
Computer Science and Information Systems 11(1):291–308 DOI: 10.2298/CSIS130204009Z

Duplication Problem in Treaty Systems:
Causes and Solutions

Yining Zhao1 and Alan Wood2

1 Department of Computer Science
University of York, York, UK

yz616@york.ac.uk
2 Department of Computer Science

University of York, York, UK
alan.wood@york.ac.uk

Abstract. Capabilities are a more scalable and adaptive access control approach
compared with the conventional approaches such as ACLs, due to their being held
and managed by users or agents in systems, but not the middleware. This feature
makes capabilities more suitable in distributed environments that have dynamic
populations. Treaties have been proposed to enhance the capability approach by
introducing sequences of actions, such that treaties can capture characteristics of be-
haviours, and provide finer control over accesses. However there is a new problem
brought by the behaviour modeling of treaties which is called duplication problem,
which concerns preventing users from gaining unauthorized behaviour by duplicat-
ing treaties. In this paper we provide the formal definitions of treaty operations,
and discuss the causes of the duplication problem, and how treaty operations can
affect this. We also propose three models of treaty systems that aim to solve the
duplication problem, and evaluating their performance and scalability.

Keywords: Behaviour Control, Access Control, Duplication Problem, Treaties, Dis-
tributed Computing.

1. Introduction

Distributed systems and cloud services are important areas of research that are becoming
ubiquitous components in everyone’s life. It is essential to provide these applications with
the necessary support mechanisms that ensure functionality, confidentiality, integrity, se-
curity, etc. Most modern services are provided subject to some required protocols which
can be expressed as allowable sequences of actions. For example, to use an on-line bank-
ing system, the user would need to first login, and then choose to do a number of ac-
tions such as making payments or transferring money between accounts, and then logout.
Clearly these services involve confidential data that should be protected and hence access
(and other) control mechanisms are essential.

In order that such services can be provided, the system must provide mechanisms to
support:



292 Yining Zhao and Alan Wood

– confidentiality and security — only authorised agents can access certain resources;
– agent-level construction of behavioural specifications;
– flexibility and scalability, so that they are able to operate in open distributed environ-

ments.

Most conventional access control mechanisms are centralized, since agents’ identities
(and other properties) need to be managed centrally. Although this option makes certain
useful properties easy to implement, such as strong authentication, these mechanisms are
quite static and scale badly.

Capabilities, originally introduced by Dennis and Van Horn [1] to support memory
management for multi-programmed computation, are a well-known dynamic approach to
access control. They differ from the widely used Access Control List (ACL) approach, as
ACLs are centralized controls with a fixed user population, whereas capabilities are more
flexible and can be easily distributed, due to that they can be propagated among users.

Capabilities also have some weaknesses that may cause problems. For example, it
is widely believed that capabilities cannot enforce confinement [8], nor to revoke permis-
sions that have been previously granted, as being addressed the revocation problem [7][4].
People have worked with these and suggested some solutions (see section 2).

In addition to these apparent problems, the structure of capabilities is not rich enough
for defining agents’ behaviours in distributed systems. For instance, the holder of a ca-
pability has unlimited use of any right that the capability provides. Capabilities cannot
express cases such as ‘only allowed to read the file three times’. These and other con-
siderations mean that we need to develop new solutions that may better support services
which require a finer level of behavioural specification.

Here we introduce treaties as a new approach to access control in distributed envi-
ronments. In treaties there are behaviour descriptors that are used for modelling the se-
quences, branches and terminations of actions. This distinguishes treaties from capabili-
ties that contain ‘sets of rights’. With the new component, treaties can define the accesses
of users in a much more detailed and accurate way.

In section 3 the concept of treaties will be reviewed, with the duplication problem
being detailed in the following part, introducing three models of treaty systems that aim
to solve the duplication problem. Treaties in these models have different locations which
may affect the structure and efficiency of treaty systems. Hence we will also examine the
performance of these models in the evaluation section.

2. Related Work

There has been much work aimed at the improvement of the capability approach to over-
come the restrictions mentioned above and make it more applicable. A known mechanism
that solves the revocation problem is the use of caretaker [9]. When a user passes capabil-
ities to others, he can add ‘caretakers’ to them. The caretakers refer to some ‘gates’ set up
by the user, and the user can ‘open’ or ‘close’ these gates. Only when gates are open, can
others use capabilities from the user to access resources. Therefore the user can disable
capabilities previously sent out by shutting down gates, i.e. he revokes these capabilities.
ICAP [4] and SplitCap [7] are claimed to solve confinement problems to some extent.



Duplication Problem in Treaty Systems: Causes and Solutions 293

Capabilities with modifications are also applied in various fields. EROS [10] shows
that a capability-based operating system can perform as well as ACL-based systems with-
out any special hardware assists. Establishing private channels in LINDA-like [3] tuple-
space systems has also been suggested using mix of ACLs and capabilities [12]. Mul-
ticapabilities [11] apply the idea of capabilities into tuple-space systems by modifying
the structure of capabilities to refer to multiple unnamed targets of a matching pattern.
µKLAIM [5] uses a capability approach to solve the problem of unmatched static con-
trol in dynamic environments. Vistas [13] extend the idea of capabilities by introducing
combining operations, so that the holder of vistas can construct them to fit different cases.
Vistas provide a ‘product’ operation which displays some aspects of behavioural specifi-
cation by constructing a pair of actions that must be performed in sequence. Vistas can
also contain references to multiple objects which capabilities do not. The treaty concept
is a direct extension of the idea of vistas, and they can be represented in various options
[14].

Session Types [2] provide a similar fashion of behaviour modelling that treaties are
capturing. Session types are used to define communications with a prescribed conversa-
tion plan, so that the types and sequences of messages can be expected. In that way they
can ensure the two communicating parties are using the same and correct protocol, and
the communication patterns and flow controls are correctly implemented. However, the
orientation of session type theories is different from treaties, as session types mainly con-
cern the verification of communications at compile-time, while treaties are making their
effects at run-time.

3. The Concept of Treaties

Treaties are extended from the idea of capabilities, and they can also be used as access
control components. This inheritance implies that treaties adopt many properties from
capabilities. They are also unforgeable pieces and can be propagated, thus suitable for
distributed environments.

The key function that treaties provide is ‘behaviour control’. This differs from the
‘rights only’ mode of capabilities in the sense that a treaty can allow or deny different
actions at different times or stages, depending on the current state of the treaty or current
stage of the process/behaviour (capabilities are stateless entities, and so cannot control
sequences of actions. See Fig. 1). With treaties sequences of allowed actions are specified,
and enforced, in order to form behaviours. Treaties aim to capture attributes of behaviours,
such as sequencing, branching and terminating. This is done by introducing ‘states’ into
treaties.

Abstractly, treaties are access control components that provide specifications of be-
haviours that can be followed for a number of resources, together with the current state of
the evolution of the behaviours. As fundamental requirements, treaties shall:

– refer to resources.
– provide information to a kernel to enable it to allow or deny an action request.
– not be strictly bound to agents, i.e. kernels do not need to check their holder’s identity

in order to grant or deny actions.
– be able to ‘evolve’ behaviours according to their specifications, i.e. maintain and up-

date the behavioural state.



294 Yining Zhao and Alan Wood

Fig. 1. Structure of Capabilities and Treaties

Therefore each treaty can be seen as consisting of three components: the reference
pointing to the resource (or resources), the behaviour descriptor modelling the behaviours
permitted by the treaty, and the current state of the behaviour in this treaty. From this, we
can see that that capabilities are special treaties, in which there is only a single behavioural
state, and all allowed actions are reflexive transitions on this state. We call a capability-
like treaty a ‘complete treaty’, which is created by the kernel when the resource is created,
and given to the creator of the resource.

In a treaty-based system, the usual process of using treaties can be like this: a) a user
U requires the kernel to create a resource, b) the kernel creates the resource R and returns
a complete treaty T to user U , containing all possible action types relevant to the resource
R with an unrestricted number of accessing repetitions, c) user U can refine the behaviour
model represented by the behaviour descriptor in T so that the specified treaties T1...Tn
are constructed, d) U can pass these specified treaties to other users U1...Un to distribute
the right to access R, e) Um who received Tm can show this treaty to the kernel to access
R, if this access is validated by Tm.

There are a number of operations that are proposed to refine behaviour models in
treaties, and they are called restrict, intersect, join, concatenate, difference [14]. The fun-
damental rule of a treaty system is that an agent cannot increase the totality of behaviours
defined by the treaties it holds, hence we need to make sure the given five treaty operations
and other potential operations will not break this rule.

The behaviour set concept has been discussed in [15]. Briefly speaking, the behaviour
set of a treaty α is denoted by [[α ]], and it means the set that contain all behaviours that
are granted by α, including the empty behaviour ε.

We could produce the formal definition of the five basic treaty operations using the
concept of behaviour set (a@b denotes the number of times that action a appears in be-
haviour b):



Duplication Problem in Treaty Systems: Causes and Solutions 295

join α t β [[α t β ]] = [[α ]] ∪ [[β ]]

intersect α u β [[α u β ]] = [[α ]] ∩ [[β ]]

difference α− β [[α− β ]] = [[α ]] \ { x | x = b.Σ∗, where b ∈ [[β ]] and b 6= ε}

concatenate α · β [[α · β ]] = { x | x = b1.b2, where b1 ∈ [[α ]] and b2 ∈ [[β ]] }

restrict [α]an [[[α]an ]] = { x | x ∈ [[α ]] and a@x ≤ n }

These can be used to examine the correctness of the any implementations for the treaty
operations, and they are also used to show why using treaty operations without security
concerns would cause problems in the next section.

4. The Duplication Problem

Treaties extend vistas, and thus capabilities, in functionality, and so there arise some new
practical and theoretical issues that need to be considered. It must also be remembered
that treaties not only inherit positive attributes from capabilities but also some negative
issues. Thus the development of treaty systems needs to consider these problems, together
with their particular challenges brought by treaties.

A main challenge that results from the new functionality of treaties is the duplication
problem. Treaties require state descriptors to keep track of the evolution of behaviours.
This means protecting the state information is crucial. According to the rule of treaties,
we must ensure that allowed behaviours cannot be increased. A rollback of current state
may destroy this in treaties that are access time sensitive, as it means more actions can be
performed other than the assigned actions.

For instance, assume that a user is holding a treaty which allows him to perform a
read action exactly once. Then the challenge is how to prevent him from validly per-
forming more than one read by making a duplicate of the treaty. If this treaty is a piece
of data — a bit-string — completely stored in the agent’s memory, there is no way of
preventing the holder from making a copy of it before using it for any accesses. The
holder could then access the targeted resource using the copied treaty, and keep the ‘un-
used’ original so that he could do the same thing next time he wants to do a read on the
resource. In this way this user would gain unlimited number of accesses, which clearly
breaks the rule. We address this issue as the duplication problem.

The duplication problem does not only arise in this way. Taking another example of
the same treaty, assume the holder A sends (a copy of) his treaty to another user B, and
then A uses his copy of the treaty to perform the action. Later, B sends his treaty back
to A, and A now has the original treaty again! This example demonstrates that, even
when they are held by different users, treaties generated from the same original must be
maintained in the same state.

Moreover, the situation can be seen to be even more profound when considering
treaties which have been formed by the combination operations [15]. For instance, as-
sume user A has received a treaty from B which allows him to do a write then a read, and
has received another treaty from C that allows him to do a write then an execute, both
referring to the same resource. If A were to do a join [15] of the two treaties and send



296 Yining Zhao and Alan Wood

the result to D, and D were to request the kernel to perform a write action, whose treaty,
B’s or C’s, is the correct one to be synchronized? Thus concurrency issues also affect the
design and construction of treaty operations.

There is another area in treaty systems that should be aware of the duplication prob-
lem. The treaty combinator operations that are introduced in [14] and [15] provide a way
to refine the behaviour specifications while they are holding by users. But it could cause
problems if users would want to use a binary treaty operation to combine a treaty with
itself, where the result could be the duplication of the original treaty. This is an issue espe-
cially for the operation of concatenate, which produces behaviours from the operands of
the operation in sequences. If there is no particular concern to the issue, a user may gain
extra actions by doing a combination of a treaty to itself, so that the result treaty would
allow behaviours in this treaty happen twice in sequences.

It is probably necessary to have a look at what happens when binary treaty operations
are performed to a treaty with itself. Having the given basic binary treaty operations in-
tersect (α u β), join (α t β) and difference (α − β), if we applies they with treaty α in
both operands, the result would be:

α u α = α

α t α = α

α− α = φ

where φ denote an empty treaty that does not provide any valid behaviours or actions
to its holder, i.e. [[φ ]] = { ε }. These could be proven using the formal definition of treaty
operations and the concept of behaviour set:

[[α u α ]] = [[α ]] ∩ [[α ]] = [[α ]]

[[α t α ]] = [[α ]] ∪ [[α ]] = [[α ]]

[[α− α ]] = [[α ]] \ { x | x = b.Σ∗ where b ∈ [[α ]], b 6= ε} = { ε } = [[φ ]]

And for the operation concatenate (α · β):

[[α · α ]] = { x | x = b1.b2, where b1 ∈ [[α ]] and b2 ∈ [[α ]] }

It is possible that b1 = b2, which causes the behaviour b1 appears duplicated in the
result. If b1 contains one or more actions that have limited numbers of performing repe-
titions, this will leave the number of the action twice as much in the resulted treaty than
that in the original treaty.

Hence it is reasonable to make the decision that one should never use binary treaty
operations between a treaty and itself, as they only produce treaties that have no difference
from the operands of the operations, or empty treaties that allow to do nothing, or produce
treaties that break the assurance of behaviour control schemes.

Generally speaking, the most important new challenges of treaties are related to states,
and their management in a scalable fashion in a distributed system. This is unsurprising,
as behavioural states are exactly the novel feature that treaties provide.



Duplication Problem in Treaty Systems: Causes and Solutions 297

To solve such a problem, it seems that central control will have to act as a key part.
Critical information including the current state must be held somewhere that is controlled
by the kernel, so that users cannot freely create independent copies without any restric-
tions. Although this may suffer some centralization problems, it still allows the property
of treaty propagation, and kernels do not need to identify all users, hence it is not an
unacceptable cost.

5. Models for Solving the Duplication problem

It has been proposed that treaties can be represented in various ways as long as they are
still bounded to the conceptual definition of treaties [14]. Thus in practice there is more
than one option to solve the duplication problem. However these solutions still have to
follow the point that the crucial information of treaty states must be stored away from
users. In the following part in this section there are three models of treaty representation
to be introduced, aimed to solve the duplication problem.

5.1. Centrally Stored Treaties and References

Fig. 2. Structure of a Centrally Stored Treaty System

A very simple way of solving the duplication problem is to take treaties away from
users completely. In this case, users cannot access treaties directly any more, and thus are
not able to make copies of treaties or send them to other users. Treaties will now be held in
somewhere that can only be accessed by kernels. In return, users will only have references



298 Yining Zhao and Alan Wood

to those treaties. In this approach, together with the behaviour descriptor and the current
state and the reference to the target object, there will be a fourth part in treaties: a unique
identifier for each treaty. The identifier will also be contained in treaty references held by
users. Users can copy and send these references as many times as they like, as treaties are
still kept unique on the kernel side. Fig. 2 shows an example of the structure of a treaty
system that applies the representation of centrally stored treaties.

The process for preparing behavioural access control in such a model would be:

– A user process sends a request to the kernel, to create an object.
– The kernel creates the object, and creates a ‘complete treaty’ (unlimited accesses to all

available action types for the object). This treaty will be stored in the treaty container
that is managed by kernels, and the reference to this treaty, with the unique treaty
identifier, will be given to the creator of the object.

– Then the creator can refine the behaviour descriptor by telling the kernel how he will
use treaty operations.

– The kernel then constructs a new treaty and stores it in the container, and sends the
new reference back.

– The creator can now send copies of this reference to other users, so that they share
the access rights to the created object.

The process of performing an action on an object would be:

– A user needs to send a request together with the treaty reference.
– Upon receiving the request, the kernel then uses the identifier contained in the ref-

erence to locate the proper treaty, and checks whether the requested action is valid
according to the behaviour descriptor in the treaty.

– If it is permitted, the action will be performed on the target object, otherwise the
kernel will send a denying message implying that the action is not valid at this time.

This model is simple, but it has a weakness. In real cases it is quite possible that
users do not know the current valid actions regarding the behaviour descriptors. And
without access to the treaties, they will have to either a) send access requests without
any knowledge of treaties or, b) send a query asking what types of actions are available at
the moment. In both cases, the number of messages used for communication will increase.

However it needs to be mentioned that, in the case of option b, the returned ‘available’
types of actions might not be granted when the users try accessing objects. This is because
there is another user who also has a reference to the same treaty, and he made an action
using this treaty after the kernel returns the available action set and before the first user
makes the accessing request. This is the non-deterministic problem that many concurrent
systems may suffer, where processes share common resources and may disturb each other.
A possible solution is to include semaphore scheme, but this is would be examined in
future work.

5.2. User-held Treaties and Entries

In contrast to the previous implementation which locates treaties on the kernel side, this
model lets users hold treaties, and kernels only keep a list containing a number of entries,
each of which stores the information for a treaty. Treaties still have their unique identi-
fiers, and they are contained in entries as well, so that kernels can link them to treaties.



Duplication Problem in Treaty Systems: Causes and Solutions 299

Each entry consists of two parts: in addition to the treaty identifier, there is the current
state of the related treaty. Although users can make copies and distribute treaties, these
copies still have the same identifier and current state, which prevents the duplication prob-
lem happening. This approach also indicates that for a particular behaviour descriptor, all
states are distinguishable. Each state is tagged to show the identity that makes the state
different from other states in this behaviour descriptor. Fig. 3 shows an example of the
structure of a treaty system that uses the entry list option.

Fig. 3. Structure of a Treaty System with Entry List

To initiate the creation process:

– A user sends a request for creating a new object.
– The kernel creates the object and the complete treaty for the user, and an entry con-

taining the identifier and the initial state for the treaty.
– The entry is added to the entry list, and the complete treaty is sent to the creator of

the object.
– The creator can use treaty operations to modify the complete treaty by refinement.
– Before these refined treaties can be sent to other users, they must be first sent to the

kernel for registration.
– The kernel assigns identifiers to these treaties, and records them by adding corre-

sponding entries to the list.
– Now these treaties are ready for propagation.

If the user does not make the registration of their newly refined treaties to kernels, the
kernels will not hold any information of these treaties. When users use these unregistered
treaties to access objects, kernels simply deny these requests.

The process to access objects in this approach:



300 Yining Zhao and Alan Wood

– A user needs to send the request with the correct treaty.
– When receiving the treaty in the request, the kernel first looks for its entry, and then

checks whether the current state represented in the treaty is the same as represented
in the entry.

– If the two states are the same, and the requested action is valid in this state, the kernel
will update both states in the treaty and the entry to the new state according to the
performed action, and return the treaty.

– If the two states are different, the kernel will synchronize them by updating the current
state in the treaty with the state in the entry, and return this treaty to the user, notifying
that this treaty has been updated.

Such an approach reduces the communication messages to some extent, as users can
check the possible current state from treaties they are holding. Though there may still
be cases where users get outdated information when the real state in the entry held by
kernels has been changed by other users, it is suitable for applications which have few
users sharing objects. This is also because when multiple users share the same object,
the copy each of them holds is a treaty, which uses more space/memory, compared to
references held by users in the previous approach.

5.3. Two-layered Referring FSM Representation

As indicated by the name, the representation chooses finite-state machines as the be-
haviour descriptor, hence each time a valid action is performed, there is an explicit state
transition caused in relevant treaties. The key novelty of the Two-layered Referring FSM
Representation is shown in its treaty storage location scheme. In this representation,
treaties are neither stored centrally, nor completely distributed. Instead, there are two dif-
ferent categories of treaties in the system (See Fig. 4).

Fig. 4. Two-Layered FSM Representation



Duplication Problem in Treaty Systems: Causes and Solutions 301

Fig. 5. Referencing Structure of Two-Layered Referring FSM Representation

The first kind is called ‘source treaties’. These treaties are stored on the kernel side,
and each one can only refer to one object. Source treaties can be accessed by kernels and
the creator of the referred object, but not any other users. Actions granted by the source
treaties will be represented by transitions in the finite-state machine acting as the be-
haviour descriptor. The other kind of treaties is called ‘combined treaties’. These treaties
are generated from source treaties, and they are held by users that are not the original
creator of objects, but are permitted to have some accesses to those objects. Finite-state
Machines are also contained in combined treaties, acting as behaviour descriptors, but
combined treaties will not directly refer to any objects. Instead, each transition in the be-
haviour descriptors of combined treaties refers to one transition in a certain source treaty
(See Fig. 5). When the holder of a combined treaty uses it to perform a permitted action
on the targeted object, both the corresponding transition in the combined treaty and the
referred transition in the source treaty will be processed.

To initialize, a process will apply to the kernel to create an object. The kernel creates
the object, and returns a complete source treaty granting unlimited access for all action
types that are available to this extension of object. After this, the creator of the object can
use this complete source treaty to create treaties with more specified behaviour models,
using treaty operations. At this stage all treaties created by the creator of the object are
source treaties. When the behaviour model is obtained from a source treaty, the creator
can save it in the storage of the kernel for distributed use. Each source treaty can be used
as a model to build a combined treaty having exactly the same finite-state machine states



302 Yining Zhao and Alan Wood

and transitions that represent the behaviour. Each transition in the generated combined
treaty refers to the original transition in the source treaty.

After this, the creator can send out copies of combined treaties, and these copies are
built from the source treaties this creator is holding. When other users have received
many combined treaties, they can use treaties operations to refine the behaviour model
to generate new combined treaties and propagate them out as well. This also indicates
that there may be transitions in a same combined treaty that refer to source treaties of
different object, which means that the referencing style of the Two-layered Referring
FSM Representation is mixed multiple referencing [14].

The reason for this design is that, however users make copies and propagate to du-
plicate combined treaties, their transitions will still refer to the transition in the source
treaties (which are not duplicated). After a user performed an action, other users may not
be able to do the same action because the transition in the source treaty that grants this
access has already occurred. In this way, the duplication problem has been solved in this
representation.

6. Evaluating Performances

We have proposed several models that are designed for solving the duplication problem,
and they are going to be examined and compared for their performance with respect to
time and memory consumption. The treaties and related components were implemented in
Java, and they were installed in a discrete event simulation tool (SimJava [6]) which is also
used for network and distributed environment simulation. A use-case of voting system is
chosen here. Three options have been given for voting, and the behaviour model for each
voting treaty is shown in Fig. 6.

Fig. 6. Behaviour Model for a Vote Treaty

There are kernels and users who are communicating with events scheduled, includ-
ing requests from users and acknowledgments from kernels. There is an object count-
ing the voting result, and it can only be accessed by kernels. We used methods gc(),
totalMemory() and freeMemory() in the Runtime class for garbage collection
and memory calculation. When processing, each user starts its job by sending a request
for creating a treaty to the kernel. Upon reception of the treaty (or treaty reference), the
user chooses one of the three options to vote, and the kernel then changes the result in the
counting object, until all requests have been made and processed.



Duplication Problem in Treaty Systems: Causes and Solutions 303

Fig. 7 shows the time consumption when using one kernel to process different num-
bers of voters in our three models. The horizontal axis is the number of voters and the
vertical axis is the total time consumed in milliseconds. From this it can be observed that
the time spent by the Central Store approach and the Entry List approach is almost the
same, while the Two-Layered Treaty approach takes about 40% more. Fig. 8 shows the
time consumption when using multiple kernels to process 100 voters in the three models.
The result for multiple kernels does not show a great improvement from single kernel
processing, as the total amount of work by all kernels is nearly unchanged.

Fig. 7. Time Consumption while Number of Users Changes

Fig. 8. Time Consumption while Number of Kernels Changes



304 Yining Zhao and Alan Wood

Fig. 9. Space Consumption Comparison in Small Scaled Case

Fig. 10. Space Consumption Comparison in Larger Scaled Case



Duplication Problem in Treaty Systems: Causes and Solutions 305

Fig. 9 shows the memory consumption when having one kernel and one user, with one
treaty. The vertical axis is the memory consumed in bytes. In the Central Store approach
most of the memory consumption lies on the kernel side, while in the Entry List approach
there is a balanced state. The Two-Layered treaty approach costs more memory space
than the other two. Fig. 10 shows the memory consumption when there are 10 kernels
and 100 users with 100 treaties. We can see that in the Central Store approach, the kernel
load is very heavy, as it still takes more memory than the sum of user space. In the Entry
List approach, most of the memory consumption goes with user processes. Again the
Two-Layered treaty approach costs more memory space than the other two, but it should
be noted that this approach has the extra functionality of modelling sequences among
multiple objects.

7. Evaluating Scalability

The scalability of treaty systems is a very important measurement in this project, as
treaties are proposed to work in distributed environments where the number of users is
dynamic and varies widely. However, there is a problem before any evaluation can be car-
ried: the concept of scalability has not yet been formally defined. Scalability in parallel
computing was originally used to describe the enhancement of processing speed when
multiple processing units are involved in a computation. But as the areas of parallel and
distributed computing develop and applications and services in these fields keep vary-
ing, there is no single, commonly agreed way of measuring the ‘scalability’ for different
systems.

Thus it is best to define the meaning of scalability in treaty systems before carry-
ing out any evaluations. The chosen measurement of ‘scalability’ shall be suitable for
illustrating the performance of systems when the number of kernels and users changes
in distributed environments. We define treaty system to be ‘scalable’ if the consumption
of key measurements of the system increases linearly (or approximately linearly) while
the population in the system increases linearly, which means the ratio between increased
amount of consumption for resource and the increased amount of entities in the system is
approximately constant.

There are two major measurements that are selected for evaluating the performance
of treaty systems, they are the additional resource on kernels and the processing time for
requests. The additional resource on kernels is mainly used for storing state information
of treaties, as it has been explained that there must be some information stored by kernels
to solve the duplication problem. Ideally, the resource should have a linear increase with
the number of behaviour models, and we can certainly call treaty systems in this situation
‘scalable’. However, in practice it is always hard (or impossible) to reach the ideal case.
We will need to trace the trend of increases of resources in kernels as the number of users
increases (assuming each of them sets up a separate treaty).

The processing time for requests is another measurement that can reflect the perfor-
mance of treaty systems in distributed environments. In this part of evaluation we would
like to examine the average processing time for each request, which is calculated by hav-
ing the overall processing time divided by the number of requests. We will trace changes
in this average value when users and requests keep growing to evaluate the scalability on
processing time. This differs from the evaluation in the previous section which compares



306 Yining Zhao and Alan Wood

the processing time among capabilities, vistas and treaties. In the ideal case, the increase
in average processing time for a single request should also be linear.

Fig. 11. Average Time Consumption per Message while Users Increase

Fig. 11 shows the average time per message when users in the system increase. We still
do the comparison among the three models that aim to solve the duplication problem. The
messages that are counted in this experiment includes the request for obtaining a treaty,
the request for accessing the object using the treaty, and the acknowledgment message
for these two kinds of request. We can see from the figure that as the experiments go,
there are fewer factors that disturb the evaluation result, so the average time consumption
for processing each message becomes steady in later stages. This shows that when the
number of users increases, the processing time for requests is not much affected, which
implies good scalability in time consumption.

Fig. 12 shows the kernel space occupation when the number of users in the system
increases. From the result we can see that all the three models have a linear increase
in the space occupation on the kernel side. This also shows that treaty systems have a
good scalability in additional resource consumption on kernels. But note that in the three
approaches, the entry list approach has the lowest resource occupation among the three,
which seems to be the better choice if it is suitable to applications.

8. Conclusion

In this paper we have reviewed the concept of treaties as a behaviour control approach,
which have a number of operations [15] that can be used to refine these behaviour models.
The formal definitions of these operations are given. We have also discussed the duplica-
tion problem which is an important issue in treaty systems. Then three models of treaty
systems were introduced. Evaluation results shows the time and memory consumption
of the three models in a use-case, illustrating that the central-store approach consumes



Duplication Problem in Treaty Systems: Causes and Solutions 307

Fig. 12. Kernel Memory Occupation while Users Increase

more kernel resources while the entry-list approach consumes more on user side, and the
two-layered treaty approach has a more balanced situation but consumes more resources
totally. The result of evaluating the scalability also shown that treaty systems are ‘scalable’
in given measurements, as the time for processing each access request does not increase,
and the memory consumption on kernel side increases linearly.

Future work will involve investigating other representations of behaviour descriptors,
such as regular expressions, and comparisons between performances of the two behaviour
descriptors will be examined. We will also work on summarizing laws for treaty opera-
tions.

References

1. Dennis, J.B., Horn, E.C.V.: Programming semantics for multiprogrammed computations. Com-
munications of the ACM (3), 143–155 (3 1966)

2. Gay, S., Vasconcelos, V., Ravara, A.: Session types for inter-process communication. Tech.
rep., Department of Computing, University of Glasgow (3 2003)

3. Gelernter, D.: Generative communication in linda. ACM Transactions on Programming Lan-
guages and Systems (1), 80–112 (1 1985)

4. Gong, L.: A secure identity-based capability system. In: Proceedings of 1989 IEEE Symposium
on Security and Privacy. pp. 56–63 (1989)

5. Gorla, D., Pugliese, R.: Dynamic management of capabilities in a network aware coordination
language. Journal of Logic and Algebraic Programming 78(8), 665 – 689 (2009)

6. Howell, F., McNab, R.: Simjava: A discrete event simulation library for java. In: Simulation
Series. vol. 30, pp. 51–56 (1998)

7. Karp, A.H., Rozas, G.J., Banerj, A., Guptai, R.: Using split capabilities for access control. IEEE
Software (1), 42–49 (1 2003)

8. Lampson, B.W.: A note on the confinement problem. Communications of the ACM (10), 613–
615 (10 1973)

9. Miller, M.S.: Robust Composition: Towards a Unified Approach to Access Control and Con-
currency Control. Ph.D. thesis, Johns Hopkins University, Baltimore, Maryland, USA (May
2006)



308 Yining Zhao and Alan Wood

10. Shapiro, J.S., Smith, J.M., Farber, D.J.: Eros: a fast capability system. In: Symposium on Op-
erating Systems Principles. pp. 170–185 (1999)

11. Udzir, N.I.: Capability-Based Coordination For Open Distributed Systems. Ph.D. thesis, Uni-
versity of York - Department of Computer Science (2007)

12. Wood, A.: Coordination with attributes. In: LNCS 1594 Coordination Languages and Models,
COORDINATION ’99. pp. 21–36 (1999)

13. Wood, A., Zhao, Y.: Vistas: towards behavioural cloud control. In: Euro-Par 2010 Parallel Pro-
cessing Workshops. pp. 689–696 (2011)

14. Zhao, Y., Wood, A.: Treaties: Behaviour-controlling capabilities. In: 2nd Annual International
Conference on Advances in Distributed and Parallel Computing (ADPC 2011). pp. 19–24.
GSTF (2011)

15. Zhao, Y., Wood, A.: Behavioural Sets and Operations in Treaty Systems. In: Proc. International
Conference on Control Engineering and Communication Technology (2012)

Yining Zhao received his Bachelor and Master degree of Computer Science in the Uni-
versity of Manchester in 2006 and 2007 respectively. In 2013 he obtained his Ph.D. de-
gree in the University of York. His researching activities and interests are in the area of
distributed-computing and related topics, and in particular the systems and security issues
in these environments.

Alan Wood graduated with a B.Sc. in Electronics from the University of Kent UK, and
then pursued research in Image Processing and Parallel Computing at University College
London, obtaining a Ph.D. in 1983. He then worked as a Lecturer in the Department of
Physics at UCL as part of the team which developed the CLIP series of parallel array
processors before taking up a Lectureship in the Department of Computer Science at the
University of York in 1989. At York Dr Wood developed a research group investigating
Coordination Languages focussing on the Linda tuple-space paradigm. This has led to
interests in languages for concurrency, as well as the issues associated with open access
in distributed systems.

Received: February 4, 2013; Accepted: October 24, 2013.


