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Abstract. This paper presents a method to extract change information from tem-
poral mammogram pairs and to incorporate the temporal change information in the
malignant mass classification. In this method, a temporal mammogram registration
framework which is based on spatial relations between regions of interest and graph
matching was used to create correspondences between regions of current mammo-
gram and regions of previous mammogram. 18 image features were then used to
capture the differences (temporal changes) between the matched regions. To assess
the contribution of temporal change information to the mass detection, 5 methods
were designed to combine mass classification on image features measured on single
regions and mass classification on temporal features to improve overall mass classi-
fication. The method was tested on 95 pairs of temporal mammograms using k-fold
cross validation procedure. The experimental results showed that, when combin-
ing two classification results using linear combination or by taking minimum value,
the Az score of overall classification performance increased from 0.8843 to 0.8989
and 0.8863 respectively. The results demonstrated that registering temporal mam-
mograms, measuring temporal changes from matched regions and incorporating the
change information in the mass classification improves the overall mass detection.
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1. Introduction

Breast cancer is the most common cancer in female population. In USA, breast cancer
is the second frequently diagnosed cancer in women only next to skin cancer, and is the
second leading cause of cancer death in women (after lung cancer) [2]. Early detection
of breast cancer is believed to be the key to reduce the mortality. As the most effective
method for early breast cancer detection, breast cancer screening has been introduced
in many countries to provide intensive monitoring of breast cancer. For example, in Aus-
tralia, women, primarily those between the ages of 50 to 69, are recommended and invited
to attend screening every two years. Breast cancer screening can greatly reduce the risk
of dying from breast cancer. Screening trial results conducted in USA suggests that mam-
mography reduces mortality of breast cancer by 15% to 20%, while in Europe the studies
suggests that the mammography can reduce the death rate of breast cancer by more than
1 - third [1].

Mammograms are read by radiologists to identify abnormalities. Normally multiple
reads are used in order to increase sensitivity and specificity of diagnosing. Computer-
aided diagnosis (CAD) programs are developed to assist radiologists in diagnosing disease
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by providing processing results to the doctors as second opinion [23]. CAD programs are
not designed to replace the radiologists. This is because, on one hand the CAD programs
can not promise that the disease is always detected, on the other hand, the false positive
rates of current CAD programs are normally high.

When reading the mammograms, radiologists usually compare the current mammo-
gram with a previous one to check the changes between the two mammograms. Mammo-
grams of the same breast but taken in different visits form temporal sequences (temporal
mammograms) and are kept for future reference. The temporal change information is cru-
cial for identification of malignant masses. Integrating the change information in CAD
programs can potentially help radiologists in deciding if a mammogram contains benign
or malignant masses [25]. However, incorporating such information in CAD programs
is not a trivial task and has not been entirely successful so far. The difficulties lie in the
nature of the mammogram which is a projection of a 3D breast in a 2D X-ray film. Natu-
ral changes of breast over time, different positioning of breast during acquisition, various
X-ray dosage, different acquisition equipments, and most importantly, the unpredictable
deformation of breast under compression during the acquisition contribute to the difficulty
and complexity of extracting and utilizing temporal change information.

Many attempts have been made in analyzing the temporal changes contained in tempo-
ral sequences and using these information to improve mass detect in mammography. One
approach is to simulate rigid or affine deformations between breasts in temporal mam-
mograms. Hasegawa et al. used deformation of a B-spline control point grid to register
dense regions of mammogram after a rigid body alignment[10]. Richard and Cohen used
a variational formulation to simulate smooth deformation between mammogram pairs and
applied the method to bilateral pairs Richard280 [18]. While their methods used warping
functions to simulate the deformations, in practice, often the functions are not smooth,
and not even well defined in some cases.

Another approach is based on locally searching in one mammogram to find matching
regions of interest (ROI) of the paired mammogram. Sanay-Gopal et al. defined a fan-
shaped searching region in previous mammogram based on the the nipple and the centroid
of the breast for each mass like region in the current mammogram [20]. Sahiner et al. pro-
posed a classification method based searching for matched anomalies in the mammogram
for radiologist defined ROIs in the paired mammogram [9]. An extension approach is to
integrate both local and global registration. Timp and Karssemeijer used the center of
breast to register temporal mammograms globally and performed local searching to as-
sociate suspicious regions [24]. Marias et al. analyzed changes in two stages. The first
stage was to align the two mammograms based on the alignment of breast boundaries.
Multiresolution representations of the internal structure of the breasts was then matched
based on thin plate spines in the second stage [17]. Wei et al. combined dual systems to
conduct two-view analysis to improve cancer detection [28]. Casti et al. [4] used spherical
semivariogram descriptors and correlation-based structural similarity indices in the spatial
and complex wavelet domains to capture the changes in mammographic structural infor-
mation of multiple mammogram views. They received a high detection accuracy through
the proposed two-view analysis. A review of mammogram registration technique can be
found in [8].

Comparison of different approaches are normally difficult, one of the main reason
is different testing data sets used in different studies. Engeland et al. [6] compared the
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performance of 4 methods, a nipple alignment based method, a Mutual Information (MI)
based method, a method based on alignment of center of mass of the breast area and a
warping based method. In this study, the MI based method was found superior to the
others. Zheng et al. [33] compared three methods aimed at matching CAD-cued mass
regions depicted on two views. Among the three search methods, the study found that
the straight strip method required a smaller search area and achieved the highest level of
CAD performance.

This paper presents a method of extracting temporal change information from tempo-
ral mammograms and apply the change information to the detection of malignant masses.
This study is an extension of the framework introduced in [16], namely that of registering
temporal mammograms based on fuzzy spatial relation representation and graph match-
ing. This paper is organized as follows. In section 2, we briefly introduce the method
of registering temporal mammograms based on spatial relations. Section 3 describes the
image features used in this study, including image features extracted from single mammo-
gram and image features extracted from comparison of temporal mammograms depicting
temporal changes. For evaluation, the method is applied to 95 temporal mammogram pairs
using k-fold cross validation procedure. Section 4 describes this data set and the experi-
mental results. Finally, discussion and conclusions are made in section 5 and section 6.

2. Related work - temporal mammogram registration

The flowchart shown in Fig.1 describes the framework of registering temporal mammo-
grams. In this framework, the preprocessing step consists of four operations; gamma cor-
rection, anisotropic filtering and extraction of both breast boundary and pectoral muscle
boundary (for MLO view mammogram). Details of extraction algorithms of both breast
and pectoral muscle boundaries can be found in [29] and [14]. After preprocessing, two
image segmentation algorithms, adaptive pyramid (AP)([12]) based segmentation and
sublevel set analysis([5][21]), were used to segment the images. In our experiment, the
adaptive pyramid based segmentation algorithm is capable of isolating ROIs from the im-
age, however, boundaries of the segmented ROIs are generally inaccurate. The sublevel
set based analysis, with AP segmentation results as inputs, is used to improve the bound-
aries of mass like regions. Details of these two segmentation algorithms have appeared
previously [15].

Fig. 1. Flowchart of temporal mammogram registration framework.
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Segmentation of mammograms typically results in many small pieces or regions, not
all of them correspond to masses, or are ROIs. To remove non-mass pieces, a mass-like
score is calculated for every region, and a threshold is set on the mass-like score to remove
some of the regions. The mass-like score is calculated using Fisher’s linear discriminant
and is based on 17 image features (see section 3). The threshold was set sufficiently low
to only filter out obvious non-mass pieces, and hence many not-malignant-mass regions
were still included. ”ROI filtering” in Fig. 1 corresponds to this step.

After the ROI filtering step, a full graph was used to organize the left ROIs for each
mammogram with every vertex representing a mass-like region. In the ”Fuzzy spatial re-
lation” step, spatial relations between ROIs were calculated and were associated to edges
as weights. More explicitly, in this study, for a pair of points p and q, we compute four
relationships, including to the right of, to the left of, below, and above

µright(θ) =

{
cos2 θ if −π

2 ≤ θ ≤ π
2 ,

0 otherwise,

µbelow(θ) =

{
sin2 θ if 0 ≤ θ ≤ π,
0 otherwise,

µabove(θ) =

{
sin2 θ if − π ≤ θ ≤ 0,
0 otherwise,

µleft(θ) =

{
cos2 θ if − π ≤ θ ≤ −π

2 , π
2 ≤ θ ≤ π,

0 otherwise,

where θ is the angle bounded by the line segment connecting p and q and the honrizontal
line.

For two regions C = {c1, c2, . . . , cn}, D = {d1, d2, . . . , dm}, a multiset Θ was firstly
defined as Θ = {θij = ̸ (ci, dj), ci ∈ C, dj ∈ D}, the histogram was then defined as

HΘ(C,D) = {(θ, fθ)},

where fθ is the count of point pairs (ci, dj) having ̸ (ci, dj) = θ. The fθ is normalized
by fθ = fθ/max(fθ).

To find the spatial relation between two objects is to evaluate the degree of HΘ ap-
proaching the four spatial relations. For this purpose, the histogram HΘ is treated as a
fuzzy set whose membership function µH is defined as

µHΘ
(θ) = fθ, where (θ, fθ) ∈ HΘ.

The degree of HΘ approaching the four spatial relations was then calculated by finding
the compatibility of fuzzy sets. Let G be one of the four spatial relations and µG be the
corresponding membership function. The compatibility between two fuzzy sets HΘ and
G is a fuzzy set CP (HΘ;G) with membership function

µCP (HΘ;G)(v) =

{
supθ,v=µG(θ) µHΘ (θ) if µ−1

G (v) ̸= ∅,
0 if µ−1

G (v) = ∅.
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Finally to evaluate the degree to which a spatial relation among two objects holds, the
center of gravity of the compatibility fuzzy set is calculated as∑

v v · µCP (HΘ;G)(v)∑
v µCP (HΘ;G)(v)

.

Creating correspondences between ROIs of two mammograms is equivalent to finding
matched subgraphs in the two graphs. In the mammogram registration step Ullmann’s
backtracking algorithm [26] was used for the subgraph matching.

To pick the best matched subgraphs, a match cost function was defined based on the
fuzzy spatial relations. For a subgraph Hc = {Vc, Ec} with Vc = {v1c , v2c , . . . , vnc } and
Ec the set of edges of Hc, and a subgraph Hp = {Vp, Ep} with Vp = {v1p, v2p, . . . , vnp }
and Ep the set of edges of Hp, suppose vkc ∈ Vc corresponds to vkp ∈ Vp, the spatial
similarity between vkc and vkp with regards to spatial relation µt is defined as

Ct(v
k
c , v

k
p) =√√√√ n∑

i=1

(µt(vkc , v
i
c)− µt(vkp , v

i
p))

2 + (µt(vkc , Bc)− µt(vkp , Bp))2,
(1)

where t ∈ Λ = {to the right of, to the left of, below,above} is a spatial relation and µt(vc, vp)
gives the µt spatial relation between two vertices vc and vp. Bc and Bp are the breast
boundaries of current and previous mammograms. Treating breast boundaries as com-
ponents and involving them in the matching process provides global references without
explicit alignment of breast boundaries.

The final cost function is the sum of match costs over all matches and 4 spatial rela-
tions

Φ(Hc,Hp) =

n∑
i=1

Cleft(v
i
c, v

i
p) +

n∑
i=1

Cright(v
i
c, v

i
p) (2)

+
n∑

i=1

Cabove(v
i
c, v

i
p) +

n∑
i=1

Cbelow(v
i
c, v

i
p).

In a common graph matching problem, the best solution is reached when the longest
sequence of matches was found. In this study, however, a longer solution (with more
matched pairs) with false matched regions is not better than a shorter solution with more
true matched regions. To find the best matches, a strategy is used. The best matches of
different length were found firstly and combined to form a final matched sequence. To
remove the false matches among the final matched sequence, firstly, the difference of spa-
tial relations to the boundaries is computed. For a matched region (xj , yj), the difference
of spatial relations to the boundaries dj is calculated as

dj =
∑
t∈Λ

|µt(xj , Bx)− µt(yj , By)|. (3)

Matched pair (xj , yj) is identified as a false match and is removed if dj > E(D)+σ(D).
Here E(X), σ(X) are the mean and standard deviation of X and D = {d1, d2, · · · , dn}
with n being the number of total pairs in the final match.
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Due to the difference in mammogram acquisition process, gray levels of mammo-
grams are normally not directly comparable. However, intensities of a mammogram con-
tains important information regarding the existence of malignant mass. Spatial relation
based registration is able to ensure compatible spatial relations among matched regions,
but does not ensure compatible gray levels between matched regions. To remove false
matches with incompatible gray level, such as a bright region in one mammogram matched
to a dark region in the other mammogram, the relative gray level difference was used.
Firstly, to transform the grey level of the first mammogram to match the gray level his-
togram of the second mammogram, the cumulative histograms of the intensity inside the
breast area is calculated. For intensity level i, the cumulative histogram f(i) of the mam-
mogram is calculated as

f(i) =
1

Q

i∑
j=0

H(j), (4)

where H(j) is the number of pixels inside the breast area that having intensity j, and Q
is the total number of pixels inside the breast area. Let f1 be the cumulative histogram
of the first mammogram and f2 be the cumulative histogram of the paired mammogram.
Each gray level i1 in f1 is transformed to

i2 = f−1
2 (f1(i1)). (5)

After the histogram transformation, the relative gray level difference of a matched pair
(xi, yj) is measured as

Diff(xi, yj) =
|E(xi)− E(yj)|
E(xi) + E(yj)

, (6)

where E(x) is the mean gray level of region x. A threshold ξ is then used and those pairs
with Diff > ξ are filtered out. In this paper, empirically, ξ = 2.45 is used.

Fig. 2 and 3 show matching results of two temporal mammogram pairs.

a b c d

Fig. 2. Examples of match results. (a)(b) show a pair of temporal mammograms. (c) and (d), (e) and
(f), and (g) and (h) show the same pair of temporal mammograms with matched regions depicted
with white boundaries.

3. Image features

As mentioned in section 2, a mass like score was calculated for each ROI based on 17
image features. The following list describes these 17 image features.
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a b c d

e f g h

Fig. 3. Examples of match results. (a)(b) show a pair of temporal mammograms with 5 matched
regions (matched regions are in same color).

– solidity. The number of pixels in the intersection of convex hull and the component
divided by the number of pixels of the component. The convex hull refers to the
smallest convex polygon that covers the component.

– axis ratio. The major axis of the ellipse whose normalized second central moments
equals to the component divided by the minor axis of the same ellipse.

– std radi. Standard deviation of radial distances. The radial distance is the distance
between a edge point to the centroid of component.

– iv. Variance of intensities along the component boundary.

iv =
|E(R)− E(Q2)|
E(R) + E(Q2)

,

Here E(R) is the average intensity value of component R. Qt is the set of pixels
within t pixels distance to the component R but not in R.

– c2. A intensity contrast measurement.

c2 =
(E(R)− E(Qd))

2

σ(R) + σ(Qd)
,

where d is

d =

√
area

π
.

σ(R) is the standard deviation of pixel intensities of R.
– c3. A intensity contrast measurement.

c3 =
∑
i

|O(R, i)−O(Qd, i)|,

here O(R, i) is the proportion of pixels in R that having intensity i, and d is the same
as defined in c2.
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– int entropy. Entropy of the intensity distribution. It is calculated as

int entropy =
256∑
k=1

O(R, k) log(O(R, k))

– Energy

energy =

∑
i,j p(i, j)

2

size of ROI
,

here p(i, j) is the intensity of pixel (i, j).
– Inertial momentum The luminosity inertial momentum is defined as

inertial =
∑
i,j

p(i, j)d(i, j)2

where d(i, j) is the Euclidean distance between the (i, j)th pixel and the luminosity
center (xlc, ylc), which is calculated by

xlc =

∑
i,j p(i, j)i∑
i,j p(i, j)

ylc =

∑
i,j p(i, j)j∑
i,j p(i, j)

– Anisotropy. Anisotropy is the distance between the geometric center and the lumi-
nosity center. It measures the irregularity. If the shape of a ROI have an isotropic
symmetry this distance is close to 0 while it increases at high distortion.

– Moment-based Shape Factors
Let spq be the two-dimensional (p+q)th-order moment of a component and is defined
as

spq =
∑
i,j

ipjqp(i, j),

here p, q = 0, 1, 2, . . ., the center of the component is defined as x̄ = s10/s00, ȳ =
s01/s00. Seven low-order, central invariant, second- and third-order central moments
are defined as:

s1 = t20 + t02,

s2 = (t20 − t02)
2 + 4t211,

s3 = (t30 − 3t12)
2 + (3t21 − t03)

2,

s4 = (t30 + t12)
2 + (t21 + t03)

2,

s5 = (t30 − 3t12)(t30 + t12)[(t30 + t12)
2

− 3(t21 + t03)
2] + (3t21 − t03)(t21 + t03)

[3(t30 + t12)
2 − (t21 + t03)

2],

s6 = (t20 − t02)[(t30 + t12)
2 − (t21 + t03)

2]

+ 4t11(t30 + t12)(t21 + t03),

s7 = (3t21 − t03)(t30 + t12)[(t30 + t12)
2

− 3(t21 + t03)
2]− (t30 − 3t12)(t21 + t03)

[3(t30 + t12)
2 − (t21 + t03)

2],
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where

t = s00, t10 = t01 = 0,

t20 = (s20 − tx̄2),

t02 = (s02 − tȳ2),

t11 = (s11 − tx̄ȳ),

t30 = (s30 − 3s20x̄+ 2tx̄3),

t03 = (s03 − 3s02ȳ + 2tȳ3),

t21 = (s21 − s20ȳ − 2s11x̄+ 2tx̄2ȳ),

t12 = (s12 − s02x̄− 2s11ȳ + 2tx̄ȳ2).

Each factor was normalized by dividing by tr,where r = 1 + (p+ q)/2.

The features were normalized according to the following formula:

f =
f − mean(f)

std(f)
,

where mean and std are the average and standard deviation of f .
The mass like score is calculated by linearly combining the features measured on each

ROI by

mass-like score =
17∑
t=1

atft,

where ft is the tth feature. Parameters at, t = 1 . . . 17 are optimized using linear discrim-
inant analysis (LDA).

3.1. Temporal features

To depict the difference or changes between a pair of matched regions, a different set
of 18 image features were used and the feature difference between the pair of matched
regions is taken as the temporal feature value for the pair. For a region Rc of a current
mammogram and a region Rp of the previous mammogram, for feature f , the temporal
feature ft of Rc and Rp is defined as

ft = fRc − fRp .

In this paper, temporal features include 5 image features as listed below plus 12 image
features which were also used in calculating mass like number. The mass like score cal-
culated for ROI filtering is also used as the 18th temporal feature. Details of the image
features used as temporal features were listed in table 1.

– solidity2. The proportion of pixels in the smallest rectangle containing the region that
are also in the component.

– int. Intensity of the component.
– relint. Intensity of the component divided by the average intensity of the whole breast

area.
– circularity. p2/area, here p is the perimeter of the component.
– radi. Average of the radial distance.
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Single features Matched features
solidity solidity

axis ratio solidity2
std radi axis ratio

iv circularity
c2 int
c3 relint

int entropy std radi
energy radi

inertial momentum c2
anisotropy c3
m1 - m7 int entropy

energy
inertial momentum

anisotropy
m2, m3, m7

mass like number

Table 1. Single and temporal features.

4. Experiments

To investigate if the temporal features measured from the matched region pairs can con-
tribute to the cancer detection [19], the temporal features will be applied to the malignant
mass classification together with the image features measured from single regions. Sec-
tion 4.1 firstly describes the data set to be used in the experiment. Section 4.2 introduces
the k-fold cross validation process that the experiment will follow. In section 4.3, four dif-
ferent methods, Linear combination, Minimum value, Multiple classifiers and Combine
to one, are used to combine the two kinds of features for the classification.

4.1. Experimental data

95 pairs of temporal mammograms were used to evaluate the performance of the proposed
method in this paper. The images were from the database of BreastScreen SA (Adelaide,
South Australia) and were selected subject to two conditions, firstly the current image
contains histopathology proofed malignant mass, and secondly the previous image taken
2 - 3 years earlier is available and has no malignant mass found. Within the 95 pairs, 44
are CC view mammogram pairs and 51 are MLO views. 44 pairs contain histopathology
confirmed malignant masses. A Vidar Diagnostic Pro Advantage digitizer was used to
digitize all images at 48µm resolution and 12 bit depth. All images were subsampled and
every 8×8 pixel patches were replaced by one pixel whose intensity equals the average
intensity of the patch.

4.2. K-fold cross validation

To assess the performance of classifications with two sets of image features, we applied
the k-fold cross validation procedure. Each mammogram in the data set was firstly la-
belled as malignant if it contains malignant mass or normal otherwise. The two labels
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split the whole data set into two classes. Next, both classes were randomly and evenly
divided into k subgroups. Of the k subgroups, k-1 subgroups are joined together to form
a training set while the left one is retained as the test set. The cross-validation process is
then repeated k times. Each time a different subgroup is used as test set. For k times, all
subgroups were used as test set for exactly once. In the end, the k results were combined
as the final classification results. In this paper, considering the size of the sample data, we
use k=5.

4.3. Mass classification with combination of two sets of image features

Classifying a image region as malignant or benign, based on a series of image features, is
generally the final but most important step in medical image analysis [11][22][3][27][30]
[31][32]. In this study, the process of segmenting a mammogram into regions, extracting
17 image features for each region, using Fishers linear discriminant to calculate a mass-
like score for each region, and classifying each region as benign or malignant using the
calculated mass-like score, comprises a mass detection scheme. We refer to this scheme as
single classification. Registering a pair of temporal mammograms, extracting 18 temporal
features for each pair of matched regions, and using the temporal features to classify the
corresponding regions as malignant or benign, also constitutes a mass detection scheme.
We refer to this scheme as temporal classification. Note that the 18 temporal features were
only calculated on the ROIs that have formed matches during the mammogram registra-
tion, thus not all ROIs have been calculated temporal features. The ROIs involved in the
temporal classification were much less comparing to that in single classification.

To utilize the temporal change information to aid the detection of malignant masses
means to combine the single and temporal features to classify a ROI as a malignant or
benign mass. In this study, to assess the contribution of the temporal features to the ma-
lignant mass detection, four different methods were used to combine the result of single
classification and temporal classification.

Linear combination In this method, the two classification results were combined linearly
to generate a new set of classification score. For a region of interest Ri, the new score ci
is chosen as:

ci =

{
αsi + βti if Ri has ti,
si otherwise,

(7)

where si is the single classification score and ti the temporal classification score of Ri. α
and β are two coefficients with properties α ≥ 0, β ≥ 0 and α+ β = 1.

To decide the optimal α and β, a heuristic searching procedure was used. α was varied
from 0.1 to 1 with increment 0.01 while β = 1− α. Some combinations of α and β were
listed in table 2. From the table, it can be seen that the detection rate measured by Az

score increases with the increase of α until α = 0.83 and β = 0.17 where the maximum
detection rate Az = 0.8867 was reached. Hence α = 0.83 and β = 0.17 was used in this
experiment.

Furthermore, for this method, based on the temporal classification results, a safe upper
threshold and low threshold were chosen. Regions whose temporal scores were below the
safe low threshold were identified as non masses, and regions whose temporal scores were
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α β Az α β Az

0.1 0.9 0.8689 0.55 0.45 0.8827
0.2 0.8 0.8729 0.65 0.35 0.8848
0.3 0.7 0.8755 0.77 0.23 0.886

0.41 0.59 0.8782 0.83 0.17 0.8867
0.89 0.11 0.8866

Table 2. Different combinations of α and β and their corresponding detection performance.

above the safe upper threshold were identified as true masses. Finally, the adjusted scores
were used to evaluate the performance of the classification. Fig. 4 shows the results of the
linearly combination classification together with single and temporal classifications.
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Fig. 4. ROC curves of single, temporal and linearly combined classifications.

Minimum value In this method, for a region of interest Ri, a new score ci is chosen as:

ci =

{
min(si, ti) if Ri has ti,
si otherwise,

(8)

where si is the single classification score and ti the temporal classification score of Ri.
In our testing images the previous mammogram taken 2 -3 years earlier was judged as

normal, hence if a ROI in the current mammogram were matched to a ROI in the previous
mammogram, then more likely the ROI in the current mammogram is not malignant. This
method incorporates this knowledge. It decreases the scores of matched ROIs. The safe
upper and low thresholds were also applied in this method. Fig. 5 shows the performance
of the new classification together with single and temporal classifications.

Multiple classifiers In this method, the two classification results were used as input into
a third classifier to produce a new set of classification score. Because the temporal classi-
fication results contain less data compared to the single classification results. To compen-
sate the shorten length, the temporal classification scores were expanded to the same size
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Fig. 5. ROC curves of single, temporal and combination with minimum value classifications.

as the single classification scores. A ROI appearing in the temporal classification retains
the temporal classification score while a ROI not appearing in the temporal classification
is treated as a potential mass and all its temporal features are set to 1.

In this experiment, two classifiers were tried as the third classifier, the Fisher’s linear
discriminant and the support vector machine (SVM) [13, 7] with gaussian radial basis
function (RBF) kernel. Fig. 6 and Fig. 7 show the ROC curves and Az scores of the
multiple classifications with Fisher’s linear discriminant and SVM with RBF kernel as
the third classifier respectively.
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Fig. 6. ROC curve and Az score of single and temporal classifications and multiple classification
with Fisher’s linear discriminant as the third classifier.

Combine to one In this method, two sets of image features were combined together to
form a set of 35 image features. ROIs that have no temporal feature values will have all
their temporal features to be 0. The Fisher’s linear discriminant was applied to these 35
image features to generate a new classification score. The classification evaluation results
are shown in Fig. 8.
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Fig. 7. ROC curve and Az score of single and temporal classifications and multiple classification
with SVM with RBF kernel as the third classifier.

false positive rate
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

 p
os

iti
ve

 r
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

single:0.8843
temporal:0.8158
combined:0.684

Fig. 8. ROC curve of single and temporal classifications and classification on combined feature sets.

5. Discussion

The Az score made by the classification based on the temporal features alone is 0.8158,
which is lower than 0.8481, the Az score made by the classification based on the mass
like number. The temporal features by themselves do not contribute to better classifica-
tion. This is because on one hand temporal features can only be extracted from matched
regions, and hence not all ROIs were associated with temporal features. On the other
hand, in this study, the temporal mammogram pairs were so selected that masses were
found on the current mammogram but were not identified on the previous mammogram,
so true malignant masses in many current mammograms do not correspond to any regions
in the previous mammogram. Many ROIs corresponding to true malignant masses were
missing in the temporal classification, which contributed to the low score of classification
with temporal features alone.

The experiments show that incorporating the temporal features in the mammogram
mass detection is able to improve the overall performance. The detection rates (measured
by Az score) with linear combination and combination by taking minimum value both
obtained a small gain. With linear combination, the Az score increased from 0.8843 to
0.8989 (see Fig. 4). Combining the two sets of classification results by taking the minima
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also improves the overall classification with Az score increased from 0.8843 to 0.8863
(see Fig. 5). However, not all combinations result in improvement. In the last method
when two sets of image features were combined into one set, the classification perfor-
mance dropped sharply with Az score decreased from 0.8843 to 0.684. Image features
measured on single ROIs and features measured on the matched region pair are different
types of image features, the last method suggests that mixing these two types of image
features does not improve the detection performance.

Multiple classifiers or multilayered classifiers are popular ways in handling classi-
fications with multiple sets of features and have been employed in many different ap-
plications, such as sentiment classification, texture classification and image recognition.
Multiple classifiers, however, are not explored much in cancer detection in mammogra-
phy. In this study, the multiple classifiers method firstly used 2 classifiers on the temporal
and single feature sets and a third classifier on the results of the first 2 classifiers. Both
Fisher’s linear discriminant and SVM with RBF were used as the third classifier. The
results, however, are very different. With Fisher’s linear discriminant, detection rate was
increased sightly with Az score increased from 0.8843 to 0.8855, but when using SVM
with RBF as the third classifier, the Az score dropped to 0.6028.

6. Conclusion

In this paper we proposed a method to incorporate temporal change information in mass
detection in mammography and investigated how the temporal change information can
contribute to the improvement of mass detection. In the proposed method, temporal mam-
mograms were firstly registered under a mammogram registration framework which was
based on spatial relations between segmented ROIs and graph matching. The temporal
mammogram registration creates correspondences between regions of current mammo-
gram and regions of previous mammogram. Based on the registration, changes between
temporal mammograms were extracted using a set of 18 temporal features. To assess the
contribution of change information to the mass detection, 5 methods were designed to
incorporate temporal features containing temporal changes for malignant mass classifica-
tion. In the experiment, k-fold cross validation was used to evaluate the classifications.
Our experiments show that, when combining the single classification and temporal classi-
fication results linearly or by taking the minimum value of two classification, the overall
classification results were improved, demonstrating that temporal changes information
improves mass detection. However, when using multiple Fisher linear discriminant clas-
sifiers or applying Fisher linear discriminant classifier directly to the combined image
feature set, no improvement or even decreasing on the overall classification performance
were observed.

The experiment shows a small gain on the overall detection rate on the data set con-
sisting 95 pairs of real temporal mammograms. A larger set of mammogram pairs or more
sets of mammogram pairs from different sources can help to better identify the contribu-
tion of the temporal change information to the cancer detection. Unfortunately such data
are unavailable for this study. On the other hand, the focus of this study is to investigate
if change information extracted from temporal mammogram pairs can improve the can-
cer detection. For this purpose, the experiment indicated that the change information is
able to improve the overall detection. The detection scheme involves many steps, such as
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image preprocessing, image segmentation, feature extraction, feature selection and clas-
sification. Each of these steps affects the final detection rate. This study used only 5 initial
methods in incorporating temporal image features in the detection. A further study could
be to explore different ways in combining the two different feature sets.

In this study, Fisher’s linear discriminant was mainly used to assess the performance
of different classifications. A thorough assessment may include other classification meth-
ods that are popular in mass classification in mammography, such as k-nearest neighbor
(KNN), kernel Fisher discriminant (KFD) and relevance vector machine (RVM), to better
evaluate the contributions of temporal change information to the malignant mass detection
in mammography.

In many classification tasks, with carefully chosen parameters, SVM has been re-
ported to be able to produce better results, comparing to many other classification meth-
ods. In this study, SVM with RBF was used as the third classifier with results from Fisher’s
linear discriminant classifier on single and temporal feature sets as input. The result was
much lower comparing to the results made by using the Fisher’s linear discriminant as the
third classifier on the same input. This may relate to the input data, which were produced
by Fisher’s linear discriminant on single and temporal feature sets, while the temporal
feature set was stretched to be compatible with the single feature set. On the other hand,
only few different values of parameters were tried for the SVM method used in this study.
With better chosen parameters, using SVM as the third classifier could produce better
results. This will be investigated in the future study.
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