing recipes for using the Event B framework
and refinement for developing the distributed algorithms. Massingill and Chandy[19]
introduce archetypes for facilitating parallel program design; more recently, Chandy et
al [12] propose the refinement of formal archetypes to produce verified distributed soft-
ware using the theorem prover PVS. The conceptual idea of the archetypes is very close
to the design patterns in the software engineering domain. Refinement plays a central
role in the integration of different archetypes and constitutes the semantical glue for
ensuring the correctness of the resulting process. This approach is based on the use of
PVS, which is employed to prove the properties of problems modelled using archetypes.
Our recipes are conceptually close to the notion behind the archetypes and our aims
are to use the Event B framework for developing correct-by-construction distributed al-
gorithms, and enrich a collection of complex distributed algorithms (Project RIMEL:
http://rimel.loria.fr). Another objective is to show the power of the correct-
by-construction process and our recipes through the re-development and derivation of
already existing and correct snapshot algorithms like the Chandy and Lamport algo-
rithm [13], the algorithm of Lai and Yang [16] or the algorithm of Morgan [23]. Finally,
the snapshot problem is already considered as a case study for illustrating the strength of
rewriting logic [24] and we think that our development may help a reader to understand
the behavioral theory of snapshot algorithms.

Our Contribution. This paper contributes to demonstrate semantical relationships exist-
ing between various snapshot algorithms (algorithms of Chandy and Lamport [13], Lai
and Yang [16], Morgan [23]) with the refinement of models. We start with an abstract
initial specification of the snapshot problem and we enrich this specification gradually by
a progressive and incremental refinement. Several refinement steps allow to capture the
complete and desired behaviour of snapshot algorithms. The refinement of models is the
key element allowing preservation of properties between the levels of abstraction.

Moreover, we propose an architecture based on the correction-by-construction para-
digm, for conceiving algorithms dedicated to observation of global states of distributed
systems. This capture of a global state of a distributed system is introduced in the archi-
tecture by a model OBSERVATION. Our architecture is reusable and extendable since
algorithms can be conceived or studied by refining either the OBSERVATION model or
more concrete models (algorithms) provided in our architecture.

Organization of the Paper. The paper is organized as follows. Section 2 presents related
works on the design of distributed snapshots. Section 3 defines the snapshot problem in
distributed systems. Section 4 introduces notations of Event B and the formal activities of
a global system. Section 5 presents refinement-based development of the snapshot algo-
rithm, where we describe the OBSERVATION model for stating what we have to compute.
Section 6 introduces the computation of a snapshot in the ASYNC-PROCESS and SYNC-
PROCESS models, which simulate the OBSERVATION model. The global architecture of
the refinement-based design is similar to the classical distributed algorithms [13, 16]. Sec-
tion 6 also compares the formal modelling of the snapshot algorithms [13, 16, 23]. Section
7 concludes this paper along with the future work.
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2. Related Works

Several literatures [3, 10, 28, 30] report works on the design of algorithms for the ob-
servation of distributed systems. Jaggi et al. [3] have proposed a snapshot algorithm
(Distributed Snapshot Algorithm for MANETs) DSAM, which is derived from the al-
gorithm of Chandy and Lamport, for dealing with snapshots in a mobile ad-hoc network.
Chalopin et al. [10] have produced an algorithm combining the Chandy and Lamport and
the SSP [27] algorithms for detecting the termination of the snapshot. Yang and Marsland
[30] have elaborated debugging frameworks for distributed systems using various exist-
ing snapshot algorithms (Venkatesan, Lai and Yang, Li, Radhakrishnan and Venkatesh,
Spezialetti and Kearns Algorithm, Morgan). The main motivation of these works is the
need of observing global states of distributed systems, for identifying stable properties
such as termination and deadlock [10], creating breakpoints for recovery, debugging sys-
tems [30], or taking into account non-fixed/mobile networks [3]. These works also present
elements for proving the correctness of the designed algorithms. However, these elements
are only partial proofs and do not assert completely the correctness and safe behaviour of
the algorithms.

All these works present new algorithms, based on well-known classical ones (Chandy
and Lamport, Lai and Yang, Morgan, etc), for the observation of distributed systems.
However, the semantical link between the new and classical algorithms is not formally
established. These works also focus on conceiving correct algorithms able to produce
correct/consistent snapshots. Yet, as far as we know, the existing works are mainly based
on simulation, which cannot guarantee the safe behavior. In this study, we use the formal
techniques to specify the snapshot algorithms to make sure of the safe behavior, correct-
ness and consistency using safety properties.

3. The Snapshot Problem

This section presents an abstract overview of the snapshot problem, which helps to un-
derstand our proposed solution. We consider a message passing model which formulates
a distributed algorithm using a finite set of processes and channels. A direct channel con-
nects each pair of nodes and a list of transformations is attached to each node, which
performs either local actions or communications actions. The communication mechanism
is supposed to be reliable, which guarantees that the channel does not lose any data pack-
ets.

For each node (process), a set of events (send, receive and internal events) is defined.
A partial ordering called local causal order (denoted <p for a process (p)), induced by
the local sequentiality of each process is defined. The following relationship ei <p ej ,
between two events ei and ej of a process (p), indicates that ei occurs before ej . A cut C
of a local set of events is a subset of events satisfying the relationship : ∀p ∈ P, e, f ∈
C · f ∈ L ∧ e <p f ⇒ e ∈ C. P is a set of processes and L is a set of pre-shot events
(happening before the cut C).

Another ordering called causal order (denoted <) is defined as well. It is the smallest
relation containing the local causal orders (<p) and satisfying the send/receive order-
ing between processes. The relationship em < en, between two events em and en of a
distributed system, means that em occurs before en :
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1. If em and en are local to a process (p), then em <p en.
2. If em represents the sending of a message, then en formulates the receiving of the

message.
3. There exists another event ek, such that em < ek and ek < en.

A consistent cut C of a set of events of a distributed algorithm is a subset of events, which
satisfies the following relationship : ∀e, f ∈ C · f ∈ L ∧ e < f ⇒ e ∈ C.

A snapshot S is a global state of a distributed system, which is defined by a set of
local states of nodes, and a set of channels states, produced by either internal actions
or communication actions. The snapshot S is meaningful and feasible, if there exists an
execution producing the global state, and a set of messages is successfully passed through
each channel (p 7→ q) of the distributed system, where a set of messages is sent by the
node (p) and the sending messages are received by the node (q).

The following theorem [28] relates the notions of cut and snapshot :

Theorem 1. A snapshot S induced by a cut C is meaningful if, and only if, C is consistent
if, and only if, S is meaningful.

The aim of the snapshot algorithm is to compute a global state of the system from
the local states or equivalently a consistent cut. We investigate steps for deriving three
well-known snapshot algorithms [13, 16, 23] using proof-assisted stepwise development.

4. Stepwise Design of Distributed Algorithms

The correct-by-construction paradigm promotes the development of algorithms using a
progressive and incremental approach. The key concept is the refinement which provides
linking between discrete models by preserving safety properties. The Event B modeling
language designed by Abrial [1, 8] borrows features from formal modeling languages like
UNITY [11], TLA+ [17], action systems [4, 5]; those modeling languages share common
aspects and especially the refinement concepts. The Event B is supported by an open envi-
ronment RODIN integrating formal features for developing discrete logico-mathematical
models. The Event B provides structures for expressing the reactive systems as a set of
actions called events and maintaining a list of assertions called (inductive) invariants.
These invariants formulate safety properties. We express our design for modeling the dis-
tributed algorithms in the Event B using correct-by-construction approach, which is also
our primary objective of this work. We recall basic concepts of the Event B modeling
language [1] and a formal development tool called RODIN [26].

4.1. Modelling Actions Over States

The event-driven approach [1, 8] is based on the B notation. It extends the methodological
scope of basic concepts in order to take into account the idea of formal models. A formal
model is characterized by a (finite) list x of state variables possibly modified by a (finite)
list of events; an invariant I(x) states properties that must always be satisfied by the vari-
ables x and maintained by the activation of the events. Here, we briefly recall definitions
and principles of formal models and explain how they can be managed by tools [26].
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Modifications over state variables are stated by events. An event e has two main parts:
a guard grd(e), which is a predicate built on the state variables, and an action, which is a
generalized substitution. An event e can take one of the three normal forms described in
the table 1 and is associated with a before-after predicate BA(e)(x, x′), which describes
the event as a logical predicate expressing the relationship between values of the state
variables just before (x) and just after (x′) the “execution” of the event (see Table 1).

Table 1. Event B events and proof obligations

Proof obligations (INV 1 and INV 2) are produced by the tool RODIN [26] from
events in order to state that an invariant condition I(x) is preserved. Their general form
follows immediately from the definition of the before-after predicate, BA(e)(x, x′), of
each event e (see Table 1). Note that it follows from the two guarded forms of the events
and this obligation can be trivially discharged in case of false condition of the guard.
When this is the case, the event is said to be disabled. The proof obligation FIS expresses
the feasibility of the event e with respect to the invariant I .

4.2. Describing the Network and its Activities

A network of processes is simply defined by a set of pro-
cesses P , a set of channels between processes, namely C.
We assume that M is a set of messages that can transit along
channels. Each process may have a local state and a set
of local states is PStates. The communication network is
modelled by a structure called NETWORK. The network is
supposed to be fixed (channels are not modified or created
or deleted) and connected.
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4.3. Describing the Current System

The snapshot algorithm captures a set of actions modifying a set of variables, through
the observation of the current distributed system. Hence, our modeling process states that
the existing system simulates a new set of modifications in the current state. A model
SYSTEM describes the general activities of the distributed system.

The defined variables for this model SYSTEM are as follows:
– o associates each process to the timestamp of its last

operation.
– l describes the local state of each process.
– h contains the traces of the activities (history) for each

process.
– chan presents a set of messages that circulates inside

channels.
– store depicts a set of messages that is stored by each

process.
– send models the sending messages that are sent by the

processes.
The activities of the distributed system depicted in the model SYSTEM are as follows:

a) Internal operations modify states and variables local to nodes. These activities are
modelled by the following events:

• InternalLocal demonstrates the modification of a local state of a process (p). A
new state (ns) is chosen non-deterministically for the process (p).

• InternalMessage models the modification of the local set of messages of a pro-
cess (p).
The process (p) deletes a message (m) from its local set of messages (store(p)).

b) External operations involve different nodes. These operations are described by the
following events:

• Sending defines the sending of a message (m) by a process (p), through a chan-
nel (c). The message (m) has not yet been sent by the process (p) and is not
circulating inside the channel (c). Therefore, the process (p) is able to send (m)
through the channel (c) connecting the process (p) to another process.
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• Receiving presents the receiving of a message (m) by a process (q), via a channel
(c). The message (m) is inside the channel (c) leading to the process (q): The
message (m) is removed from the channel (c) and is stored by the process (q).

After each operation, the time-stamp (o(p)) of a process (p) is incremented, and a trace
of activities (either internal/local or external) is added to history (h(p)) of the process (p).
A new step expresses the observation of the current system by another process which is
defined by a refinement3 of the current model. In the next section, we define the refinement
and apply it for the observation.

5. Incremental Proof-Based Development

5.1. Model Refinement

The refinement of a formal model allows us to enrich a model in an incremental way
which is the foundation of the correct-by-construction [18] approach. Refinement pro-
vides a way to strengthen invariants and to add details to a model. It is also used to trans-
form an abstract model in a more concrete version by modifying the state description.
This is done by extending the list of state variables (possibly suppressing some of them),
by refining each abstract event into a corresponding concrete version, and by adding new
events. The abstract state variables, x, and the concrete ones, y, are linked together by
means of a, so-called, gluing invariant J(x, y). A number of proof obligations ensure that
(1) each abstract event is correctly refined by its corresponding concrete version, (2) each
new event refines skip, (3) no new event takes control for ever, and (4) relative deadlock-
freeness is preserved. Details of the formulation of these proofs follows.

We suppose that an abstract model AM with variables x and invariant I(x) is refined
by a concrete model CM with variables y and gluing invariant J(x, y). If BA(e)(x, x′)
and BA(f)(y, y′) are respectively the abstract and concrete before-after predicates of the
same event, respectively e and f , we have to prove the following statement, corresponding
to proof obligation (1):

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ ∃x′ · (BA(e)(x, x′) ∧ J(x′, y′)) .

Now, proof obligation (2) states that BA(f)(y, y′) must refine skip (x′ = x), gener-
ating the following simple statement to prove (2):

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ J(x, y′) .

For the third proof obligation, we must formalize the notion of the system advancing
in its execution; a standard technique is to introduce a variant V (y) that is decreased by
each new event (to guarantee that an abstract step may occur). This leads to the following
simple statement to prove (3):

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ V (y′) < V (y) .

3 ⊕: add elements to a model; 	: remove elements from a model
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Finally, to prove that the concrete model does not introduce additional deadlocks, we
give formalisms for reasoning about the event guards in the concrete and abstract models:
grds(AM) represents the disjunction of the guards of the events of the abstract model, and
grds(CM) represents the disjunction of the guards of the events of the concrete model.
Relative deadlock freeness is now easily formalized as the following proof obligation (4):

I(x) ∧ J(x, y) ∧ grds(AM) ⇒ grds(CM) .

When one refines a model, one can either refine an existing event by strengthen-
ing the guard and/or the before-after predicate (effectively reducing the degree of non-
determinism), or add a new event in order to refine the skip event. The feasibility condi-
tion is crucial for avoiding possible states which have no successor; for instance, the di-
vision by zero. Furthermore, such refinement guarantees that a set of traces of the refined
model contains (up to stuttering) traces of the resulting model. The basic foundations of
the Event B modeling language along with several case studies are available in [1, 7]. The
language of generalized substitutions is very rich and allows us to express any relation
between states in a set-theoretical context. The expressive power of the language leads
to require helps for writing relational specifications and this is why we should provide
proof-based patterns for assisting the development of Event B models.

5.2. General Schema for Refinement

The correct-by-construction approach is based on the use of refinement and on introducing
new features in the formal models. The methodology is simply described by the following
diagram, which advocates different steps for producing a distributed algorithm using the
correct-by-construction approach.

– The context C states properties of graphs.
– The machine M0 expresses the problem to solve

by a set of events stating a relation between ini-
tial and final states, for instance, the computa-
tion of a correct snapshot.

– The refinement of M0 into M1 presents the in-
ductive property allowing to express the compu-
tation of the snapshot by each node.

– The refinement of M1 by IM prepares the localisation phase and may require more
than one refinement step.

– The next refinement of IM is a refinement for producing a set of events corresponding
to the localisation of information.

– DA is derived from the M2 ; mapping checks that M2 can be translated into a dis-
tributed programming language.

However, we consider a more general schema for developing the snapshot problem,
since the snapshot problem is solved by an algorithm which is able to compute the current
distributed state. Next subsection starts the refinement process by introducing the first
refinement related to the observation of the snapshot.
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5.3. Introducing the OBSERVATION model

The OBSERVATION model refines the SYSTEM model and introduces the functionality,
which is required by the snapshot problem: to compute a snapshot. It does not explain
how to compute it but what it should compute.

A set of new variables is introduced to model the required behaviour as follows:

– Two variables s and r are defined for ordering the sending and receiving of messages:
• s associates sent messages with channels and timestamps. The variable helps the

users to determine the channel in which a message is sent and the time of the
sending operation.

• r associates received messages with channels and timestamps. This variable in-
dicates the channel from which a message is received by a process and the time
of the receiving operation.

– cut contains the result of the snapshot.

The refined versions of the events Sending and Receiving are modified to take the
variables r and s into account:

– Sending uses the variable s to indicate the channel (c) in which a message (m) is
sent and the sending time.

– Receiving records a message (m) and receiving time from the channel (c) into the
variable r.

A new event Snapshot models an abstraction of the snapshot procedure and states
that a consistent cut (obtained in one-shot), namely acut, is assigned to cut: a moving
message is not allowed to be part of the snapshot, if origin of the message is outside of the
cut and its destination is inside of the cut. The event expresses the intention to specify the
required solution. Further refinements are necessary for introducing the inductive process
leading to a consistent cut. Others events are related to the previous models, which are
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indicated by dots. Due to space limitations, we have given a sketch of the modeling. A
detailed formal development is available4.

6. Architecture of the Design

Figure 1 presents the complete formal development, which starts from SYSTEM and NET-
WORK and progressively leads to the OBSERVATION. The models ASYNC-PROCESS and
SYNC-PROCESS are derived from the model OBSERVATION and present two different
ways of computing a consistent snapshot: ASYNC-PROCESS describes an asynchronous
computation of a snapshot [13, 16], whereas SYNC-PROCESS depicts a synchronous way
of constructing a snapshot [23].

Fig. 1. General Architecture of the Design

It should be noted that SYNC-PROCESS and ASYNC-PROCESS model respectively the
algorithms of Morgan [23] and Lai and Yang [16]. The model LAI-PROCESS presents
a more concrete version of the snapshot algorithm of Lai and Yang [16]. A context
FIFO-NETWORK extends NETWORK and adds elements of FIFO queues and communi-
cations ordering to the network. The model of the algorithm of Chandy and Lamport [13]
(FIFO-PROCESS) is refined from the model ASYNC-PROCESS and uses the context FIFO-
NETWORK. The model LOC-FIFO-PROCESS is a refinement of FIFO-PROCESS and defines
a more concrete and local version of the snapshot algorithm of Chandy and Lamport [13].

6.1. Computing a Synchronous Snapshot

The SYNC-PROCESS model (see Fig.2) is a refinement of OBSERVATION, and defines the
synchronous construction of a correct snapshot (pcut) gradually: an external parameter
(e.g. a global clock) triggers the snapshot procedure for all the processes, at the same time.
More precisely, the SYNC-PROCESS model describes the steps of the snapshot algorithm
of Morgan [23], which is based on the availability of a global time for all the processes.

New variables are introduced:
4 http://www.loria.fr/~andriami/snapshot-comsis-pdf/project.html
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Fig. 2. The SYNC-PROCESS Machine

– mark_m contains a set of messages that is sent after the snapshot.
– tm represents the global time.
– cstate records, for each process, the incoming pre-snapshot messages.
– pstate contains, for each process, the state of the process during the snapshot.
– pcut is an intermediate variable presenting the construction of the snapshot.

The invariant (A) (see Fig.2) defines constraints on these variables and states the con-
sistency of the snapshot: If a message m is sent by a process (p) at a time (i), and received
by a process (q) at a time (j) before the snapshot, then the time (i) belongs to the past of
the cut.

Events describe the computation of the snapshot :

– Tick models the flow of time.

EVENT Tick
WHEN
grd1 : tm = FALSE

THEN
act1 : tm := TRUE

We model the fact that a predefined global time (t) (for triggering the snapshot) has
been reached, by setting the value of tm to TRUE.



262 M. B. Andriamiarina, D. Méry, N. K. Singh

– ProcessingSnapshot demonstrates the simultaneous local snapshots of all the pro-
cesses. When the global time (t) (for triggering the snapshot) has been reached, all
the processes records their local states and begin to save incoming pre-snapshot mes-
sages.

– Snapshot describes the global snapshot. An abstract parameter acut (modelling the
global state of the system) of the event is removed and replaced by concrete variable
pcut. This new variable pcut represents the global state of the system and its value
is computed in previous event ProcessingSnapshot. When all the processes have
recorded their local states, as well as all the incoming pre-snapshot messages, the
global state (pcut) of the system is saved into the variable cut.

The events Sending and Receiving are refined and their refinements describe the
pre-snapshot and post-snapshot activities of the system:

– SendingBeforeCut: This event models the sending of messages before the global
time (t) for processing the snapshot is reached. The actions of this event are similar
to the actions of the abstract event Sending.

– SendingAfterCut: This event demonstrates the sending of messages after the local
snapshot of a process (p). The message (m) is marked as being sent by the process
(p) after the local cut.

– ReceivingPreCutMessages: This event presents the receiving of pre-snapshot mes-
sages by a process (q), after a local cut.

The message (m) received by the process (q) is recorded as a pre-snapshot message.

– ReceivingPostCutMessages: This event expresses the receiving of marked post-
snapshot messages by a process (q), after a local cut. The message (m) received by the
process (q) is removed from the set (mark_m) of marked post-snapshot messages.

– ReceivingBeforeCut: This event models the receiving of messages before the global
time (t) for processing the snapshot is reached. The actions of this event are the same
as the actions of the abstract event Receiving.

The following sections describe the derivation of other algorithms for computing snap-
shots, in a complete local manner, without any global mean [13, 16].
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6.2. Computing an Asynchronous Snapshot

The ASYNC-PROCESS model (see Fig.3) refines the OBSERVATION model, and presents
the asynchronous construction of a correct snapshot (pcut) step-by-step. A control mes-
sage (marker) is introduced along with events to separate pre and post-snapshot mes-
sages for describing the development steps of the snapshot algorithm :

Fig. 3. The ASYNC-PROCESS Machine

– StartingSnapshot: A node (initiator) starts to build of the snapshot. The node
(initiator) saves its local state. It begins to record the incoming messages (marker)
and finally, this node (special) sends a message (marker) to all of its neighbouring
nodes.

– ProgressingSnapshot: A node (i) receives a message (marker) from the neigh-
bouring node and it begins to record all the incoming messages. If the node (i) re-
ceives all the messages before sending the message (marker), it records the local
state and transmits the message (marker) to its neighbours.

– Snapshot: All the nodes have received a message (marker). For all the nodes, the
messages sent to them before a message (marker), have been received. Finally, the
global state of the distributed system is saved.
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The model also introduces a set of properties for describing the consistency of the cut:

(A) If a message m is sent by a process (p) at a time (i), and received by a process (q) at
a time (j) before the snapshot, then the time (i) belongs to the past of the cut.

(B) If a message m is sent by a process (p) (which has already performed a local cut) at
the time (i), received by a process (q) (which has not yet performed a local cut) at a
time (j), then the time (i) belongs to the past of the cut.

(C) If a message m has been sent by a process (p) to process (q) at a time (i) (before the
receiving of a message (marker) by the process (p)), then the time (i) belongs to the
past of the cut.

The events Sending and Receiving are refined to distinguish pre-snapshot messages
and/or activities from their post-snapshot counterparts:

– SendingBeforeCut: This event describes the sending of a message (m) by a process
(p), before the local cut of the process (p). The actions of this event are similar to the
actions of the “normal” event Sending.

– SendingAfterCut: This event presents the sending of the message (m) by the process
(p), which follows the local cut of the process (p). The message (m) is marked as
being sent after the local cut of the process(p).

– ReceivingPreCutMessages: This event demonstrates the receiving of the message
(m) (sent by the process (p) before the local cut of the process (p)) by a process (q),
after receiving a message (marker) by the process (q).

The incoming message (m) is recorded by the process (q).
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– ReceivingPostCutMessages: This event shows the receiving of a message (m)
(sent by a process (p) after the local cut of the process (p)) by a process (q), after
the process (q) has performed a local cut. The message (m) received by the process
(q) is removed from the set (mark_m) of marked post-snapshot messages.

– ReceivingBeforeCut: This event describes the receiving of a message (m) (sent by a
process (p) before the local cut of the process (p)) by a process (q), before the process
(q) performs a local cut. The actions of this event are the same as the actions of the
“normal” event Receiving.

6.3. Deriving Asynchronous Snapshot Algorithms

The Lai and Yang Algorithm The Lai and Yang algorithm [16] is a two-phases proto-
col: either (A) one special process (called initiator) initiates the snapshot, or (B) another
process among non-initiator processes extends the snapshot. Due to their similarities, we
will focus on phase (A), depicted by the following steps:

process (initiator) :

step 1: record local state;

step 2: snapshot := 1;

step 3: begin to record incoming pre-snapshot messages;

step 4: to send a message : <message, snapshot>;

Details of the two possible phases are described by the model ASYNC-PROCESS, an
abstract model of the Lai and Yang algorithm [16]: channels between processes are rep-
resented by sets of messages; however a message (m) is extended by a bit, which de-
termines either if the message is pre or post-snapshot. The bit is 1, when the predicate
m ∈ mark(c) holds. The model LAI-PROCESS, refining ASYNC-PROCESS, localizes in-
formations and describes a model for the Lai and Yang algorithm. We can identify, in
the LAI-PROCESS model, events representing the phases (A) and (B) of the Lai and Yang
algorithm:

The actions of this event
can be associated with the
steps of phase (A) :

– act1 models step
1: the process
(initiator) records its
local state.

– act2 represents
step 2: the process
(initiator) takes a
local snapshot.

– act3 indicates that the process (initiator) will record all pre-snapshot incoming mes-
sages (step 3).

– Finally, act4 and act5 match step 4: the process (initiator) indicates that all out-
going messages will be labelled with the bit 1.
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We can see that the two phases (A) and (B) are modelled, respectively, by the events
StartingSnapshot and ProgressingSnapshot. The other events do not describe parts
of the Lai and Yang algorithm; they depict activities of the processes and the network
(communications, computations, etc.).

The Chandy and Lamport Algorithm The Chandy and Lamport algorithm [13] uses a
mechanism of coloring and propagation of a red color from a white one. A white message
occurs before a snapshot and a red message occurs after the snapshot. We split the two
kinds of messages using a variable mark, indicating, whether or not messages (marker)
have been sent by processes. The abstract model FIFO-PROCESS of this algorithm refines
the model PROCESS: it is an abstract model of the Lai and Yang algorithm. Behaviours
of the model FIFO-PROCESS correspond to behaviours of the model ASYNC-PROCESS,
thanks to refinement. However, the machine FIFO-PROCESS and context FIFO-NETWORK
(extension of the context NETWORK) introduce new features: the separation between the
pre and post-snapshot messages is implemented by a FIFO communication mechanism.
Channels between nodes are transformed from sets of messages to FIFO queues. Because
of the clear distinction between the pre and post-snapshot phases, the bit of membership
defined in the Lai and Yang algorithm can be removed; which means that the messages are
less complex. However, we can observe that a strong constraint is added: in the Chandy
and Lamport algorithm, FIFO communication channels are mandatory. The LOC-FIFO-
PROCESS model refines the FIFO-PROCESS model: the LOC-FIFO-PROCESS model local-
izes events and is producing the algorithmic form of the Chandy and Lamport algorithm.

6.4. Comparing the Formal Modelling of Snapshot Algorithms

We have studied two categories of snapshot algorithms: synchronous snapshot algorithms
and asynchronous snapshot algorithms.

In this section, we compare these two types of snapshot algorithms according to two
criteria: first, we make comparisons of formal development complexity; then, we compare
their local and global characteristics.

Model Total Auto Interactive
NETWORK 6 6 100% 0 0%

FIFO-NETWORK 5 4 80% 1 20%
SYSTEM 55 50 90.9% 5 9.1%

OBSERVATION 41 37 90.24% 4 9.76%
SYNC-PROCESS 45 41 91.11% 4 8.89%

ASYNC-PROCESS 96 66 68.75% 30 31.25%
LAI-PROCESS 85 46 54.12% 39 45.88%

FIFO-PROCESS 229 12 5.24% 217 94.76%
LOC-FIFO-PROCESS 5 4 80% 1 20%

TOTAL 567 266 46.91% 301 53.09%

Table 2. Summary of Proof Obligations

Asynchronous snapshot algo-
rithms seem at first glance more
complex than synchronous ones:
we can see in the previous sections
that asynchronous algorithms pos-
sess more steps than synchronous
algorithms. Asynchronous snap-
shot algorithms have two phases:
1) a snapshot initialisation phase
(event StartingSnapshot) and 2)
a progression phase (event Pro-
gressingSnapshot); whereas,
synchronous algorithms only
have one phase: the simultaneous
computation of the snapshot by
the processes (event

ProcessingSnapshot). Clearly, this difference affects the size of the models: obviously,
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formal models of asynchronous snapshot algorithms are more complex, since they con-
tain more events. The difference in complexity is underlined by the number of invari-
ants needed to demonstrate the consistency of a snapshot: the ASYNC-PROCESS model
requires a set of invariants (A, B, C, see Fig.3), while the SYNC-PROCESS model only
necessitates one (A, see Fig.2). Furthermore, the table 2, presenting the proof obligations
discharged either manually or automatically, confirms that modelling asynchronous algo-
rithms is more complex: the total number of proofs (96) for these algorithms is more than
twice as much as the number of proofs (45) for synchronous algorithms, and it should be
noted that the number of manual proofs for asynchronous algorithms is far greater (30
vs 4). The following table sums up the complexity differences between synchronous and
asynchronous snapshot algorithms.

Complexity Synchronous Asynchronous
Invariants (consistency of snapshot) less (1) more (3)

Number of Algorithmic Steps less (1) more (2)
Number of Events related To The Computation less (1) more (2)

Number of Proofs less (45) more (96)

Table 3. Complexity of the Models of Snapshot Algorithms

If we analyse their local and global characteristics, we can see that synchronous snap-
shot algorithms are generally based on the observation of external global elements, such
as global time, while, on the other hand asynchronous snapshot algorithms only relies
on the local resources and informations of the processes. The table 4 summarises these
characteristics:

Characteristics Synchronous Asynchronous
Global yes no
Local yes yes

Table 4. Local and Global Characteristics of the Models of Snapshot Algorithms

In a nutshell, we say that the availability of global shared elements (e.g. global time)
greatly simplifies the formal design and modelling of distributed snapshot algorithms [30].
However this simplification of design is gained at the expense of other qualities, like
localisation.

7. Discussion, Conclusion and Future Work

The snapshot algorithm identifies global states in a distributed system. The result of our
works on the snapshot problem is the discovery of a generic architecture which allows the
derivation of various algorithms. The model SYSTEM provides an abstract view of a dis-
tributed system and the activities of its processes (computations, communications, etc.).
This model is generic: computations, activities, etc. can be made more specific, according
to the peculiarities of studied systems and can be refined following the same methodology
preserving correctness. The model SYSTEM is refined by a model OBSERVATION, which
introduces the notion of snapshot: an event models the global snapshot of the distributed
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system. The development of the snapshot is organised from the models called ASYNC-
PROCESS and SYNC-PROCESS, which express the underlying computation procedure and
can be refined into several other algorithms. The key idea is to separate the pre-shots and
the post-shots and the solution depends on assumptions on communications, namely chan-
nels and messages: the mark variable is either a marker for a bit, a marker for fifo channels
or a marker for global temporal aspects. The complexity of the development is measured
by the number of proof obligations which are automatically/manually discharged (see ta-
ble 2). The main difficulty of the development was the expression of a consistent snapshot
in the machines ASYNC-PROCESS and SYNC-PROCESS, therefore the establishment of the
refinement relation between these machines and the machine OBSERVATION. A set of in-
variants (A,B,C) of the machine ASYNC-PROCESS (Fig.3) and the invariant (A) of the
machine ASYNC-PROCESS (Fig.2) were the keys of the development, where the gener-
ated proof obligations were quite difficult to discharge. We also notice that the number of
manual proof obligations increases dramatically for the model FIFO-PROCESS (see table
3): this augmentation is due to the transformation of sets of messages into FIFO queues of
messages. In fact, we had to prove a lot of properties defining the proper behaviours of
FIFO queues and communications. Moreover, the snapshot algorithm is supposed to work
while another process SYSTEM is working; SYSTEM is a model for another distributed
system and the snapshot algorithm is an implementation of the observation of the current
system. Contrary to the verification by theorem provers [24], our work provides an archi-
tecture for developing the snapshot algorithm using essential safety properties together
with a formal proof that asserts its correctness.

In this paper, we have experimented on fixed networks. As a part of our future efforts
we consider the global family of snapshot algorithms to give a very precise description of
different solutions and to link between these algorithms, as we notice that the algorithm
of Chandy and Lamport is obtained from the algorithm of Lai and Yang by adding a
FIFO communication. Moreover, we plan to integrate the snapshot algorithm with complex
distributed systems like mobile networks.
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