
Computer Science and Information Systems 11(1):271–289 DOI: 10.2298/CSIS130127008L

Towards hybrid client-side cache management in
network-based file systems

Xiuqiao Li1,2,3, Limin Xiao1,2, Ke Xie2, Bin Dong2, Li Ruan1,2, and Dongmei Liu2

1 State Key Laboratory of Software Development Environment, Beihang University
Beijing, China

2 School of Computer Science and Engineering, Beihang University
Beijing, China

3 IBM China Systems and Technology Laboratory
Beijing, China

lxiuqiao@cn.ibm.com {xiaolm,kexie,bindong,ruanli,liudm}@buaa.edu.cn

Abstract. Client-side caching is an effective technique to hide network latency and
improve I/O performance in network-based file systems. Current methods mainly
adopt block-indexed caching structures, which suffer cache inefficiency problems
in high concurrency environment. In this paper, we present a hybrid client-side
caching scheme (HCCache) to avoid performance degradation caused by the block
interleaving problem and increase the cache space efficiency by customizing con-
tent addressable levels for files with different sizes. Two new metrics are also pro-
posed to accurately evaluate cache efficiency compared with the metrics of hit rate.
Extensive simulations show the I/O performance with HCCache can be improved
by 34.2 percent and 6.1 percent in average for read requests and 37.8 percent and
27.8 percent in average for write requests in terms of I/O bandwidth and access la-
tency, respectively. Meanwhile, HCCache can significantly reduce the lookup times
of content addressable data blocks and improve the access latency for small files.

Keywords: client-side caching, small files, network-based file system.

1. Introduction

Caching technique is one common approach to alleviate the access latency in many appli-
cation scenarios, such as web servers [34], storage and file systems [25, 8, 21], databases
[38], etc. The rationale is that frequently accessed items have higher probabilities to be
served from cache with lower latency than normal accesses. In network-based file systems
(such as Lustre [3], PVFS [4]), the functionalities of file system clients and servers are
decoupled and interact data among each node over network. Meanwhile, metadata servers
(MDSs) in many file systems are also decoupled from data servers (DSs) [40, 42]. Serv-
ing an I/O request requires interactions with multiple servers according to complex I/O
protocols. Efficient design of client-side caching becomes crucial to hide the I/O latency
of both network round-trips and disk accesses.

Nowadays client-side caching is facing more concurrency due to the advent of both
hardware and software technologies. Network-based file systems can be shared by thou-
sands of concurrent clients, especially in high performance computing (HPC) facilities

272 Xiuqiao Li, Limin Xiao, Ke Xie, Bin Dong, Li Ruan, and Dongmei Liu

[17]. Moreover, multicore/manycore processors with hundreds of cores are readily avail-
able for computing in near future [30]. Hence, even single file system client can expe-
rience high I/O concurrency. To benefit from parallelism, multi-thread/process applica-
tions programmed by parallel languages or libraries(such as pthread, MPI/MPI-IO [8],
OpenMP [27]) become mainstream in many fields, such as scientific computing, image
processing, etc. Many of these applications generates concurrent, burst I/O requests with
small inter-arrival times shorter than a millisecond [11, 37].

Designing efficient client-side caching is facing a lot of challenges in high concur-
rency environment. One reason is that I/O workloads exhibit various workload charac-
teristics [9, 10, 13, 25]. For example, previous studies [9, 15] show that many workloads
contain large number of small files with an average size under 1 MB or less. Typical
small files include tiny web pictures, text documents and output files generated from sci-
entific experiments [9, 32]. Meanwhile, many of them are immutable and dominated with
read-exclusive accesses [18]. Hence, the cache performance is critical to serve requests on
small files with low latency and high bandwidth. However, current design of client-side
caching often employs block-indexed structures to manage cached data. While it is simple
and effective for caching data for large files, small files will suffer poor performance in
high concurrency environment. With block-indexed structures, the small file data has a
high probability of interleaving by the blocks from other files in the least recently used
(LRU) list. Once a block is evicted, following requests will suffer expensive accesses over
the network.

In this paper, we present a hybrid client-side caching scheme (HCCache) to address
above issues. HCCache combines the merits of object-indexed and block-indexed struc-
tures to distinguish the caching schemes for small and large files. The small file data with
HCCache is managed in the LRU list as a whole. Therefore, the probability of partially hit
in cache for small files can be significantly reduced. Furthermore, HCCache also can cus-
tomize the granularity of content addressable cache data to trade off the memory savings
and cache performance. Our main contribution can be summarized as follows.

– HCCache allows customizing the per-file caching behaviors (e.g., selecting cache
block sizes, operating blocks in LRU list, selecting data compression granularities).
Hence, the performance of small files can be optimized without interfering the caching
behaviors of large files.

– We analyze the deficiencies of hit rates metrics in evaluating cache efficiency for
I/O intensive workloads and propose two new metrics to correctly reflect the cache
efficiency.

– Extensive simulation results using real-world application traces demonstrate the effi-
ciency of HCCache in aspects of I/O bandwidth and access latency.

The rest of paper starts with the problem statement of our paper in Section 2. The
design of HCCache is given in Section 3. Section 4 discusses the evaluation metrics of
cache efficiency. Section 5 introduces the implementation of HCCache and the simulation
methodology of evaluating our method, and the evaluation results are analyzed in Section
6. Section 7 summarizes the related work, followed by the conclusion and future work in
Section 8.

Hybrid client-side cache management 273

2. Problem Statement

In this section, we introduce the performance problems of caching small files with block-
indexed structures in detail by motivating simulation results.

2.1. Cache Block Interleaving Problem of Small Files

To guarantee data consistency and fairness, operating the data in a cache shared by mul-
tiple clients requires locks to proceed concurrent requests sequentially. When the con-
current requests are burst, however, the cache blocks of the same file will be interleaved
with other blocks in the LRU list. Fig.1 shows an example of the block interleaving phe-
nomenon. Two reasons make this phenomenon to become a common case. The first one
lies in the reduction of I/O access size by the file system client. Although applications
can specify a large I/O access size with the I/O system call, the file system will split
the I/O request into multiple requests with a predefined transfer size. For example, the
default transfer size of NFS is 4KB and can be configured up to 32KB [5]. Another rea-
son is that setting too large cache block sizes will introduce false sharing problem which
significantly degrades performance for concurrent writers [29].

1 2 3 4 5 1 3 2 1 2 5

oldest newest

Fig. 1. Example of Cache Block Interleaving phenomenon. The blocks in the LRU list belong to
five files. File 1 has 3 blocks in total and interleaved by 6 blocks of other files

To analyze the effect of concurrency on the cache block distribution of small files, we
motivate the concept of average block distance (ABD), which is defined as dividing the
total number of cache blocks between the first and the last block belongs to the file in the
LRU list by the total number of cache blocks of the file. Suppose a file F has n data blocks
with the storing order in the LRU list. The index number of the ith block can be coined as
Di.

Definition 1 (ABD(average block distance)). The ABD of a file F in the client-side
cache is defined as:

ABD = (Dn −D1)/(n− 1) (1)

, where D1 and Dn are the index numbers of the first and last data blocks in LRU list,
respectively.

We conducted simulations using a real-world trace httpd to measure the ABDs of
small files in the client-side cache. Fig. 2 shows the results of replaying traces with varying
the number of cores, which are indicated by the prefix in the legends, e.g., ‘256C’ means
256 cores configured for the simulations. We can observe that the blocks of small files
are interleaved more seriously with large number of concurrent clients. For example, the
ABDs with over 256 clients are around 60 and 90 blocks in the LRU list. Therefore, the
data of small files have higher probabilities to be partially cached in memory due to block
evictions.

274 Xiuqiao Li, Limin Xiao, Ke Xie, Bin Dong, Li Ruan, and Dongmei Liu

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450

A
B

D
 o

f
s
m

a
ll

 f
il

e
s

Time(sec)

64C 128C 256C 360C 448C

Fig. 2. ABDs of small files in httpd traces with varying client scale

2.2. Performance of Partially Cached Small Files

To analyze the effect of block interleaving problem on small files, we measured the read
I/O latencies with various transfer sizes. Fig. 3 shows the latency results of performing
read requests with the specific size using 100 clients. We can observe that the read latency
numbers with the transfer sizes below 64KB are comparable. The performance degrada-
tion of partially cached small files is introduced by two reasons. On one hand, the cached
blocks of small files bring little performance benefits. Suppose the cache block size is
32KB and the second block of a 33KB file missing in the cache. Although only missing
1KB data in cache, the total latency of reading the file is still about 4 to 5 ms, which is
almost the same to the one without cache. Therefore, missing part of blocks of small files
in the cache is more expensive than large files. Even worse, on the other hand, the partially
cached data is useless to reduce latency and totally wastes the memory, making the cache
performance can not be fully exploited.

0

5

10

1B 32B 64B 128B 1KB 4KB 32KB 64KB 96KB

A
v
e
ra

g
e
 r

e
a
d

la

te
n

c
y
 (

m
s
)

File size

A
B

D
 o

f
s
m

a
ll

 f
il

e
sFig. 3. Average read latency of small files with varying transfer sizes

2.3. Design Goals

To address the above cache performance problems, we aim to design a hybrid client-
side caching scheme for I/O intensive workloads and achieve the following design goals:
(1) Performance: to improve the aggregate bandwidth and reduce the average latency for
small files, (2) Efficiency: to improve the cache space utilization and avoid unnecessary
performance overhead incurred by data management techniques, (3) Scalability: to scale
caching performance for small files in large scale environment.

Hybrid client-side cache management 275

3. HCCache Design

In this section, we present the design of proposed HCCache by introducing the architec-
ture overview of our approach and discussing the design details.

3.1. Architecture overview

Network interconnect

…
HCCache

…Core Core

HCCache

…Core Core

Client1 Clientn

HCCache

Cache interface layer

Cache operation layer

Data management layer

(a) HCCache position in a network-based file system (b) HCCache layer architecture

MDS DS1 DS2 DSm…

Fig. 4. HCCache architecture in a network-based file system

HCCache is placed on each client to serve I/O requests from memory for frequently
accessed files. Requests missed in cache will interact with remote MDSs and DSs over
the network. Fig. 4(a) shows the position of HCCache in the network-based file system
architecture. All the cores on a client currently share the same HCCache daemon to access
data. However, the design can be easily extended to the collective cache, which is shared
by multiple clients.

Fig. 4(b) shows the three layers of HCCache to efficiently serve the I/O requests. The
functionality of each layer is introduced as follows.

– The cache interface layer translates the I/O requests and chooses proper cache oper-
ations to serve the requests for small and large files.

– The cache operations layer is responsible for managing the cache operations, includ-
ing data insertion, lookup and eviction.

– The data management layer explores the space efficiency by adopting content ad-
dressable storage (CAS) method to avoid storing duplicate blocks. The chosen CAS
level and granularity is determined based on the file size.

3.2. Cache Interface and Operations

In this section, we present the design details of the cache interface and operations in
HCCache.

276 Xiuqiao Li, Limin Xiao, Ke Xie, Bin Dong, Li Ruan, and Dongmei Liu

Cache Structure As shown in Fig. 5, HCCache adopts a three level cache structure to
operate file data. Similar with block-indexed structures, HCCache requires serval param-
eters with I/O requests to operate cache items, such as file name, operation type, access
offset and size. The difference is that HCCache needs one more parameter to get the file
size of requested file. This information is readily available in practical since the file meta-
data needs to be retrieved before issuing I/O requests [7, 28]. HCCache relies on a file
size threshold to determine whether it is a small file. The file size threshold for small files
can be tunable according to workloads characteristics. We chose 256KB as the small file
threshold, which worked fine for our simulations.

The data blocks in HCCache are logically arranged into groups indexed by corre-
sponding file names. The top level of cache structure is responsible for indexing these
groups and querying the group for specific I/O request. At the second level, the block
organizations of each group are versatile for different kinds of files. All the blocks of a
small file are treated as a whole in the LRU list when performing cache operations, while
the blocks of a large file are processed as individual units to in the LRU list. HCCache
maintains the data in different CAS pools at the lowest level to trade off space savings
and performance.

Req

#

File

name

Op Offset Size File

size

1 SF1 Read 0 KB 16KB 30KB

2 SF2 Write 16KB 26KB 40KB

3 LF1 Read 0 KB 64KB 1MB

File name query interface

SF1 SF2 LF1 LF2

I/O

Requests

Block-indexed CAS PoolObject-indexed CAS Pool

Fig. 5. An example with proposed three-level cache structure

Cache Insertion The data to be inserted may be only part of the small file due to splitting
requests or the setting of cache block size smaller than the transfer size. To increase space
efficiency, the cache space of a small file is dynamically allocated rather than pre-allocated
while inserting data block for the file at the first time. As shown in Fig. 5, although the file
size of the file named SF2 is 40KB, the size of cache space for the file is only 16KB before
receiving the second request in the table. The blocks with dashed lines are not available
and do not occupy any space. Only when processing the second request, the occupied
space is enlarged to 40KB in the example. The cache insertion algorithm is described in
Algorithm 1.

Cache Lookup Looking up data in HCCache requires firstly locating the data group
with the requested file name and then finding the blocks with requested offset and I/O

Hybrid client-side cache management 277

Algorithm 1 Cache insertion algorithm in HCCache
Insert data block(Fi, j) to LRU list LRUList

1: if Fi is a small file then
2: if there is no DGroup(Fi) then
3: create data group DGroup(Fi);
4: add data block(Fi, j) to DGroup(Fi);
5: put DGroup(Fi) as the last element in LRUList;
6: else
7: add or update data block(Fi, j) to DGroup(Fi);
8: put DGroup(Fi) as the last element in LRUList;
9: else

10: if there is no DGroup(Fi) then
11: create data group DGroup(Fi);
12: add data block(Fi, j) to DGroup(Fi)
13: put data block(Fi, j) as the last element in LRUList;

size. If only part of requested data hit in the cache, the left region should be requested
from remote servers. This procedure is the same for looking up the data of both small and
large files. However, the difference is that the whole data group of requested small file is
moved to the tail of the LRU list. This way avoids possible block interleaving problems
induced by accessing part of file blocks. Algorithm 2 shows the details of cache lookup
operation.

Algorithm 2 Cache lookup algorithm in HCCache
Lookup data block(Fi, j) from LRU list LRUList

1: if Fi is a small file then
2: if there is no data group of Fi in LRUList then
3: return CACHE MISS;
4: else
5: if there is no data block(Fi, j) in DGroup(Fi) then
6: return CACHE MISS;
7: else
8: put DGroup(Fi) as the last element in LRUList;
9: return data block(Fi, j);

10: else
11: if there is no data block(Fi, j) in LRUList then
12: return CACHE MISS;
13: else
14: put data block(Fi, j) as the last element in LRUList;
15: return data block(Fi, j);

Cache Eviction Evicting a cache item in HCCache is simple and straightforward as
shown in Algorithm 3. As the locations of small files data are updated once accessing the

278 Xiuqiao Li, Limin Xiao, Ke Xie, Bin Dong, Li Ruan, and Dongmei Liu

file, all the small file data will be erased. Therefore, the cache space occupied by partially
cached small files can be reused quickly.

Algorithm 3 Cache eviction algorithm in HCCache
Evict data block(Fi, j) from LRU list LRUList

1: if Fi is a small file then
2: if there is no data group of Fi in LRUList then
3: return NON EXIST ;
4: else
5: if there is no data block(Fi, j) in DGroup(Fi) then
6: return NON EXIST ;
7: else
8: evict data block(Fi, j) from DGroup(Fi);
9: if there is no data block(Fi, j) in LRUList then

10: remove DGroup(Fi) from LRUList;
11: return SUCCESS;
12: else
13: if there is no data block(Fi, j) in LRUList then
14: return NON EXIST ;
15: else
16: evict data block(Fi, j) from LRUList;
17: if there is no data block(Fi, j) in LRUList then
18: remove DGroup(Fi) from LRUList;
19: return SUCCESS;

Cache Operations Runtime Optimization HCCache introduces additional layer to man-
age data blocks of the same file in a data group. Hence, there is potential impact on the
performance of cache operations. The extra steps of operating data groups are as follows.

– isExist(file name): Query the existence of data group with file name.
– getDGroup(file name): Retrieve the reference of data group with file name.
– createDGroup(file name): Create the data group for specific file.
– add/delBlock2DGroup(data block,DGroup): Add or remove data block from the data

group corresponding to its file name.

The runtime of first two operations is both related to the total number of active files
in cache. To reduce the overhead of traversing all data groups, we exploit efficient data
structures to operate data groups with low overhead. We maintain a bloom filter [24, 33]
to represent the existence of data group by hashing file names. Queries with false results
from the structure will be immediately returned as no such data group exists. In contrast,
the true results are not represented as existence except the data group with the hashed file
name found in the list. The query latency and extra space allocation can be traded off to
optimize the runtime. The last two operations only need one linked list operation and thus
contribute little overhead to cache operations.

Hybrid client-side cache management 279

3.3. Cache Data Management

Despite the amount of total memory on commodity servers is continued increasing, most
of memory space is consumed by applications and the one left for file system caching on
client-side is limited [9]. CAS is an effective method to improve the space efficiency for
data storage or caching and becomes popular during recent years [14, 16, 26]. The basic
idea is that the data is split into small chunks and chunks with duplicate content are only
saved one copy. The similarity detection of duplicate chunks is performed using hashing
techniques, such as MD5, SHA1. While significant space savings can be achieved, CAS
introduces the hash generation cost and the time of looking up chunks.

HCCache takes considerations of workload characteristics into its data management
design using CAS methods. Specifically, we choose different CAS levels and granulari-
ties for small and large files. As shown in Fig. 5, the small and large file data is stored in
the object-indexed and block-indexed CAS pools, respectively. The reasons for this de-
sign can be two folds. On one hand, previous studies show that the total data amount of
small I/O accesses only accounts for 10 percent of storage space in many applications,
although the number of small I/O accesses makes up 90 percent of total accesses[37].
Meanwhile, the access latency is very important for workloads with many small files. For
example, the results files of physical experiments or log files recording calls in a telephone
company both require to be generated in burst. One the other hand, the data similarity be-
tween chunks of different small files is small in many workloads. Take the web workloads
contain large number of tiny pictures as an example, these image files are generated and
compressed as high-density binary files. The left improvement space of memory space
savings is rather small and one practical choice of saving space is by finding completely
duplicate images.

4. Metrics of Cache Efficiency

Currently, hit rate is the de-facto metrics to evaluate the cache efficiency [31, 41]. How-
ever, this metrics cannot always reflect the real cache efficiency on improving I/O latency
and bandwidth. Fig. 6 shows an example of cache block lists with a block-indexed cache
(baseline) and the HCCache. There are three files sharing the cache and file A and B both
have one data block missed in the baseline cache, while file B completely misses in HC-
Cache. Suppose the cache size is 6 blocks and each block size is 16KB, two I/O requests
are issued to request the whole data of file A and B. The hit rate of the baseline cache is
66.7 percent (4 hits in cache and 6 lookup operations), while the one of HCCache is 50
percent (3 hits in cache and 6 lookup operations). However, as both two I/O requests are
partially hit in the baseline cache, the file system client with the baseline cache requires
to issue two accesses to request data from remote servers. For the case with HCCache,
the request on file B completely misses in the cache and needs to retrieve the whole file
from server. Although the I/O sizes of two remote accesses with baseline cache are only
one cache block size of 16KB, the access latency is similar with the one of accessing the
whole file with a file size of 48KB according to the results shown in Section 2. Therefore,
the total access latency of the two requests with the baseline cache is appropriate two
times larger than the one with HCCache.

The main reason of incorrectly evaluating cache efficiency is that hit rate metrics
doesn’t take account of the real effect of cached data on I/O performance. We present two

280 Xiuqiao Li, Limin Xiao, Ke Xie, Bin Dong, Li Ruan, and Dongmei Liu

Baseline A1 A2 A3
File A B1 B2 B3

File BA1 A2 C1 B1 B2 C2

HCCache

1 2 3 1 2 3

C CFil C CC C CA A AHCCache C1 C2File C C3C1 C2 C3A1 A2
A3

(a) LRU-based cache block list (b) Blocks of files

Fig. 6. An example of block lists with different cache schemes

new metrics to evaluate the cache efficiency with HCCache scheme. The definitions of
proposed metrics are given as follows.

Definition 2 (ECDAL(Effect of Cache Data Amount on Latency)). The ECDAL of a
client-side cache during a period of time is defined as:

ECDAL = 1/(
n∑

i=1

Li ∗
m∑
j=1

CDAj) (2)

, where Li is the latency of completing the ith I/O request, and CDAj is the data amount
of jth cache insert operation.

Definition 3 (ECDAB(Effect of Cache Data Amount on Bandwidth)). The ECDAB of
a client-side cache during a period of time is defined as:

ECDAB =
n∑

i=1

DAi/(max
k=1

(CTk) ∗
m∑
j=1

CDAj) (3)

, where DAi is the data amount of the ith I/O request and CTk is the total I/O time on
the kth client.

These evaluation metrics establishes the relations between I/O workloads and cache
performance. The effect of the cached data amount on the I/O bandwidth and latency
of I/O requests can be quantified. The larger value of these metrics, the higher cache
efficiency can be achieved. For instance, the HCCache in our example holds smaller I/O
request latency and the same cached data amount compared with the case with the baseline
cache. Hence, the proposed metrics can correctly evaluate the cache efficiency as the
ECDAL of HCCache is better than the one of baseline cache.

5. Implementation and Simulation Methodology

This section describes the implementation of HCCache on the simulator and the work-
loads used to evaluate the effectiveness of our method.

5.1. Simulation framework

We extended a file system simulator used in our previous study [20] to evaluate the HC-
Cache behaviors on large scale file systems within a short period of time. The simulator
is originated from an open-source parallel file system simulator PFSsim [23], which uses

Hybrid client-side cache management 281

DiskSim [2] to simulate accurate disk response time. As shown in Fig.7(a), there are four
kinds of nodes in the simulator, including the client, the data server, the metadata server
and the router. These nodes are configured to be connected via networks with specific
latency and bandwidth. The simulator is driven by trace files to simulate the process of
serving I/O requests and the results are computed and reported by the clients. We made
serval modifications on the simulator to support our simulation requirements.

– Multicore support. We support simulating multicore architecture on file system
clients. The implementation is mainly motivated from HECIOS simulator [22, 29].
As shown in Fig.7(b), each clientcore module can replay its own trace file and the re-
quests are forwarded to the mclient module, which schedules the requests and sends
to the server node via the router node.

– Various trace formats support. PFSsim only supports a self-defined trace format,
which is not convenient for traces from various sources, such as MAMBO Suite [6],
LANL MPI Trace [1] and HECIOS format [29], etc. We extended the input interface
of trace files and allowed to configure different traces running on given range of client
and server nodes.

– Better integration of DiskSim. Accurate disk response time is vital to guarantee the
correctness of simulating I/O behaviors. PFSsim relies on TCP connections to com-
municate between DiskSim and PFSsim. The simulation speed is too slow to make
the simulation time intolerable for I/O-intensive workloads. We integrated DiskSim
with the simulator more tightly by statically linking DiskSim to the simulator during
compilation. The improvement can significantly accelerate simulations while main-
taining correctness.

Cache

Requests

Router

…

Metadata servers

…

Data servers

…

Trace Trace Trace Trace

…Clients

Trace Trace Trace Trace

Clientcore ModuleCore Core Core Core

Cache ModuleMClient Module

Request queue

I/O Forwarder

HCCache

Cache lock system

BICache

…

I/O Requests

(a) Simulator architecture (b) Client modules and relationships

Fig. 7. Simulator architecture overview and its client-side main modules

5.2. HCCache Implementation

The cache module on a client in the simulator is shared by multiple cores. The read
requests issued by clientcore module are firstly forwarded to the cache module. If the
requested data is available, the requests will be directly served. Otherwise, the requests are

282 Xiuqiao Li, Limin Xiao, Ke Xie, Bin Dong, Li Ruan, and Dongmei Liu

routed to server nodes along with normal I/O paths. When the client receives the requested
data from server nodes, the response message will be forwarded to cache module again to
update cache status. Finally, the message is forwarded to the clientcore module.

The HCCache scheme is implemented in the cache module. The most important part
of simulating the cache block interleaving phenomenon is the lock mechanisms to gen-
erate block insertion sequences for different files. As the simulator is driven by discrete
events, each request needs to update the global time and schedule the self event of the
cache module to proceed a pending request. After a request got the lock, the request will
be proceeded using cache operations in HCCache based on the request type. During this
period, all received requests are pending in a queue to wait for owning the lock.

The implementation of cache scheme is modular and easy to add new schemes to
substitute HCCache scheme. To evaluate the performance benefits, we also implemented
a block-indexed cache in our simulator. By default, the simulator was configured with 32
DSs and 1 MDS, which connected with a 1 Gbps switch among each server. The cache on
each client node was configured with the cache size of 32 MB and the cache block size of
32 KB.

5.3. I/O Workloads

To evaluate the efficiency of HCCache under I/O intensive workloads, we chose the httpd
trace [6] which was collected from NASA Kennedy Space Center’s web server to perform
simulations. After removing the uncorrect records in the traces, the trace files used in our
simulation record over 21.5GB read accesses on 10,132 files, which consist of over 9,000
files smaller than 256KB. Table 1 shows the statistics of I/O requests in httpd trace. The
original traces were stored in 7 files. To simulate future I/O systems with hundreds of
cores, we used the similar scale-up approaches in [42] to split the original trace files into
448 subtraces and concurrently replayed them using up to 448 cores.

Table 1. Workload statistics of httpd traces

Small files Large files
Trace File number Data amount I/O amount File number Data amount I/O amount
httpd 10118 218.84MB 18.92GB 14 21.8MB 2.56GB

To evaluate the write performance of HCCache, we simulated write-intensive appli-
cations with large amount of small and large file accesses. We first generated a synthetic
trace to create concurrent requests of writing small files with the request size of 4 KB. The
file sizes were varied from 4 KB to 256 KB evenly. Then we simulated the write requests
of large files using FLASH I/O traces [29].

6. Performance Evaluation

We evaluated our design by running simulations on a server with AMD Quad-core pro-
cessor, 8GB RAM, and 1TB Seagate 7200RPM hard drive. This section presents the sim-
ulation results in terms of cache performance, efficiency of cache data management and

Hybrid client-side cache management 283

performance sensitivity. We focus on analyzing the benefits of HCCache over the block-
indexed cache (BICache).

6.1. Evaluation of cache performance

We present and discuss the cache performance results in aspects of the aggregate band-
width, the average access latency and the metrics of cache efficiency.

Fig. 8 shows the comparisons of read performance with BICache and HCCache for
httpd trace. The performance numbers of large files and small files are labeled with “L”
and “S”, respectively. The simulations varied the concurrency degrees by replaying dif-
ferent numbers of subtraces. We can observe that HCCache performs better than BICache
under all simulation settings. The average improvements of bandwidth and latency for
small files are 34.2 and 6.1 percent, respectively. The reason is that the data of a small
file with HCCache are operated as a whole, avoiding performance degradation caused by
partially hit in BICache. To be noticed, the improvement ratios with different number of
cores are not consistent or linearly increasing. The amount of trace records and contents
replayed each time are not equal and identical due to workload scale-up reasons. For ex-
ample, in the case with 256 cores, the tests only use 256 files out of 448 trace files of httpd
to reduce the simulation time. Large file performance can also be improved by about 3 to 5
percent with HCCache. The reason is the cache space saved by avoiding partially caching
small files can cache more large file blocks. Another observation is that the bandwidth
numbers are decreasing when the number of clients increases over 256 for both two cache
schemes. This is because the system becomes saturated due to high concurrency. How-
ever, even in those cases, HCCache is still superior to BICache due to higher efficiency of
space utilization.

0

10

20

30

40

50

60

70

80

S L S L S L S L S L

64 128 256 360 448

A
g
g
re
g
a
te

 b
a
n
a
d
w
id
th

(M

B
/
s)

Number of clients

BICache HCCache

(a)

0

2

4

6

8

10

12

14

S L S L S L S L S L

64 128 256 360 448

A
v
e
ra
g
e

 I
/
O

 l
a
te
n
cy

 (
m
s)

Number of clients

BICache HCCache

(b)

Fig. 8. Read performance for httpd trace:(a) aggregate bandwidth,(b) access latency

Fig. 9 shows the comparisons of write performance with BICache and HCCache for
the synthetic trace. We configured 256 processes to run the synthetic trace and varied the
numbers of concurrent clients running FLASH I/O traces to generate write requests of
large files. Compared with BICache performance, we can observe the bandwidth and ac-
cess latency with HCCache can be improved by 37.8 percent and 27.8 percent in average,
respectively. The reason is that HCCache will buffer the small writes in cache and only

284 Xiuqiao Li, Limin Xiao, Ke Xie, Bin Dong, Li Ruan, and Dongmei Liu

commit data to disk when the cache block is evicted. The whole small file data is com-
mitted using one disk request, while BICache may require more disk requests depending
on its data distribution in the evicted cache blocks. The performance impact of HCCache
on large files of FLASH I/O traces is not shown in the figure as it is similar to the one we
observed for httpd trace.

0

20

40

60

80

100

120

140

160

180

16 32 64 128 256

A
g
g
re
g
a
te

 b
a
n
a
d
w
id
th

(M

B
/
s)

Number of FLASH I/O clients

BICache HCCache

(a)

0

2

4

6

8

10

12

16 32 64 128 256

A
v
e
ra
g
e

 I
/
O

 l
a
te
n
cy

 (
m
s)

Number of FLASH I/O clients

BICache HCCache

(b)

Fig. 9. Write performance for synthetic trace:(a) aggregate bandwidth,(b) access latency

Fig. 10 shows the comparisons of the results of three cache efficiency metrics under
above simulations. We can observe that the hit rates with BICache are a little higher than
the ones of HCCache. However, the performance results shown in Fig. 8 do not exhibit
expected improvements. Instead, both I/O bandwidth and access latency suffers perfor-
mance problems. Therefore, the metrics of hit rate fails to evaluate the cache efficiency
correctly. In contrast, the results of proposed metrics ECDAL and ECDAB can show the
effect of cache efficiency on I/O performance correctly.

6.2. Efficiency of Cache Data Management

HCCache adopts CAS method to improve the memory utilization of cache space. How-
ever, selecting proper CAS level and granularity is critical to control the overheads in-
herited to the CAS method. Table 2 summarizes the results of CAS block lookup times
and impacts on I/O latency for small files. The baseline results are simulated on HCCache
with only a block-indexed CAS pool for both small and large files. We can observe that the
lookup times of optimized cases can reduce over 96 percent compared with the baseline.
The reason is that the optimized HCCache maintains CAS data at an object granularity
and each file request only requires one query operation. The reduction of lookup times
also induces lower latency for reading small files due to the same reason.

6.3. Sensitivity Study

Cache size is an important factor potentially influencing the I/O performance. Fig. 11
shows the small file performance with different cache block sizes using 256 clients. In
theory, the block interleaving problem will be alleviated with a larger number of cache
block size. However, the results show HCCache can achieve better performance for cache

Hybrid client-side cache management 285

0

50

100

H
it

 r
a
t
e

BICache HCCache

(a)

0

5
E
C
D
A
L

(b)

E-06

E-06

0

1

2

3

64 128 256 360 448

E
C
D
A
T

Number of clients

(c)

E-03

E-03

E-03

Fig. 10. Results of cache efficiency metrics:(a) Hit rate, (b) ECDAL, (c) ECDAB

Table 2. Comparisons of CAS efficiency of small files in httpd trace

clients 64 128 256 360 448
Baseline
lookup times

946592 2075072 3865472 5252608 5952736

Optimized
lookup times

29581 64846 112736 164144 186023

Latency im-
provement

2.47% 1.82% 4.1% 8.78% 5.42%

block sizes smaller than 128KB. Although there is a little performance down for HCCache
with the cache block size of 128KB, this block size is not suitable for practical use as it
makes the effect of false sharing problem worse on cache performance.

0

10

20

30

40

50

60

70

80

16 32 64 128

A
g
g
re
g
a
te

 b
a
n
a
d
w
id
th

(M

B
/
s)

Number of clients

BICache HCCache

(a)

0

1

2

3

4

5

6

7

8

9

10

16 32 64 128

A
v
e
ra
g
e

 I
/
O

 l
a
te
n
cy

 (
m
s)

Number of clients

BICache HCCache

(b)

Fig. 11. I/O performance of small files with different cache block sizes: (a) aggregate bandwidth,(b)
average latency

286 Xiuqiao Li, Limin Xiao, Ke Xie, Bin Dong, Li Ruan, and Dongmei Liu

7. Related Work

Client-side caching is a common technique adopted by many network-based file systems
to improve I/O performance. NFS4 provides fine-grained file region locks to support con-
current cache accesses on the same file. Lustre [3] also uses its distribute lock manager
to guarantee cache consistency among concurrent clients. Besides, file systems, such as
Ceph [39], PPFS [25], all support client-side caching. However, the existing client-side
cache implementations are adopted the block-indexed structures [29]. None of them con-
siders the caching performance of small files in the high concurrency environment.

Many studies have been focused on improving cache performance for I/O workloads.
Settlemyer, et. al [29] studied client-side caching techniques to alleviate the effect of false
sharing problem at costs of time and space. They also motivated a MPI File View combin-
ing for collective I/O operations to improve cache performance for MPI applications with
large amount of small I/O calls. Vilayannur, et. al [35] proposed a discretionary caching
scheme to allow applications configuring caching parameters at compilation stage. Mad-
hyastha, et. al [25] presented two methods to learn access patterns of I/O accesses and
utilized the results to make cache policy selection at runtime. Wachs, et. al [36] proposed
a workload-aware cache partitioning method to allocate cache space size for concurrent
applications on storage server. Frasca, et al. [12] proposed a virtual I/O caching framework
to improve the utilizations of cache space by dynamically mapping logical cache pages of
each application to physical cache blocks. The main idea is to assign most valued cache
blocks higher priority in cache to achieve the same hit rates while consuming a smaller
cache size. In contrast, the novelty of our study is to mitigate small files performance
degradation induced by block interleaving problem in high concurrency environment. The
requests on files with different sizes are operated with different granularities in the client-
side cache. Therefore, HCCache scheme can enforce all the data blocks of a small file
in the cache at the same time, avoiding the possible performance degradation caused by
partially hit in cache. HCCache does not track access information for each cache page and
can achieve performance benefits without additional overheads or memory consumptions.
Furthermore, we also proposed new metrics to correctly reflect the read cache efficiency.

Many efforts [12, 19, 26] have been focused on reducing cache size without hurting
cache performance. These work can be classified by either reducing the number of cache
blocks or saving memory space according to the cache block contents. The former one
mainly focuses on deciding the necessary blocks in cache and improving the cache space
utilization. The latter one often employs compression methods or CAS methods to reduce
the cache data size of cache blocks determined by the cache module. Therefore, these
methods can further improve cache efficiency after adopting the former kind of methods.
However, compression-based methods require large amount of CPU time to process data
during I/O operations. In contrast, CAS-based methods are more attractive as they only
need one more hash operation before storing data in cache. Nath et al. [26] observed sig-
nificant savings in network bandwidth by adopting a content addressable cache. However,
one shortcoming of CAS-based methods is that getting a cache block requires multiple
lookup operations for corresponding CAS blocks. The HCCache scheme trades off the
spacing savings and performance improvements by increasing the CAS granularity of
small files.

Hybrid client-side cache management 287

8. Conclusion and Future Work

This paper proposed HCCache to improve cache efficiency by distinguishing caching
schemes for small and large files. We studied the block interleaving problem and per-
formance degradation for partially hit small files. Motivated by the problem, we present
a three-level cache structure to serve I/O requests according to the characterizes of files
with different size. The data of small files is managed in the LRU list and CAS pools
at per-object basis. Two metrics of cache efficiency are also defined to correctly reflect-
ing cache performance. The simulation results demonstrate that HCCache can improve
the I/O performance of small files in terms of bandwidth and latency compared with the
block-indexed cache. In future, we plan to further study HCCache behaviors in the col-
lective cache which shared by clients from multiple nodes.

Acknowledgments. This work is supported by the National Natural Science Foundation of China
under Grant No.61370059, 61232009, the Doctoral Fund of Ministry of Education of China un-
der Grant No. 20101102110018, Beijing Natural Science Foundation under Grant No. 4122042
and the fund of the State Key Laboratory of Software Development Environment under Grant No.
SKLSDE-2012ZX-07.

References

1. LANL Trace, http://institute.lanl.gov/data/software/.
2. The DiskSim Simulation Environment (v4.0), http://www.pdl.cmu.edu/DiskSim
3. Lustre File System (2010), http://www.lustre.org
4. The Parallel Virtual File System (2010), http://www.pvfs.org
5. Linux NFS-HOWTO (2012), http://tldp.org/HOWTO/NFS-HOWTO/
6. MAMBO I/O Trace Suite (2012), http://www.cs.umd.edu/projects/hpsl/mambo/index.html
7. Ananth, D., Pete, W.: File Creation Strategies in a Distributed Metadata File System. In: IEEE

IPDPS. pp. 1–10. IEEE Computer Society (2007)
8. Byna, S., Chen, Y., Sun, X.H., et. al: Parallel I/O prefetching using MPI file caching and I/O

signatures. In: ACM/IEEE SC’08. pp. 1–12. Piscataway, NJ, USA (2008)
9. Carns, P., Lang, S., Ross, R., Vilayannur, M., Kunkel, J., Ludwig, T.: Small-file access in par-

allel file systems. In: IEEE IPDPS. pp. 1–11. Rome, Italy (2009)
10. Chen, J., Roth, P.C., Chen, Y.: Using Pattern-Models to Guide SSD Deployment for Big Data

in HPC systems. In: BigData 2013 (2013)
11. Chen, Y., Sun, X.H., Thakur, R., Roth, P.C., Gropp, W.D.: LACIO: A New Collective I/O

Strategy for Parallel I/O Systems. In: Proceedings of the 2011 IEEE International Parallel &
Distributed Processing Symposium. pp. 794–804. IPDPS ’11, IEEE Computer Society, Wash-
ington, DC, USA (2011)

12. Frasca, M., Prabhakar, R., Raghavan, P., Kandemir, M.: Virtual i/o caching: dynamic storage
cache management for concurrent workloads. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis. pp. 38:1–38:11. SC ’11,
ACM, New York, NY, USA (2011)

13. He, J., Bent, J., Torres, A., Grider, G., Gibson, G., Maltzahn, C., Sun, X.H.: I/O acceleration
with pattern detection. In: HPDC 2013. pp. 25–36. ACM, New York, NY, USA (2013)

14. Koller, R., Rangaswami, R.: I/o deduplication: Utilizing content similarity to improve i/o per-
formance. Trans. Storage 6(3), 13:1–13:26 (2010)

15. Kuhn, M., Kunkel, J.M., Ludwig, T.: Dynamic file system semantics to enable metadata opti-
mizations in PVFS. Concurr. Comput. : Pract. Exper. 21(14), 1775–1788 (September 2009)

288 Xiuqiao Li, Limin Xiao, Ke Xie, Bin Dong, Li Ruan, and Dongmei Liu

16. Kulkarni, A., Manzanares, A., Ionkov, L., Lang, M., Lumsdaine, A.: The design and imple-
mentation of a multi-level content-addressable checkpoint file system. In: High Performance
Computing (HiPC), 2012 19th International Conference on. pp. 1–10 (2012)

17. Lang, S., Carns, P., Latham, R., Ross, R., Harms, K., Allcock, W.: I/O performance challenges
at leadership scale. In: ACM/IEEE SC. pp. 1–12. Portland, Oregon, USA (2009)

18. Lensing, P., Meister, D., Brinkmann, A.: hashFS: Applying Hashing to Optimize File Systems
for Small File Reads. In: Proceedings of SNAPI 2010. pp. 33–42. IEEE Computer Society
(2010)

19. Li, M., Varki, E., Bhatia, S., Merchant, A.: Tap: table-based prefetching for storage caches. In:
Proceedings of the 6th USENIX Conference on File and Storage Technologies. pp. 6:1–6:16.
FAST’08, USENIX Association, Berkeley, CA, USA (2008)

20. Li, X., Dong, B., Xiao, L., et. al: Cefls: A cost-effective file lookup service in a distributed
metadata file system. In: CCGrid’12. pp. 25–32. IEEE Computer Society (2012)

21. Liao, W.k., Coloma, K., Choudhary, A., Ward, L., Russell, E., Tideman, S.: Collective caching:
application-aware client-side file caching. In: HPDC ’05. pp. 81–90. IEEE Computer Society,
Washington, DC, USA (2005)

22. Limin, X., Ke, X., Guoying, L., Li, R., Xiuqiao, L.: QoSFM: QoS Support for Metadata I/O
In Parallel File Systems. In: The 15th IEEE International Conference on High Performance
Computing and Communications (HPCC 2013) (2013)

23. Liu, Y., Figueiredo, R., Clavijo, D., Xu, Y., Zhao, M.: Towards simulation of parallel file system
scheduling algorithms with PFSsim. In: Proceedings of SNAPI 2011 (2011)

24. Lu, G., Nam, Y.J., Du, D.C.: Bloomstore: Bloom-filter based memory-efficient key-value store
for indexing of data deduplication on flash. In: IEEE 28th Symposium on Mass Storage Sys-
tems and Technologies (MSST). pp. 1–11 (2012)

25. Madhyastha, T.M., Reed, D.A.: Learning to Classify Parallel Input/Output Access Patterns.
IEEE Trans. Parallel Distrib. Syst. 13(8), 802–813 (August 2002)

26. Nath, P., Urgaonkar, B., Sivasubramaniam, A.: Evaluating the usefulness of content addressable
storage for high-performance data intensive applications. In: Proceedings of the 17th interna-
tional symposium on High performance distributed computing. pp. 35–44. HPDC ’08, ACM,
New York, NY, USA (2008)

27. Osthoff, C., Grunmann, P., Boito, F., et. al: Improving performance on atmospheric models
through a hybrid openmp/mpi implementation. In: ISPA ’11. pp. 69–74. IEEE Computer Soci-
ety, Washington, DC, USA (2011)

28. Sadaf, R.A., Hussein, N.E.H., Kristopher, H., Neil, S., Fabio, V.: Parallel I/O and the Metadata
Wall. In: 6th Parallel Data Storage Workshop, SC11 (2011)

29. Settlemyer, B.W.: A study of client-based caching for parallel I/O. Ph.D. thesis, ClemsonUni-
versity (2009)

30. Sun, X.H., Chen, Y.: Reevaluating amdahl’s law in the multicore era. J. Parallel Distrib. Com-
put. 70(2), 183–188 (Feb 2010)

31. Sun, X.H., Wang, D.: Apc: A performance metric of memory systems. SIGMETRICS Perform.
Eval. Rev. 40(2), 125–130 (Oct 2012)

32. Swapnil, P., Garth, G.: Scale and Concurrency of GIGA+: File System Directories with Mil-
lions of Files. In: FAST ’11. San Jose, CA (2011)

33. Tarkoma, S., Rothenberg, C., Lagerspetz, E.: Theory and practice of bloom filters for dis-
tributed systems. IEEE Communications Surveys Tutorials 14(1), 131–155 (2012)

34. Vakali, A.: Evolutionary techniques for web caching. Distrib. Parallel Databases 11(1), 93–116
(Jan 2002)

35. Vilayannur, M., Sivasubramaniam, A., Kandemir, M., et. al: Discretionary caching for i/o on
clusters. Cluster Computing 9(1), 29–44 (Jan 2006)

36. Wachs, M., Abd-El-Malek, M., et. al: Argon: performance insulation for shared storage servers.
In: FAST ’07. pp. 5–5. USENIX Association, Berkeley, CA, USA (2007)

Hybrid client-side cache management 289

37. Wang, F., Xin, Q., Hong, B., et. al: File system workload analysis for large scale scientific
computing applications. pp. 139–152. MSST’04 (2004)

38. Wang, X., Malik, T., Burns, R., et. al: A workload-driven unit of cache replacement for mid-tier
database caching. In: DASFAA’07. pp. 374–385. Springer-Verlag (2007)

39. Weil, S.A., Brandt, S.A., Miller, E.L., et. al: Ceph: a scalable, high-performance distributed file
system. In: OSDI ’06. pp. 307–320. USENIX Association (2006)

40. Weil, S.A., Pollack, K.T., Brandt, S.A., Miller, E.L.: Dynamic Metadata Management for
Petabyte-Scale File Systems. In: Proceedings of the 2004 ACM/IEEE conference on Super-
computing. pp. 4–. IEEE Computer Society (2004)

41. Zhao, T., March, V., Dong, S., See, S.: Evaluation of a performance model of lustre file system.
In: 2010 Fifth Annual ChinaGrid Conference. pp. 191–196 (2010)

42. Zhu, Y., Jiang, H., Wang, J., et. al: HBA: Distributed Metadata Management for Large Cluster-
Based Storage Systems. IEEE Trans. Parallel Distrib. Syst. 19, 750–763 (2008)

Xiuqiao Li received his Ph.D. Degree in Computer Architecture at Beihang University,
China in 2013. His research interests include high performance file systems, job sched-
ulers and cloud storage.

Limin Xiao is a Professor, Senior membership of China Computer Federation. His main
research areas are computer architecture, computer system software, high performance
computing, visualization and cloud computing.

Ke Xie is a postgraduate student in Computer Architecture at Beihang University, China.
His research mainly focuses on providing I/O QoS in parallel file systems for concurrent
metadata-intensive applications.

Bin Dong received his Ph.D. Degree in Computer Architecture at Beihang University,
China in 2013. His research interests include data layout optimizations, hybrid storage
optimizations in parallel file systems.

Li Ruan is a Ph.D., Lecturer, Senior membership of China Computer Federation. Her
main research areas are virtualization and cloud computing, computer system software,
high performance computer.

Dongmei Liu received her M.S. Degree in Computer Applications at Beihang Univer-
sity, China in 2010. Her research interests focus on network simulations for distributed
systems.

Received: January 27, 2013; Accepted: November 9, 2013.

