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Abstract. Multi-agent systems are a subject of continuously increasing 
interest in applied technical sciences. Smart grids are one evolving field 
of application. Numerous smart grid projects with various 
interpretations of multi-agent systems as new control concept arose in 
the last decade. Although several theoretical definitions of the term 
‘agent’ exist, there is a lack of practical understanding that might be 
improved by clearly distinguishing the agent technologies from other 
state-of-the-art control technologies. In this paper we clarify the 
differences between controllers, optimizers, learning systems, and 
agents. Further, we review most recent smart grid projects, and 
contrast their interpretations with our understanding of agents and 
multi-agent systems. We point out that multi-agent systems applied in 
the smart grid can add value when they are understood as fully 
distributed networks of control entities embedded in dynamic grid 
environments; able to operate in a cooperative manner and to 
automatically (re-)configure themselves. 

Keywords: computer science, information systems, multi-agent 
systems, smart grid, power systems, agent-based control systems 

1. Introduction 

Agent-based systems have been implemented in the field of technical 
engineering, having been adopted as new concepts for control systems 
during the last few decades [25], [28]. Derived from the computer sciences 
[9], [14], [35] the broad usage of agent technology in the technical domain 
has resulted in an ambiguous use and interpretation of the notions ‘agent’ and 
‘multi-agent systems’; this is especially apparent in current smart grid 
research projects. The common understanding of the term smart grid in 
research projects encompasses the development of new power control 
strategies and communication systems to face the challenges (e.g. 
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fluctuating power generation, higher dynamics in grid frequency and grid 
voltage) which arise from the expansion of renewable energies (e.g. 
photovoltaic systems, wind turbines, and combined heat and power systems) 
and new electrical loads (e.g. heat pumps and electrical vehicles) [8], [38]. 
Numerous smart grid projects labeled with the term ‘agent’ sprouted up in the 
last few years, exhibiting various interpretation of when and how to apply the 
term ‘agent’ [19], [24]. It seems that engineers use the term ‘agent’ without a 
common understanding of what it actually embodies. 

In the present paper, we aim at providing a clear definition of multi-agent 
systems in the realm of smart grid distributed control applications

1
. We do so 

by first identifying the characteristics that a control system should posses to 
be appropriately labeled as an agent system by emphasizing the differences 
between agents, optimizers, closed-loop controls, and learning systems. 
Second, we systematically analyze the interpretations and implementations 
of multi-agent systems in recent smart grid projects. We then contrast our 
understanding of agents and multi-agent systems with the existing multi-
agent based smart grid projects and discuss which systems can be really 
understood as such. Finally, we describe the extent to which agent 
technologies may be of further value in improving smart grid applications, 
and give directions for future research and practice in the realm of agent-
based systems.  

2. Smart Grid – Definition and Applications  

In accordance with the goals defined by the European Union, central Europe 
is striving for an energy supply powered by renewable energies [7]. With a 
rising share of distributed fluctuating renewable energy resources, it will 
become more and more challenging to ensure a secure and reliable energy 
supply in the future. This is due to: 

Firstly, weather dependent fluctuation of the power supply of renewable 
energies (e.g. wind turbines or photovoltaic systems) makes the 
indispensable balancing of power generation and consumption more 
challenging.  

Secondly, the generated renewable electricity is fed mainly into distribution 
and low-voltage grids. In the past, energy was only consumed in these grids 
while it was produced by large fossil power plants connected to the 
transmission and sub-transmission grids (see Fig. 1). Thus, the recent 
primary grid infrastructure (e.g. local transformers, circuit breakers, lines) is 
designed and parameterized for these unidirectional flows. In combination 
with the rising electricity generation in distribution grids, problems (e.g. over-
voltage and over-currents) are to be assumed.  

                                                   
1
 [24] identifies four different power engineering domains where recent multi-agent 
systems are applied. These are: Protection, Modeling & Simulation, Distributed 
Control, and Monitoring & Diagnostics 
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Thirdly, the rising amount of distributed energy generation affects the grid 
frequency today already. Since the frequency is a grid-wide value, it is also 
necessary to ensure that the controllers of distributed energy resources are 
parameterized properly to ensure a stable grid. European standardization 
committees are currently addressing the 50.2 Hz problem, which occurs with 
a common switching threshold of 50.2 Hz in current inverters. This 
parameterization involves the danger of a major disturbance in the main grid 
when suddenly several gigawatt of generation disconnect in case of an 
underload (frequency above 50.2 Hz) and cause thereby an overload [17].   

Fourthly, new applications and business models such as consumption of 
self-produced energy, electric vehicles, or the bundling of distributed 
generation to virtual power plants, will change the current static time-invariant 
behavior of grids to a more dynamic one. 
 

 

Fig. 1. Structure of today’s (centralized) electricity supply system 

One approach to handle these new challenges is the extension of recent 
grids to “Smart Grids”. Various interpretations of what the term “Smart Grid” 
subsumes exist. For example, the European Technology Platform for Smart 
Grids defines a smart grid as, “an electricity network that can intelligently 
integrate the actions of all users connected to it - generators, consumers and 
those that do both – in order to efficiently deliver sustainable, economic and 
secure electricity supplies” [8]. Slightly variegated, and with an emphasis on 
the communication systems, the International Electrotechnical Commission 
(IEC) understands a smart grid as integration of “electrical and information 
technologies in between any point of generation and any point of 
consumption” [38]. Thus, the core idea of smart grid is the development of 
new control strategies and systems – using information and communication 
technologies – which are necessary, particularly nowadays, due to the 
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injection of renewable and fluctuating energy (e.g. by wind turbines and 
photovoltaic systems). The complexity of smart grids’ applications arises 
from their interdisciplinary character, requiring the joint work of various 
research disciplines: electrical engineering, control theory, information 
technology, jurisprudence, economics and psychology. In this paper we focus 
mainly on control issues while briefly describing necessary interdisciplinary 
background.  

Numerous different smart grid control systems have been developed to 
find cost-efficient solutions and to approach the above-mentioned problems. 
One of the most popular concepts to encourage users or systems to consume 
power when it is produced by the fluctuating energy resources is known as 
Demand Side Management (DMS). Mainly based on dynamic pricing, DMS 
encounters users or devices to redistribute electric demand over a certain 
period of time [36]. Another example for a smart grid control concept is the 
pooling of distributed generation and loads that are collectively controlled by 
a central control entity. These systems are known as virtual power plants [31], 
[41]. Furthermore, various projects can be found which take the control of so-
called ‘micro-grids’ into consideration. Here, micro-grids are understood as 
small, local distribution grids containing electric generation and loads, which 
can be totally separated from, or (re-)connected to, the main distribution grid 
[30]. Among these examples numerous other smart grid control concepts 
have been developed. [12] gives a broad overview about recent smart grid 
projects in Europe.    

3. State-of-the-Art versus Agent Technology 

In this section we discuss and define an agent from an engineer's 
perspective. Agents are first defined in an independent application way and 
then discussed in the context of smart grid applications in section 5. While 
[9], [14], and [44] discuss the difference between agent technology and 
various IT domains (e.g. artificial intelligence, web-services and expert 
systems and grid computing) we analyzed the differences between well 
established engineering control technologies and agent technology. This 
section begins with computer science’s definition of agents. Based on that, 
we differentiate in detail between an optimizer, a closed-loop controller, 
learning systems, and an agent. 

While numerous definitions of agents have been discussed in the past, we 
here post the definition of Jennings and Wooldridge [44], [45]. We consider 
their approach a good balance between an overly-restrictive and a too-loose 
definition. A survey of ‘agent’ definitions can be found in [11]. Jennings and 
Wooldridge understand an autonomous intelligent agent to be a software 
artifact which exhibits the following capabilities: 
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“Reactivity Intelligent agents are able to perceive their environment, and 
respond in a timely fashion to changes that occur in it in order to 
satisfy their design objectives. 

 
Proactiveness Intelligent agents are able to exhibit goal-directed behavior 

by taking the initiative in order to satisfy their design objectives. 
 
Social ability Intelligent agents are capable of interacting with other 

agents (and possibly humans) in order to satisfy their design 
objectives.” 

 
It seems that these attributes are to some extent also manifested in 

engineers’ state-of-the-art control technologies. To a certain degree this 
assumption is valid. For the sake of clarity, we work out how an agent can be 
distinguished from other control technologies, and why that makes sense.  

In the rest of the paper we use the term ‘agent’ instead of ‘intelligent 
agent’. We do so because we believe that labeling a software artifact as 
‘agent’ only offers added value if agents at least constitute a certain degree of 
intelligence, thus exhibiting the above listed attributes. Hence, the adjective 
‘intelligent’ is dispensable.  

3.1. Why Is an Agent More Than Just an Optimizer? 

The classic mathematical definition describes optimization as the task of 

finding a Ff  for which 

 

)()( xcfc   for all Fx  (1) 

while 

    Fc :  ℝ
 

Thereby f is the global optimum from the domain of feasible alternatives 

(feasible points) F  and c  the objective function [27]. Thus, an optimizer is a 

software tool which finds the optimal solution f . The optimizer’s objective 

function is formulated once for a specific system with specific constraints. 
Systems can be of any kind, such as an economic system or a technical 
system. An example of a technical smart grid system is the cost-optimal 
operation of a grid-connected Combined Heat and Power Plant (CHP) [13]. 
Optimizers are not aware of, or in touch with, their system in terms of sensing 
system behavior or maintaining it like a controller does. This is of paramount 
importance for reaction, however. Thus, the optimizer example given above 
calculates the optimal set points for the CHP’s operation once, and delivers 
these set points to a controller which is then responsible for reacting to 
system changes. Although we consider optimizers as non-reactive entities, it 
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could be said that optimizers are to some extent goal-oriented and therefore 
proactively. Even if they try to find the best solution out of many, they are not 
acting proactive in terms of taking the initiative. Normally, optimizers do not 
automatically adapt their objective function when the system’s behavior 
changes. Thus, the program will fail to reach its goal (i.e. finding a valid 
optimum). But proactive self-configuration, as we shall see in section 5, is 
essential for smart grid control systems.  

Furthermore, optimizers are neither programmed to converse with a 
human, nor with other computer programs, hence they exhibit no social 
behavior.   

3.2. Why Is an Agent More Than Just a Digital Closed-Loop Control? 

Regarding the core definition of closed-loop controllers, it seems they are 
fairly similar to an agent. Indeed, closed-loop controllers exhibit a reactive 
behavior through their feedback loop. Figure 2. depicts the basic structure of 
a closed-loop control. The control variable y is measured and compared with 

the defined set point value w . Error e is fed to the controller, which then 

calculates actuating variable u as reaction to the control path’s changes. 

Although conventional closed-loop controllers react to small changes in their 
control path (environment), they are not able to handle changes beyond the 
assumed system behavior of the path or an unpredicted situation. This is 
because closed-loop controller parameters (e.g. the integral part of a PID-
controller) are tailored for the specific control path. When designing 
conventional controllers, it is assumed that control path behavior is time-
invariant, completely known, and mathematically describable. However, 
conventional closed-loop controller robustness fails when the control path 
exhibits a time-variant dynamic.  

 
 

 

Fig. 2. Basic structure of a conventional closed-loop control 

Adaptive controllers appear to approximate an agent’s proactive behavior. 
Adaptive controllers can adjust their control parameters during run time by 
measuring the current actuating and control variables. Adaptive controllers do 
this directly or indirectly, and they decide how to adjust their parameters from 
these measurements [20]. Figure 3 shows the Model Reference Adaptive 
Control (MRAC) as an example for illustrating the main principle of adaptive 
controllers. In contrast to the conventional controller, the MRAC exhibits a 
reference model of the control path. As an indirect adaptive control system, it 
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calculates the difference 2e  between the reference model’s behavior and the 

control path. Based on 2e andu , the adjustment mechanism calculates new 

control parameters [40]. 
 

 

Fig. 3. Basic structure of a Model Reference Adaptive Control (MRAC) 

Thus, adaptive controllers recognize environmental changes and react 
proactively in the sense that they adapt their initial parameters. Nevertheless, 
the controller is a “functional system” rather than a goal-oriented system 
aware of alternative ways to reach its goal. This can be illustrated with a 
simple logistic system:  

Imagine a transport unit responsible for transporting a product from one 
work station to another, which has two alternative tracks available. Equipped 
with an adaptive control, the transport unit might be able to deliver the 
product in time, even when there are small obstacles on the track. But the 
adaptive control is not capable of choosing an alternative path through the 
production hall, should the track be blocked by other transport units. That is 
because the adaptive control is not aware of itself, what it actually performs, 
or the environment in which it operates. It processes the task of ensuring a 
stable steady state purely. In regard to the example, the controller does not 
know that it is operating in a production hall which features different corridors 
to arrive at a destination workstation. For similar reasons, the Model 
Predictive Control (MPC) can not be understood as proactive. MPCs predict 
the control path’s behavior by using a reference model, but they are not 
capable of adapting their model to time-variant environments, nor do they 
have knowledge of themselves and the surrounding environment.  

Thus, neither adaptive controllers nor model-predictive controllers can be 
deemed proactive in the manner agents are proactive. Furthermore, normally 
controllers are not designed to get in social contact with other controllers, 
technical systems, or humans. Doubtless, controllers can receive set points 
and communicate (actual) values of their actuating or controlled value, but 
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they can not interact with other devices in the sense of cooperation or 
negotiation. This is of prime importance when several distributed controllers 
influence the same control path, such as in an electricity distribution grid.   

3.3. Why Is an Agent More Than Solely a Learning System? 

Learning systems are computer programs that use machine learning 
techniques. Learning as such, is described as a task which “[…] denotes 
changes in the system that are adaptive in the sense that they enable the 
system to do the same task or tasks […] more efficiently and more effectively 
the next time” [37]. Learning systems exhibit neither reactiveness nor 
proactiviness. This is because, in contrast to controllers or agents, they are 
not designed to control a system. First and foremost they are software 
artifacts which facilitate other computer programs or control systems 
adjustment in response to environmental changes, or the discovery of new 
patterns in measured data. To do so, they maintain an interaction with their 
environment, but only in the sense of; a) measuring data (passive 
unsupervised learning) or; b) experience with the environment while 
measuring the resulting effects (active unsupervised learning). Furthermore, 
learning systems have no real social ability. If social ability is exhibited, they 
are part of distributed problem solving systems which are commonly 
implemented as multi-agent system.     

3.4. Functionalities of Agents  

We pointed out that none of the analyzed technologies incorporate all 
attributes of an agent as described by Jennings and Wooldridge [16]: 
Reactiveness, proactiveness, and social ability. However, the functionalities 
of the above described technologies are joined together within an agent. 
Thus, an agent should not be conceived as synonym for the above 
mentioned state-of-the-art control technologies. Instead, the term ‘agent’ 
expresses a specific software artifact that joins together functionalities of 
optimizers, controllers, and learning systems.  

In contrast to the agent definition of [35], we do not view “anything that […] 
[is] perceiving its environment through sensors and acting upon environment 
through actuators” as an agent. As said before, we base our understanding of 
agents on the definition of Wooldridge and Jennings. Thus, we claim that a 
software artifact labeled as a (holistic) agent must exhibit, in addition to 
optimization and controlling the following functionalities; i) some kind of 
reasoning; and ii) a communication system which allows a high-level agent-
to-agent interaction flexible enough to achieve social speech acts as humans 
do. Therefore, we understand multi-agent based control systems as systems 
consisting of distributed agents capable of coordination, cooperation and 
negotiation to gain a stable common control path (environment) while 



Multi-Agent Systems’ Asset for Smart Grid Applications 

ComSIS Vol. 10, No. 4, Special Issue, October 2013  1807 

reaching their individual goals. Figure 4 depicts the five functionalities that a 
holistic agent should exhibit and which impart the attributes of autonomous 
agents as defined by Wooldridge and Jennings: reactiveness, proactiveness, 
and social ability. Since the extent of the functionality “Learning” can vary 
from one application to the other and is in some application even undesirable 
we marked “Learning” in Figure 4 with a dashed frame as an optional 
functionality for agents. The five functionalities are described in detail in turn. 

 

 

Fig. 4. Functionalities of an agent: reasoning, optimizing, controlling, and high-level 
communication as well as learning as optional functionality (marked with a dashed 
frame) imparting the mentioned attributes reactiveness, proactiveness and social 
ability. 

Reasoning  
In contrast to optimizers and controllers, agents should be able to perform 
tasks that were not explicitly defined and programmed at design time. Thus, 
agents are capable of reaching the programmer’s defined goals by 
processing sequentially different tasks that they develop from a knowledge 
base of their environments. This process can be illustrated with a real-life 
scenario: suppose you have a meeting on the other side of city and that you 
usually take your bike. How would you behave if your bike was broken? You 
would think (reason) about other vehicles you might be able to use by 
checking the logical relation between bikes and other known objects, such as 
cars, tricycles, and walls. Understanding that walls are not vehicles is 
something taken for granted by humans. For computers, this is a non-trivial 
task. However, “practical reasoning” [2] enables agents to explore tasks or 
actions from a logical knowledge of their environments that suit the situation 
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to be solved. After finding a set of possible alternatives, which can also stem 
from cooperation with other agents, the agents need to make the decision of 
which task or action they want to perform to reach their goals. 

Optimization  
Usually, agents make this decision by some sort of performance 
measurement. [44] describes the idea of associating “utilities with states of 
the environments”. Utility is a numeric value which shows how “good” an 
agent’s envisaged task/alternative is. Thus, the agent tries to find one 
alternative out of the set of explored alternatives that promises the highest 
utility. This does not imply that agents always act on basis of a single utility 
function to reach their goals. Sometimes they act on zero or multiple 
coexisting utility functions. This is illustrated in the above example: through 
reasoning you figured out that you have three alternative transportation 
options that will get you to your meeting: by car, by tricycle, or by foot. Thus, 
you can reach your goal either by choosing the cheapest (by foot) or the most 
comfortable alternative (the car). But if you have no preference it is irrelevant 
which vessel (task/alternative) you choose unless you reach your goal 
“arriving at the meeting place”. This is similar to agents. Agents can either 
realize the optimal task or choose a task randomly.  Expressing this example 
in a mathematical form, the parallels between optimizers and “decision 
making”, as it is usually entitled by agent scientists becomes apparent (cf. 
section 3.1): 
 

)()( 21 vuvu   for all Vv  

 
(2) 

 
while 

Vu :  ℝ          

and  

2,1v  = vehicle one/two, V  = Pool of alternative vehicles, u  = Cost of 

transport 

Learning  
Based on this example, we further want to illustrate the learning ability of 
agents. Agents, like humans, can recognize changes to their environmental 
constraints. They can identify new alternatives, such as vehicles that are 
faster, cheaper, or both. The ability to recognize changes in the environment 
is vital for reaching the agent’s goal, but also proves to be very difficult. This 
is because such learning requires - much like reasoning - knowledge about 
the logical relations of objects in the environment in which the agent is 
embedded. However, the learning system of an agent modifies the number of 
alternatives which the reasoning functionality can process and thereby it also 

modifies the optimizer’s pool of alternativesV , indirectly. As mentioned 

before, the agent’s ability to expand and modify its behavior via learning is 
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not a mandatory functionality for an agent but it constitutes – when 
implemented – an essential distinguishing feature of an agent compared with 
controllers or optimizers. 

Controlling 
After determining which tasks should be realized, agents give commands (set 
points) to their technical system for which they are responsible (considering 
the car as technical system in our example, a command could be “start the 
motor and drive at a certain velocity”). Furthermore, agents need to check if 
the command is performed correctly and, if not, to take corrective actions. 
This is what closed-loop controls do, roughly. As mentioned before, closed-
loops try to arrange a given set point by reacting based on the control 
variable’s feedback.  

High-level Communication 
The most distinctive attribute of agents compared to other technical control 
systems is really an agent’s social ability. Social ability does not only include 
the interaction with humans as done with expert systems [44], it also 
encompasses the freedom to interact with any valuable communication 
partner, be it a human, superior entity (e.g. server, market), or other agents. 
This freedom to automatically and flexibly establish communication at run-
time makes a high-level communication interface and language necessary. 
Such a language is specified by the Foundation for Intelligent Physical 
Agents (FIPA). Within the FIPA-Specification a high-level communication 
language is formalized and specified. FIPA-Agents Communication 
Language (ACL) comprises generic messages classes, so called 
performatives. These performatives express the type or class of a message 
without specifying the content and the content language (e.g. the 
performative “request” is used by agents asking other agents to submit any 
information) [10]. Thus, agents can establish communication with any kind of 
content at run-time and are not limited to communication interfaces defined 
at design time (e.g. web-services) [14], [33]. As described in section 5, this 
functionality will likely bring valuable advantages and it is indispensable when 
agents are part of a multi-agent based control systems.  

4. “Multi-Agent Systems” in Recent Smart Grid Projects 

In this section, we review the most recent smart grid research projects 
labeled with the term ‘agent’ or ‘multi-agent’. We do not claim to provide a 
complete listing of all smart grid multi-agent systems. Rather, we intend to 
carve out common interpretations and implementations of the agent 
technology by illustrating some representative examples. Therefore, we only 
considered the domain of distributed agent-based control systems (as defined 
in [24]). Furthermore, we refer to the more general term ‘control entity’ (CE) 



Gregor Rohbogner et al. 

1810 ComSIS Vol. 10, No. 4, Special Issue, October 2013 

to describe the diverse systems (and their differing interpretations of agent 
systems) instead of using the term ‘agent’. Subsequently, in section 5, we 
discuss under which circumstances CEs and control systems can be 
understood as multi-agent control systems. 

The majority of previous multi-agent labeled systems consist of distributed 
CEs, which are responsible for trading energy on local electricity markets 
(LEM) by sending bids. In distributed CEs scenarios, CEs calculate energy 
sales or energy purchase prices based on their individual cost functions. The 
cost functions for CEs are composed of the specific power device’s (e.g. 
combined heat and power plant, photovoltaic system, or simply a dwelling 
with different loads) cost function for which the CE is responsible. After 
calculating the cost-minimal operation of the power equipment, the CEs send 
bids to their dedicated LEMs. The LEMs subsequently match the CEs’ energy 
offers and demands and send the auctions outcome. CEs can either act as 
sellers or buyers at the local energy market [4], [5], [18], [21], [23], [34], [42].  

The general structure of these systems is depicted in Figure 5. In addition 
to the descripted basic market-oriented structure (continuous lines) a further 
upper trading level is visualized in the figure (dashed lines). In this level, 
LEMs can trade energy at an upper electricity market (EM). However, they 
only do so if they were not able to locally match all supplies and demands of 
the CEs. Such a cascading system can be found in [18] and [43]. With few 
exceptions, such as [22], these market-oriented systems usually are non-
predictive systems. Thus, they only calculate energy for the next time 
intervals that range between 500 milliseconds [42], [43] and several minutes 
[22], and do not calculate a cost optimal schedule (e.g. for the next 24 hours). 
In most all market-oriented systems labeled as MAS, control entities are only 
connected to their dedicated local energy market. Hence, these MAS are not 
programmed to search or adapt their strategies to other local or global 
markets. Furthermore, current market-oriented multi-agent systems are 
mainly programmed for one dedicated market type. For example, the above-
mentioned systems can handle only bids within an auction based, active 
power market. However, an agent should be capable of handling all types of 
markets (e.g. active, reactive, and spinning reserve markets) and all offered 
products (e.g. spot deals or forward transactions).  

Grid-oriented systems constitute the second important application field of 
multi-agent based distributed control systems in the smart grid. These control 
systems are primarily responsible for ensuring a grid operation in a normal 
state, which implies an operation within the standardized voltage, power, and 
frequency limitations of the grid. For example, [21] extends the market-
oriented approach of [43] with a local frequency measurement and 
adjustment. [32] developed a voltage control system implementing a central 
CE that optimizes reactive power injection of distributed energy systems 
(DES). Therefore, the CEs are responsible for the DESs only receiving a set 
point from the central CE.  

Furthermore, in previous grid-oriented projects, distributed control systems 
capable of performing an automatic reconfiguration of their control 
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parameters in case of grid topology changes were developed. Grid topology
2
 

changes can arise either by an activation of circuit breakers and (e.g. to 
increment or decrement the voltage level), or from connection, or 
disconnection, from the main grid: 
 

a) of either single Distributed Energy Resources (DER) at any 
instant or  

b) of entire grid sections, due to an occurring fault like a short 
circuit. [30] 

 

Local
Electricity Market

Control Entity Control Entity Control Entity

Electricity Market

Local
Electricity Market

Local
Electricity Market

Local offers to buy/ for sale 

Offers to buy/ for sale on a possible next hierarchic  

Fig. 5. Common structure of systems labeled as MAS applying an auction based 
active power spot market. 

While the activation of circuit breakers, and the connection and 
disconnection of DERs, require “solely” the reconfiguration of distributed 
control entities, the control of separated grid sections is particularly 
challenging. These so called micro-grids require several non-trivial tasks like 
fault detection and localization, coordination of the islanded grid section’s 
voltage, and frequency control as well as synchronization when reconnecting 
to the main grid [30]. [26] and [29] developed distributed control systems, 
responsible for reliable operation in the normal grid state as well as for 
automatic and secure transition from the normal grid state, to the island state 

                                                   
2
 Within this paper grid topology is understood as defined in electrical engineering. 
Thus, a change of any grid parameter (e.g. change of a load, change of 
impedances, and activation of switches) is regarded as topology change. It 
encompasses not only the restructuring of electrical grids.   
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and back. Switches and distributed energy systems (e.g. photovoltaic system, 
electricity storages, loads, etc.) equipped with interconnected CEs are 
capable of communicating in a many-to-many manner, and thus may 
coordinate the grid in every state without passing information via a dedicated 
central control entity. 

5. Agents’ Assets and Suitable Application Fields 

Comparing the distinction of agents developed in this paper (Section 3) and 
recent smart grid projects labeled as multi-agent systems (Section 4), we 
claim that most projects implemented control systems exhibiting some, but 
not all, agent functionalities in a stricter sense. Although these multi-agent 
control systems have proved to be very effective, some smart grid 
applications do not necessitate multi-agent systems as a control system. In 
the following, we discuss where the usage of (the notion of) multi-agent 
systems and the application of holistic agents might be valuable assets in the 
smart grid. We structured this section according to the main smart grid 
domains: grid-oriented and economic-oriented approaches. While grid-
oriented approaches control DERs in a way that reliable grid operation is 
ensured (e.g. distributed voltage control via reactive power injection), the 
economic-oriented approaches control DERs grid independently (e.g. virtual 
power plants). 

5.1. Economic-oriented Control Systems 

As mentioned above and posed by Jennings and Bussmann, multi-agent 
systems should demonstrate CEs which have the capability “to initiate (and 
respond to) interactions that were not foreseen at design time” [15]. Although, 
the investigated market-oriented systems (in section 4, paragraph 2) 
constitute decentralized and negotiating CEs, the systems cannot be deemed 
agent systems in a stricter sense (cf. section 3). This is because: 

First, the negotiation of CEs in market-oriented MAS is mainly limited to 
only one negotiation partner, the local electricity market. Second, the 
investigated market-oriented MASs demonstrate CEs which are dedicated to 
only one market type (e.g. real time markets or active energy spot markets) 
and they are not capable of  automatically initiating contracts (for example) 
on other market types (e.g. forward-markets and reactive energy (spot) 
markets) or to conclude a direct, bilateral, over-the-counter contract. Both 
seem to contradict the agent definition and somehow also the legal 
requirement of being able to freely choose any energy supplier

3
. In contrast, 

a multi-agent system, in a stricter sense, should allow agents to negotiate 
energy with any other agent, and thereby enter into any contracts with any 
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partner, either of a local energy market or a gird neighbor who offers or sells 
energy bidirectionally over the counter.  

Further, CEs in economic-oriented systems labeled as multi-agent system 
should have the freedom to cooperate and to dynamically form subgroups 
(“holons”) with other CEs. Applied in the smart grid, this would enable 
dynamic and automatic composition (and decomposition) of energy 
communities. These communities would, for example, try to match electricity 
production and consumption within their community first, before entering 
negotiations with external agents or other electricity communities. In addition, 
it is conceivable that agents would form groups with the purpose of acting as 
a virtual power plant that appears as a whole, such as when trading energy at 
the operating reserve market [6], [39].  

However, the flexibility to interact at unpredictable times, for unforeseen 
reasons with other unpredictable CEs makes what social ability embodies 
evident. CEs, like those mentioned above (cf. section 4), are bound to a 

single web-service enabling bidding at a dedicated LEM, cannot be deemed 

“social” and proactive. (cf. [14]). In combination with a single possibility to 
modify the bids - which makes reasoning needless - the alleged agents 
demonstrate more of the characteristics of communicating optimizers. 
However, what social ability and proactiviness applied in economic-oriented 
MAS should imply is illustrated by an example: Imagine a rural low-voltage 
grid with four nodes representing four households with different energy 
systems. As depicted in Figure 6., the first household is equipped with a 
combined heat and power plant (CHP), the second and fourth with a 
photovoltaic system (PV), and the third with a heat pump (HP). All energy 
systems are controlled by agents responsible for the technical and 
economical efficient operation. The agent goals, which are usually cost-
minimal energy supply and profit-oriented generation, are defined at design 
time. Other than current control systems, agents are not bound to one control 
strategy in achieving these goals. Thus, the HP agent might proactively ask 
the CHP agent and the PV Agent – without dedicate command of a human – 
if they are interested in cooperating within an energy community. If the other 
agents agree in that cooperation, all agents need to adapt their control 
parameters in order to achieve the joint objective of the energy community 
(social ability): profit maximization while ensuring a reliable energy supply. 
Further, it is conceivable that the community may decide proactively to 
participate in the operating reserve market because they assume a higher 
profit. Such a machine-to-machine decision makes a social interaction and an 
automatic adjustment of the control parameters indispensable. Figure 6. 
shows examples of different possibilities through which agents can achieve 
their goals. While (a) depicts agents that fend for themselves, in (b) and (c) 
agents are cooperating for either the purpose of self-consumption or to 
appear as one party on energy markets. 
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Fig. 6. Examples of how agents (in a low-voltage grid) can organize themselves. 



Multi-Agent Systems’ Asset for Smart Grid Applications 

ComSIS Vol. 10, No. 4, Special Issue, October 2013  1815 

5.2. Grid-oriented Multi-Agent Systems 

The development of distributed renewable systems obliges network operators 
to extend their (sub-)transmission control systems to the distribution and low-
voltage grids. To preserve operational personal from workload increase, 
which even today necessitates automation [15], multi-agent systems could be 
a suitable solution. Industrial manufacturing and industrial process 
automation already demonstrate that agent-based systems bring sizable 
advantages when applied as a control system for uncertain, difficult to predict 
and varying environments. Biological wastewater treatment plants or 
production systems with repetitive plugging of equipment are the most 
noteworthy example which Metzger et al. surveyed [25]. These conditions 
seem – in a weakened form – also present in future electricity distribution 
grids. The following paragraphs discuss where agent technology in grid-
oriented control is of value. Since voltage and frequency control demonstrate 
the most important and most discussed grid values in smart grid research, we 
have subdivided this section accordingly. Further, we discuss micro-grid 
control systems within a separate paragraph, since it is responsible for all 
values which are important for stable and reliable grid operation.   

Voltage Control in Distribution Grids 

In addition to frequency control, network operators are responsible for 
controlling grid voltage. In contrast to the grid frequency, the voltage depends 
on the grid’s topology, encompassing the grid impendency, grid structure, and 
the active and reactive energy flows of consumers and generators connected 
to the grid. Voltage control in distributed and low-voltage grids was not 
important in the past due to the unidirectional energy flows and the 
associated static drop of voltage along the power line. The transformers in 
low-voltage grids were adjusted in the way that the voltage was high enough 
even at the end of the grid. Over-voltage problems are assumed when the 
current static transformer parameterization remains unchanged while the 
number of distributed generators (e.g. photovoltaic systems or combined heat 
and power plants) rises. In order to keep the voltage in the permitted ranges, 
one approach is to involve the distributed systems in grid stabilization by 
means of dynamic adaptation of the active (P) and reactive power (Q) 
depending on the grid voltage. These distributed systems need to be 
coordinated to avoid voltage oscillation in the grid and to ensure a maximal 
production of renewable active energy. For this purpose, the controllers can 

be extended to agents, capable of coordinating and negotiating 

injection of power. To reduce the configuration efforts of the agents and to 
allow automatic adaptation when the grid structures change, agents should be 
capable of detecting grid position. These changes in grid structure can 
develop because, first, short circuits or earth faults need to be recovered, or, 
second due to an islanding of the grid section in which the agent is located. In 
both cases manual reconfiguration and coordination of the distributed 
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controllers’ parameters seems inappropriate. Thus, agents which realize 
automatic configuration may be valuable assets in this scenario. Especially in 
regions with a high percentage of overhead lines (as in the United States) 
automatic troubleshooting of electricity grid is of paramount interest. 

Grid Frequency Control 

The gradual substitution of conventional power plants with distributed 
renewable energy systems compulsorily increase the influence of distributed 
systems on the frequency. To ensure a stable and reliable grid in the future 
frequency control need to be coordinated among those millions of distributed 
systems, since large frequency changes can lead to an unstable power 
system. 

In today’s central European electricity grid (ENTSO–E
4
 grid), the 

transmission grid operators are responsible for the frequency control. The 
frequency control is divided in three control levels which differ in their time of 
activation: a) primary control (frequency-response reserve), b) secondary 
control (spinning reserve), and c) tertiary control (replacement reserve). In 
case of a frequency deviation, the control levels are activated step-wise, 
beginning with the primary control, via the secondary control and ending at 
tertiary control (if the deviation still exists). The primary control reacts within a 
few seconds (max. 30 seconds) to frequency deviation by automatically 
adapting the power of some generation units in the electricity grid according 
to a given static. After one minute, the secondary control replaces the 
primary control and tries to restore the frequency to the nominal value (in 
Europe 50 Hz). If it is not possible to restore the frequency with the secondary 
control after five minutes, tertiary control is manual (e.g. via phone) 
requested by transmission operators. All forms of operating reserve 
(frequency-response reserve, spinning reserve and replacement reserve) are 
traded on the operating reserve market. Currently only larger power plants 
are allowed to participate on the operating reserve markets. 

Assuming that the current operating reserve mechanism remains 
unchanged, while in the future small distributed generation units are also 
allowed to trade replacement reserve, agents might be of value when 

enabling automated participation of distributed energy systems at the 

operating reserve market. As a control entity for a distributed energy 
system (e.g. a combined heat and power plant) the agent would 
autonomously negotiate at the operating reserve market in order to operate 
its distributed energy system cost-optimally. [21] describes such a multi-agent 
system which controls the frequency via a market-oriented multi-agent 
system. A  Balancing-Agent, which is responsible for the frequency, offers 
active energy for consumption when the frequency is about to drop and buys 
energy - which is left unused - when the frequency rises. Here, the Balancing-
Agent appears as a central coordinating unit to which the other agents are 
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dedicated. As mentioned above, it is questionable if a control entity which is 
slowly connected to the operating reserve market server shall be deemed an 
agent in strictest sense.  The automatic negotiation can also be implemented 
using web-services. But as described by [14] web-services are not agents. 
Hence, labeling negotiating control entities as agents would only make sense 
when they demonstrate proactiviness and social behavior as described in 
section 3. Consistently, proactiviness and social behavior are only feasible if 
alternative courses of action exist. It is the control entity which is capable of 
deciding, for example, to either offer at the operating reserve market or to 
any other energy market (cf. section 5.1), which would constitute a freedom, 
on the basis of which a control entity may develop its proactiviness. 
Furthermore, social behavior only evolves if other control entities and, with 
that, possibilities of cooperation (e.g. as virtual power plant) exist. 

Besides the question of how distributed energy resources can participate 
passively at the frequency control via a replacement reserve market, it still 
remains unclear how they can participate actively

5
, without causing grid 

destabilization. As mentioned above, recent photovoltaic inverters were 
configured to disconnect from the grid if the frequency reached the limit of 
50.2 Hz. If a large amount of systems would react accordingly, this would 
cause serious grid problems [17]. Thus, the parameterization of the 
distributed energy system via cooperating agents – as applied for voltage 
control – would be conceivable. But other than the voltage, the frequency 
constitutes a grid-wide value. This would imply the coordination of millions of 
energy systems, which seems unrealistic mainly due the associated high 
communication traffic. Assuming that, in the future, only some power units 
are responsible for the supply of frequency-response and spinning reserve 
power, a multi-agent system might be an appropriate solution for an 
automatic, autonomous, and self-parameterizing control system of the power 
plants control, as described in [1].      

Micro-Grid Control 

Micro-grids seem to be the most appropriate smart grid domain for the 
applications of multi-agent based control systems regarding the recent 
numerous micro-grid projects [19]. [3] defines micro-grids as small, local 
distribution systems containing generation and loads that can be separated 
totally from the distribution grid. Micro-grids constitute, indeed, perfect 
environments for the application of MAS, for the following reasons: First, 
other than the main grid, the micro-grid demonstrates a small separate 
system comprising of a limited number of control entities. That makes the 
coordination and the assigned communication efforts manageable. Other 
than in the smart grid parameterization, for example, of the frequency 

                                                   
5
 Actively implies that the control units measure the frequency at their dedicated grid 
node and react directly to frequency deviations by adapting the injected active 
power, or reactive power. 
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controllers becomes feasible. Second, micro-grids in disconnected mode are 
fully responsible for the stable and reliable operation of the grid. That 
encompasses, besides the voltage control, the frequency control and 
protection issues as well. The indispensable energy balance needs to be 
ensured, while, caused by disconnection, only a reduced number of devices 
that can provide reserves exist. Likewise, the micro-grid control system 
needs to react to regular changes in the grid topology (e.g. disconnection of 
distributed energy resources or loads). Hence, as described in [30], MAS 
would be a valuable asset, because other than in a centralized micro-grid 
control system, no manual adaption of the central control algorithms/models 
is necessary. Within a MAS automatic adaption of the distributed control 
parameters takes place if topology changes occur. Numerous multi-agent 
based micro-grid control systems can be found in literature. [19] and [30] give 
a broad overview about recent multi-agent based micro-grid controls. 

In this section we illustrated that the terms ‘agent’ and ‘multi-agent’ 
systems applied in the smart grid are of value when automatic, cooperative, 
and coordinated reconfiguration of distributed devices (e.g. distributed energy 
systems or grid equipment) is required during runtime. We discussed the 
application of multi-agent systems for frequency control, voltage, micro-grid 
control (grid-oriented), and economic-oriented control systems, since they 
constitute the major smart grid control domains. Further applications, such as 
the optimal coordination of an electric vehicle fleet or substation monitoring 
and diagnostic systems, can be considered as further possible applicable 
fields for multi-agent systems. However, it is recommended to carefully 
consider if either multi-agent systems or current state-of-the-art control 
technology should be applied, as the case pops up on a case by case basis. 
Furthermore, the term ‘agent’ should only be used if the control systems 
evince the above mentioned abilities: proactivity, reactivity and social 
behavior, and not only as a synonym for state-of-the-art control technologies. 

6. Conclusion 

This article has sought to justify why and when multi-agent systems are 
suited for smart grid applications. First, we have posed that state-of-the-art 
control technologies should not be understood as agents, but, in turn, agents 
should be understood as software artefacts that exhibit the functionalities of 
optimizers, controllers, and learning systems, accompanied by the 
capabilities of practical reasoning and social interaction. Second, we 
contrasted our understanding of agents with interpretations of recent smart 
grid projects labelled as multi-agent control systems. These projects have 
already demonstrated the effectiveness of multi-agent systems, although they 
implement agents only in the broadest senses: due to the decentralized 
structure, data is locally processed where it is produced and local negotiation 
effects a coordination of the distributed systems. However, to explore all 
agent benefits and to sharpen the notion, we suggest terming control entities 
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as agents when they encompass all of the above mentioned functionalities. 
The assets are: i) automatic reconfiguration in case of time-invariant 
environment changes (e.g. grid topology changes); ii) automatic initiation of 
and participation in (economic) interest groups (virtual power plants); and iii) 
automatic adaption to changing control strategies (e.g. in case of grid 
islanding). Coordination of thousands of distributed, fluctuating, electricity 
generators and a robust operation of our electricity grids constitutes an 
enormous future control challenge. This dynamic, distributed, and widespread 
environment seems to be perfectly suited for the application of agent-based 
control systems.    
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