
Computer Science and Information Systems 11(1):309–320 DOI: 10.2298/CSIS130212010T

Probability-Model based
Network Traffic Matrix Estimation

Hui Tian1, Yingpeng Sang2, Hong Shen3,4, and Chunyue Zhou1

1 School of Electronics and Information Engineering
Beijing Jiaotong University, China

2 School of Computer Science
Beijing Jiaotong University, China

3 School of Information Science and Technology
Sun Yat-sen University, China
4 School of Computer Science

University of Adelaide, Australia

hongsh01@gmail.com⋆⋆

Abstract. Traffic matrix is of great help in many network applications. However,
it is very difficult to estimate the traffic matrix for a large-scale network. This is
because the estimation problem from limited link measurements is highly under-
constrained. We propose a simple probability model for a large-scale practical net-
work. The probability model is then generalized to a general model by including
random traffic data. Traffic matrix estimation is then conducted under these two
models by two minimization methods. It is shown that the Normalized Root Mean
Square Errors of these estimates under our model assumption are very small. For
a large-scale network, the traffic matrix estimation methods also perform well. The
comparison of two minimization methods shown in the simulation results complies
with the analysis.
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1. Introduction

In an IP network, the traffic matrix (TM) describes the traffic volumes traversing the
network from the input nodes to the exit nodes over a measured period. Such a matrix
is very helpful in many network applications such as capacity plan, anomaly detection,
traffic engineering, and network reliability analysis [1]. In these application scenarios,
TMs act as an important input. The outputs of various network engineering tasks are
directly relevant to the input. So plenty of work aim to conduct measurements on TMs [5]
or indirect inference from readily available link measurements [15, 16]. Whichever way
is used, it is extremely hard to obtain the traffic matrix for a large network.

The link measurements which are related to traffic matrix is more realistic to be ob-
tained in practice. Denote the link measurements by Y and the traffic matrix by X . Y
is an nl by 1 vector and X is np by 1 vector where nl << np. Thus, the relationship
between link measurements and the traffic matrix is represented by Y = AX where A is
⋆⋆ The corresponding author is Hong Shen.
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the routing matrix. Given a set of link measurements, we aim to infer an overall view of
the traffic matrix. This is a classic under-constrained, linear-inverse problem. we cannot
obtain a solution if we do not introduce any side information such as the prior model of a
traffic matrix. Therefore, paper [11, 14] assumed the origin-destination-demands follows
a Poisson distribution. In [2], Origin-Destination (OD) pairs are modeled according to a
Gaussian distribution. Medina et al. assumed a logit-choice model in [7] and M. Roughan
et al. proposed a gravity model [9, 10].

There are plenty of methods proposed based on these prior traffic model assumption
such as Bayesian inference, information theoretic approach, maximum likelihood esti-
mation, Linear programming and multiresolution analysis method [12]. These methods
perform very differently for different traffic data. There is no method which can work
well on all traffic data. Compressed Sensing (CS) is recently greatly developed in many
applications. It shows that any sufficiently compressible signal can be accurately recov-
ered from a small number of non-adaptive, randomized linear projection samples [6]. It
can also be applied in traffic matrix estimation due to the sparsity of the traffic matrix
such as the work in [3, 4, 8, 17]. In this paper, we look for a sparsity model which can
be used for efficient traffic matrix estimation, resulted in a probability model [13]. This
model is simple but efficient. From the simulation results, we will see a generalized model
based on our probability model can work well in Origin-Destination pair traffic estima-
tion. This generalized probability-based model can not only help to generate traffic data
for large-scale network simulations, but also help to study sparse traffic matrix.

2. Model

A large-scale network usually involves multiple routers/switches in multiple levels. In
each level, many routers/switches are located for redundancy and reliability. If we sim-
plify the network topology without changing basic networking function, we will get a
tree-like network. In the tree-like network, there is one parent node and N children. The
parent node is considered as a node connecting outside Internet and the child nodes are
servers which may be composed of a set of children.

Our model starts with a single star network. This star network is assumed to include
one parent node and several child nodes which are connected through one router. This star
may be the lowest level star and all of similar stars can be aggregated to form the original
network. The traffic estimation on this simple star will be formed into the whole network
traffic matrix. By doing so, estimating a N ∗ N traffic matrix by 2N link measurements
which is highly under-constrained though, can be largely reduced in the dimensionality
of the problem to a simple star network.

We assume a network model which is composed of n servers which are connected to
the Internet node via 1 router. Given the link measurements Y observed on these edge
links which are immediate link connecting the end nodes, the problem is to estimate the
end-to-end traffic matrix X . Y = AX , A is an nl by np routing matrix.

In the simple single star model we assume that all servers are the same. We will relax
this assumption later on, but this allows us to build a very simple traffic model firstly. This
model only needs three probability parameters which is thus named as the probability
model. In our probability model, it is assumed any pairs of servers send traffic to each
other with the same probability p1, any server sends traffic to the Internet node with the
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same probability p2 and the Internet node sends the traffic to any server with the same
probability p3. Obviously,

(n− 1)p1 + p2 = 1, np3 = 1. (1)

3. Traffic matrix estimation

Firstly, we consider a network composed of 2 servers, 1 node denoting Internet and 1
router as Figure 1 shows. Thus we have p1 + p2 = 1 and p3 = 1/2. As we consider that a
server will either send the packets to other servers or to the Internet node. There will not
be any traffic to itself. Thus the routing matrix A is

A =


0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1 0
0 0 1 0 0 1 0 0 0

 (2)

Fig. 1. A network with 2 servers and 1 Internet node

Assume the total traffic on each node are X ′ = {x′
1, x

′
2, x

′
3}, where xi, i ∈ {1, 2, . . . , n+

1} denotes the total traffic generated by node i. The elements in Y are the traffic on out-
going link from node 1, incoming link to node 1, and then node 2, and 3 with the same
order.

Thus,

Y = BX ′ =


1 0 0
0 p1 p3
0 1 0
p1 0 p3
0 0 1
p2 p2 0

X ′ (3)

Normally we don’t have the full set of the measurements on Y . For example, we only
have 3 links’ measurements which is denoted by Ys, Ys = BsX

′. If we choose 3 links,
for example, incoming link to node 1, incoming link to node 2, incoming link to Internet
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node. We denote the selected link measurements as Ys, and the selection matrix is Bs.
Then we have

Bs =

 0 p1 p3
p1 0 p2
p2 p2 0

 (4)

Since det(Bs) ̸= 0, we have X ′ = B−1
s Ys. Because the relationship between the OD

traffic matrix X and traffic generating by end nodes X ′ can be described by the assumed
probability matrix as follows.

X = PX ′ =



0 0 0
p1 0 0
p2 0 0
0 p1 0
0 0 0
0 p2 0
0 0 p3
0 0 p3
0 0 0


X ′ (5)

Therefore we have X = PB−1
s Ys. P and Bs can both be calculated as above, we can get

a solution to X in this probability model and let it be Xp.

Xp =



0 0 0
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Ys (6)

Therefore, we can obtain a solution related to one simple parameter under the as-
sumption of the probability model. If p1 can be set an appropriate value according to the
realistic networks, Ys is observed measurements on selected links, we can have a deter-
mined Xp.

Now our problem is to find a solution X which is the closest to Xp under the constraint
Y = AX . That is,

Minimize f(X) =∥ X −Xp ∥, s.t. Y = AX,

where ∥ · ∥ is the L2 norm. For simplicity in comparison, we call this to be Minimization
1 (Min 1) method.

This method is difficult to find an efficient solution if there are errors in measure-
ments on Y . Therefore, we can employ Lagrangian function. The aim is thus to minimize
L(X,λ).

L(X,λ) =∥ X −Xp ∥ +λ ∥ AX − Y ∥ (7)
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Again, for simplicity in comparison, we denote this by Min 2 method. In Min 2
method, L2 norm is not easy to write in the form of quadratic X and using derivative,
we solve the problem of

Minimize g(X) = ∥ X −Xp ∥2, s.t. Y = AX,

and construct the Lagrangian function as follows.

L(X,λ) = ∥ X −Xp ∥2 + λ∥ AX − Y ∥2 (8)

Thus,

L(X,λ) = λXTATAX + λY TY − 2λY TAX

+ XTX − 2XTXp +XT
p Xp (9)

The Karush-Kuhn-Tucker conditions for this local minimum are given as follows.

∂L(X,λ)

∂X
≥ 0, (10)

∂L(X,λ)

∂λ
= 0, (11)

X
∂L(X,λ)

∂λ
= 0, (12)

λ
∂L(X,λ)

∂λ
= 0, (13)

and

X ≥ 0, λ ≥ 0.

Deriving from above, the KKT conditions are simplified into:

(λATAX + I)X = λATY +Xp, (14)

XTATAX − 2Y TAX + Y TY = 0, (15)

and

X ≥ 0, λ ≥ 0.

Hereby we can solve this Minimization problem by quadratic programming. Intu-
itively, in this quadratic programming, the more links’ measurements are considered, the
better the result is obtained for X̂ .
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4. Simulations

4.1. Metrics

As we discussed in the above section, there are two regularization methods which obtain
the traffic matrix closest to the matrix Xp in the prior assumed model (also called the
probability model). To compare these two methods, we will use Normalized Root Mean
Square Error (NRMSE) to show the performance of estimated traffic matrices. Here the
NRMSE is defined as e.

e =

√∑
i (x̂i − xi)

2
/(N · (N + 1))

Max(xi)−Min(xi)
. (16)

Since quadratic distances are acceptable distance metric and lead to simple quadratic opti-
mizing problem, it is easy to obtain solutions to both minimization problems. As we have
denoted for simplicity, the Minimization problem Min{d(X̂,Xp)} subject to Y = AX
and X ≥ 0 is denoted by Min 1 method and the other Minimization problem by Min 2
method.

Firstly, we simulate both methods on a network with N = 8 servers and one Internet
node. Thus in total 2(N + 1) = 18 links measurements are available. The traffic matrix
to estimate is a 9 by 9 matrix, i.e. an 81 by 1 vector. We obtain a cumulative distribution
function (CDF) of NRMSE to observe the performance of these estimates. We then have
a look at the sensitivity of NRMSEs to λ. As the number of links used in measurements
increases, we will check the trend of NRMSEs.

4.2. A General Model

The simple prior model leads to all servers having identical traffic. This may not be accor-
dance with the practical cases where there are differences on measurements to different
servers. We thus generalize the above simple model to a more practical model which com-
bines this simple model with a random traffic model. This general model is described to
be

Xgen = αXp + (1− α)Xrandom.

In this general model, it is seen that the parameter α defines a random traffic matrix
to be estimated which is still related to the prior assumed probability model. The changes
of α give different weights of the prior model in this general model. Intuitively, we can
conclude that the performance of estimates would be affected by this parameter α. Our
simulation will check how NRMSE differs as α increases. We also introduce a bias factor
β which counts the ratio of wrong measurements to correct measurements. This factor
is helpful in testing the performance of estimation in both the probability model and the
general model.

4.3. Experiments

The Figure 2(a) is obtained by monitoring 10 links’ measurements. The other two impor-
tant parameters are set as a = 0.5 and λ = 10. We checked the CDF of NRMSE of the
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estimates by two minimization methods in two models separately. As shown in Figure
2(a), the CDF of NRMSE of estimated results by Min 2 method (represented by two red
curves) are worse than that by Min 1 method. However Min 2 method gives very small
NRMSE whose CDF approaches to 1 with an NRMSE of 0.045 in the general model.
In the probability model, both methods work very competitively and Min 1 is only a bit
better than Min 2 method. We also note that by using Min 2 method, the estimation pro-
cess gives a much better performance in the probability model than in the general model.
Min 1 method does not show this superiority in probability model to general model which
shall be shown in a more large-scale network.

Figure 2(b) shows the results when using the full set of 18 links to estimate the original
traffic matrix. It is obvious both methods work out CDFs approaching to 1 with smaller
NRMSEs, especially when we look at the performance of Min 2 method in the general
model. In the probability model, Min 2 method works slightly better than Min 1 method.
This is because more links measurements give more constraints in Y = AX which limits
the searching space of finding a minimal distance from X̂ to Xp. This outperformance
will be more obvious when there are errors in measurements. This also gives the reason
that we prefer Min 2 method to Min 1 method in a large-scale network with more possible
errors in measurements.

Now we have a look at how NRMSE varies as λ increases when using Min 2 method.
Again, we use measurements on 10 links in this 9-node network simulation and let α =
0.5. Figure 3 shows that the NRMSE does not change when λ takes a value greater than
a threshold. It is found λ does not affect the estimation performance if it is set a value
greater than 5. Therefore, the value of λ being 10 in above simulations provides a good
initialization for the traffic estimation process to run.

In the general model, α is a parameter which adjusts the weights of the traffic data
under the probability model assumption and the random traffic data. Figure 4(a) shows
how this parameter affects the performance of estimation. It is obvious that as α increases
which means the random data weights less, both methods work better. In Figure 4 (a),
since all measurements are correct, both methods can work out the same TM which is
closest to the practical TM. The curves of both methods are overlapped. When there are
errors in measurements, two methods have different performances. We set the bias factor
to be 0.1 in Figure 4(b), that is, there are 10% links which have errors in measurements.
Min 2 method shows a better performance than Min 1 method. When the bias factor
increases which means there are more errors in measurements, the outperformance of
Min 2 method to Min 1 method shall be greater.

In Figure 5, the read curve denoted by data 1 gives the result of Min 2 method in
the general model. As the number of links used in estimation increases, data 1 shows
an improved estimation performance of Min 2 method in the general model. The other
three cases do not show obvious change as the number of links used in estimation varies.
It is predicted in a large-scale network, using more link measurements would be more
beneficial except the case where Min 1 method is used and errors in measurements exist.

In practice, the network size is much larger than the above 9-node network simulated
above. How will these two estimation methods perform as the network size N is increas-
ing? Figure 6 gives the normalized RMSE by two methods in two models as N changes.
We let α = 0.5, λ = 10 and the number of links used to estimate be three. Network size
is changing from 4 nodes to a reasonably large size 53 nodes. It is seen that the NRMSE
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Fig. 2. CDF of Normalized Root Mean Square Error by using both Minimization methods
for two models in a 9-node network
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ent models
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Fig. 4. CDF of Normalized Root Mean Square Error by using both Minimization methods
for two models in a 9-node network
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Fig. 5. Normalized Root Mean Square Error as the number of links used in estimation
varies by two methods in two different models

trends to be smaller as the network size increases. Therefore, we can predict when the
network size is greater, say hundreds or thousands, the NRMSE of these two estimation
methods would work fairly well. Figure 6 also shows two methods work better in prob-
ability model than in general model. As we only use 3 links to estimate the total traffic
matrix, Min 1 method performs a bit better than Min 2 method. When we have more
links’ measurements, Min 2 will show its superiority to Min 1 method as shown in above
simulation. Note also both methods work well and are convergent when only 3 links are
used in estimation. When there are more links’ measurements available, both methods
will perform better.
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models

5. Conclusion

Traffic matrices in a large-scale network are difficult to be estimated because the estima-
tion problem from limited link measurements is highly under-constrained. We propose a
simple probability model for a star-like network which is easy to be aggregated to more
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star-like networks together to form a large-scale practical network. In order to enable the
probability model to adapt to more realistic data in the network, we generalize the proba-
bility model to include the random traffic data. Traffic matrix estimation is then conducted
under these two models by two minimization methods. It is shown that the Normalized
Root Mean Square Errors of these estimates under our model assumption are very small.
For a large-scale network, the traffic matrix estimation methods also perform well. The
comparisons between two minimization methods showed that Min 2 method is more ro-
bust to network measurements errors and thus preferred in practice.
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