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Abstract. The research presented in this paper builds on previous work that lead
to the definition of a family of semantic relatedness algorithms. These algorithms
depend on a semantic graph and on a set of weights assigned to each type of arcs in
the graph. The current objective of this research is to automatically tune the weights
for a given graph in order to increase the proximity quality. The quality of a se-
mantic relatedness method is usually measured against a benchmark data set. The
results produced by a method are compared with those on the benchmark using
a nonparametric measure of statistical dependence, such as the Spearman’s rank
correlation coefficient. The presented methodology works the other way round and
uses this correlation coefficient to tune the proximity weights. The tuning process
is controlled by a genetic algorithm using the Spearman’s rank correlation coeffi-
cient as fitness function. This algorithm has its own set of parameters which also
need to be tuned. Bootstrapping is a statistical method for generating samples that
is used in this methodology to enable a large number of repetitions of a genetic algo-
rithm, exploring the results of alternative parameter settings. This approach raises
several technical challenges due to its computational complexity. This paper pro-
vides details on techniques used to speedup the process. The proposed approach
was validated with the WordNet 2.1 and the WordSim-353 data set. Several ranges
of parameter values were tested and the obtained results are better than the state of
the art methods for computing semantic relatedness using the WordNet 2.1, with the
advantage of not requiring any domain knowledge of the semantic graph.

Keywords: Semantic similarity, Linked data, Genetic algorithms, Bootstrapping,
WordNet

1. Introduction

Consider a magazine, a pencil and a notepad. From these three items which is the most
related pair? Is it magazine and pencil, magazine and notepad or notepad and pencil?
People living in more individualistic societies tend to find the magazine and the notepad
more related, since they are both made of paper, while people living in more collectivist
societies tend to find the pencil and the notepad more related since they complement each
other [13]. The differences are even more striking when people are asked to assign a
value to relatedness [11]. These experiments reveal the lack of a standard definition of
relatedness and the difficulty to measure the relatedness of two concepts.
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This paper is an extended version of paper presented at the Symposium on Languages,
Applications and Technologies [17] and presents ongoing work aiming the development
of a new methodology to determine the semantic relatedness between a pair of concepts.
This methodology is knowledge based, it is applied to a semantic graph and does not
require any knowledge about the graph’s domain. It uses a family of semantic related-
ness algorithms based on the notion of proximity [16]. An algorithm from this family is
parametrized by a semantic graph, where the resources are the graph nodes and the prop-
erties the arcs. Each type of arc has a specific weight value. Tuning these weights in order
to improve the quality of the semantic relatedness is the current objective of this research.

There are other methods based on semantic graphs available in the literature [1, 21, 31]
that measure the quality of their algorithms using as benchmark a standard data set [11].
This data set has the reference similarity of concept pairs that is the average similarity
assigned by a group of persons. The relatedness computed with an algorithm is compared
against those of the benchmark using a nonparametric measure of statistical dependence,
such as the Spearman’s rank correlation, and its quality is as high as the value of the
correlation.

A measure of quality is essential for using a genetic algorithm in a tuning process. In
this tuning approach, an assignment of values to weights is encoded as a set of genes of
a chromosome. New chromosomes are obtained by crossover and mutation of chromo-
somes from the previous generation where the best are selected using a fitness function.
The fitness function receives as input a weight assignment and returns the Spearman’s
rank order correlation for a subset of benchmark data.

The genetic algorithm has in turn its own set of parameters that need to be tuned.
Bootstrapping is a statistical procedure that produces a larger number of samples that are
used to explore the most promising settings of the genetic algorithm. The best setting is
finally used to run the genetic algorithm a larger number of times with the complete data
set.

The tuning approach was validated with the semantic graph of WordNet 2.1 [10], us-
ing as benchmark the WordSimilarity-353 [11] data set. The obtained results are better
than the best result available in the literature for the same knowledge source and bench-
mark [31].

Due to its computational complexity, the tuning approach raises several technical chal-
lenges. Firstly, the semantic algorithms must collect a large number of paths connecting
each pair of labels in the graph. Secondly, in order to compute the Spearman’s rank order
correlation, the semantic relatedness algorithm must be executed with several hundreds of
pairs of concept labels. Thirdly, the genetic algorithm must compute a correlation for each
chromosome (a set of weight assignments) in the genetic pool for hundreds of generations.
And finally, the evolution process of the genetic algorithm has to be repeated hundreds of
times as part of the bootstrapping method. This paper also presents approaches used to
speedup the tuning process.

The rest of the paper is organized as follows. The next section surveys the state of
the art on semantic relatedness and Section 3 presents the family of semantic relatedness
algorithms designed in previous research. Section 4 describes the tuning methodology
and Section 5 details its implementation. The experimental results and their analysis can
be found in Section 6. Finally, Section 7 summarizes what was accomplished so far and
identifies opportunities for further research.
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2. Related Work

Semantic measures, such as semantic relatedness, are widely used to estimate the strength
of a semantic relationship between elements. The information needed to estimate those
measures can be extracted from two different source types.

Sources of the first type are unstructured or semi-structured texts. These texts have ev-
idences of semantic relationships among their content. In order to estimate the strength of
a semantic relationship it is possible to use simple assumptions regarding the distribution
of words. Sources of the other type are structured and explicit knowledge representa-
tions. Semantic measures based on this source type rely on semantic graph processing
techniques. The approaches of computing semantic measures are based on the type of the
source: the distributional methods, the knowledge-based methods and the hybrid methods.

The distributional approaches use unstructured texts analysis. They compare words,
sentences or documents and their occurrence. These approaches rely on the distributional
hypothesis [14] which states that words occurring in similar contexts tend to be seman-
tically close. This means that words surrounded by the same words (similar context) are
likely to be semantically similar. There are several methods following this approach, such
as the spatial/geometric methods, the set-based methods and the probabilistic methods.

The spacial/geometric methods assume a semantic space where a word, for instance,
is a point in a multi-dimensional space that represents the diversity of the vocabulary
used. Two words are compared regarding their location in the multi-dimensional space.
An example of this approach is found in Ganesan [12] work.

The set-based methods compare words regarding their context, considering which are
common and which are different, using classical set-based measures such as the Dice
index or the Jaccard coefficient. The work of Bollegala [5] and Terra & Clarke [32] are
examples of this type of methods.

The probabilistic methods express the semantic relatedness of words in terms of prob-
ability of co-occurrence. They consider both the contexts in which the compared pairs of
words appear and the contexts in which the two words co-occur. These evidences are used
to estimate the semantic relatedness. This type of methods were used by Dagan [7] in his
work.

Distributional approaches do not require prior knowledge of the meaning and usage of
words, but they have some limitations; they are highly dependent of the corpus used and
words to compare must occur at least few times. They also require word disambiguation
process prior to comparison.

The knowledge-based approaches rely on structured data, such as semantic graphs.
They consider the structural properties of the graph and elements are compared by study-
ing their interconnections and the semantic of those relationships. Different methods have
been defined to compare elements in a single knowledge base and also in multiple knowl-
edge bases, such as structural methods, feature-based methods and Shannon’s Information
Theory methods.

The structural methods use the graph structure, nodes and arcs, to compare a pair of
elements, expressing the semantic measure as a function of the strength of its connec-
tions. Most of these methods are based on the shorter path connecting both elements (the
shorter the path the stronger is the semantic relationship) and only consider taxonomical
relationships. Other structural methods have been proposed that consider all types of rela-
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tionships connecting the elements. Examples of this approach are the work of Rada [26],
Resnik [28] and Li [18, 19].

The feature-based methods estimate the semantic relatedness considering specific
properties of the elements during the process. These methods need a function to char-
acterize features of the elements that will be compared. The semantic relatedness is ob-
tained by evaluating the number of features they share. Bodenreider [4], Stojanovic [30]
and Ranwez [27] followed these methods.

There are also methods based on the Shannon’s Information Theory. In these methods,
the elements are compared using the amount of information they share and the amount of
information they have distinct. Lin [20] and Pirró [25, 23, 24] developed their approaches
based on this type of methods.

With knowledge-base approaches is possible to compare every pair of elements rep-
resented in the graph and also control which properties should be considered in the eval-
uation. These methods are easier to implement than the distributional methods and have
a lower complexity. However they require a knowledge representation describing the ele-
ments.

There are also hybrid approaches that mix knowledge-base and distributional ap-
proaches. These methods take advantage of both texts and knowledge representations to
estimate the semantic relatedness. Examples of these methods are given by Resnik [28],
Banerjee & Pedersen [2, 3] and Patwardhan [22].

The methodology presented in this paper follows a knowledge-based relying in struc-
tural methods as detailed on the next section.

3. Previous Work

Concepts in semantic graphs are represented by nodes. Take for instance the music do-
main. Singers, bands, music genres, instruments or virtually any concept related to music
is represented as nodes in a knowledge representation. These nodes are related by proper-
ties, such as has genre connecting singers to genres, and thus form a graph.

The semantic relatedness measure in development in this research uses a semantic
graph to compute the relatedness between nodes. Actually, the goal is the relatedness
between concepts, but concept nodes of semantic graphs typically have a label — a string
representation or stringification — that can be seen as a term.

At first sight relatedness may seem to be the inverse of the distance between nodes.
Two nodes far apart are unrelated and every node is totally (infinitely) related to itself.
Interpreting relatedness as a function of distance has an obvious advantage: computing
distances between nodes in a graph is a well studied problem with several known algo-
rithms. After assigning a weight to each arc one can compute the distance as the minimum
length of all the paths connecting the two nodes.

On a closer inspection this interpretation of relatedness as the inverse of distance
reveals some problems. Consider the graph in Figure 1. Depending on the weight assigned
to the arcs formed by the properties has type and has genre, the distances between
Lady Gaga, Madonna and Queen are the same. If the has genre has less weight than
has type, this would mean that the band Queen is as related to Lady Gaga as Madonna,
which obviously should not be the case. On the other hand, if has type has less weight
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than has genre then Queen is more related to AC/DC than to Lady Gaga or Madonna
simply because they are both bands, which also should not be the case.

Band Musical Artist

Lady Gaga MadonnaQueen

Pop Rock

has g enre

hastyp e has typ e has typ e

AC/DC

Hard Rock

has typ e

has g enrehas g enrehas g enre

 Rock

sub  g enre sub  g enre

Fig. 1. RDF graph for concepts in music domain

In the proposed semantic relatedness measure, we consider proximity rather than dis-
tance as a measure of relatedness among nodes. By definition3, proximity is closeness; the
state of being near as in space, time, or relationship. Rather than focusing solely on min-
imum path length, proximity balances also the number of existing paths between nodes.
As an example consider the proximity between two persons. More than resulting from a
single common interest, however strong, it results from a collection of common interests.

With this notion of proximity, Lady Gaga and Madonna are more related to each other
than with Queen since they have two different paths connecting each other, one through
Musical Artist and another Pop Rock. By the same token the band Queen is more
related to them than to the band AC/DC.

Our insight is that an algorithm to compute proximity must take into account all the
relevant paths connecting two nodes and their weights. However, paths are made of several
arcs, and the weight of an arc type should contribute less to proximity as it is further away
in the path. In fact, there must be a limit in number of arcs in a path, as semantic graphs
are usually connected graphs.

In this methodology, the estimation of a proximity value depends on exploring a graph.
In a semantic graph a node can be linked to other node by several typed arcs. Although
semantic graphs are usually characterized as directed multigraphs4, for the purpose of this
semantic measure the semantic graph can be interpreted as an undirected graph since, in

3 https://en.wiktionary.org/wiki/proximity
4 Take as example the RDF data model
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general, it is possible to define an inverse relationship for each arc type in the graph. A
domain graph can be defined asG = (V,E, T,W ) where V is the set of nodes (concepts),
E is the set of edges connecting the nodes, T is a set of edges types and W is a mapping
of edges types to weight values. Each edge in E is a triplet (u, v, t) where u, v ∈ V and
t ∈ T .

The set W defines a mapping w : T 7→ N+ and the upper bound of weights for all
types is

Ω(G) ≡ maxti∈Tw(ti)

In order to retrieve the proximity between two concepts it is necessary to walk through
the graph and build a set of distinct paths that connect them. A path p of size n ∈ N+ is a
sequence of unrepeated nodes in {u0 . . . un|(∀i, j, n)((0 ≤ i ≤ j ≤ n)∧(ui 6= uj))} that
are linked by typed arcs, that must have at least one edge and cannot have loops; paths are
denoted as follows.

p = u0
t1−→ u1

t2−→ u2 . . . un−1
tn−→ un

The weight of a path p is the sum of the weights of each edge and the weight of an edge
depends on its type, ω(p) = w(t1) + w(t2) + . . . + w(tn). The set of all paths of size n
that connect two concepts is defined as follows.

Pnu,v = {u0
t1−→ u1 . . . un−1

tn−→ un : u = uo∧v = un∧∀i,j,n0 ≤ i ≤ j ≤ n∧ui 6= uj}

The weight of Pnu,v is the sum of all sub paths that connects u and v. The algorithm used
to calculate proximity is based on this definition but also considers the path length. The
shorter the path the higher is its contribution to the proximity.

The proximity function r is defined by the following formula, where ∆ is the graph
maximum degree.

r(u, v) =


1 ← u = v

1
Ω(G)

∞∑
n=1

1
2nn∆(G)n

∑
p∈Pn

u,v

ω(p) ← u 6= v (1)

Given a graph with a set of nodes V

r : V × V 7→ [0, 1]

The proximity function r takes two nodes and returns a “percentage” of proximity be-
tween then. This means that the proximity of related nodes must be close to 1 and the
proximity of unrelated nodes must be close to 0.

The main issue with this definition of proximity5 is how to determine the weights of
transitions. The first attempt was to define these weights using domain knowledge. For
instance, when comparing musical performers one may consider that being associated
with a band or with another artist is more important than their musical genre, and that
genre is more important than their stylistics influences and even more important than
instruments they play.

However this naı̈ve approach to weight setting raises several problems. Firstly, this
kind of “informed opinion” frequently has no evidence to support it, and sometimes is

5 See [16] for a detailed description of the algorithm.
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plainly wrong. How sure can one be that stylistics influences should weight more than
the genre in musical proximity? Even if it is true sometimes, how can one be sure it
is true in most cases? Secondly, this approach is difficult to apply to a large ontology
encompassing a broad range of domains. Is a specialist required for every domain? How
should an ontology be structured in domains? What domain should be considered for
concepts that fall in multiple domains? To be of practical use, the weights of a proximity
based semantic relatedness algorithm must be automatically tuned.

4. Multiscale Weight Tuning

This section describes an approach for tuning weights in a family of semantic relatedness
algorithms. The proposed tuning approach operates at different scales. Although each
scale has its own distinctive features, there are self-similar patterns common to all scales.

In this tuning approach, the common pattern is the concept of function, with input and
output values, and a set of parameters that can be tuned. At the lowest scale this function
computes the quality of a semantic relatedness algorithm. It takes as input the parameters
of semantic relatedness algorithm and produces a numeric value, a semantic relatedness
measure. This function takes as parameters a semantic graph and a set of weights that
must be tuned.

Zooming out to the next scale, there is a genetic algorithm. A genetic algorithm can
be seen as a function taking as input a fitness function and producing a result. It has also
its own set of parameters that need to be tuned such as the number of generations and the
mutation rate. In this case the fitness function takes as input a set of weights and computes
its quality. Hence, each application of a genetic algorithm (seen as a function) aggregates
thousands of applications of functions from the previous scale.

Continuing to zoom out to the next and final scale there is a statistical method, the
bootstrapping method. This method measures the accuracy of the results obtained by the
genetic algorithm with different parameter sets. It can also be seen as a function taking as
input genetic algorithms, the candidates for producing a weight tuning, and producing an
estimate of which is the best. Again, each application of the bootstrapping method (seen as
a function) aggregates thousands of applications of the functions from the previous scale
– the genetic algorithm – since each candidate configuration set is repeated hundreds of
times. The following subsections detail each of these “scales” and describes the function
that is used as input for its upper scale, identifying its parameters.

4.1. Quality Measure

The purpose of the inner layer of this weight tuning procedure is to compute the quality
for a particular set of parameters of a semantic measure defined by (1). This definition
resulted from previous work that originally assumed non-negative weights values. During
the research described in this paper, it was noticed that better results are obtained if nega-
tive values are assigned to some weights, which lead to minor changes in the definition of
the proximity function. To simplify the definition of the tuning process and optimize its
implementation, it was also necessary to factor out weights from the proximity definition.
This is achieved by using matrix and vector notation and results also in a terser definition.
Finally, it was possible to define the quality of semantic relatedness measure as function
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of a set weight attributions. Each of the following subsections details these steps to define
the quality of a semantic related measure.

Negative weight values To cope with the negative weight values a few adjustments must
be made to the original definition. First of all the upper bound Ω(G), must be redefined
using the absolute value of all weights.

Ω(G) ≡ maxti∈T |w(ti)|

The purpose of this upper bound is to constrain the semantic measure to a known in-
terval (originally [0, 1]). Since the definition in (1) relies on an infinite series one must
ensure that it converges. Given that if u 6= v then

∑n
p∈Pu,v

w(p) ≤ Ω(G)n∆(G)n

hence r(u, v) ≤
∑∞
n=1 1/2

n = 1. For non-negative weight values it is trivial that
r(a, b) ≥ 0. With negative weights and considering the redefinition of Ω(G) results
that

∑n
p∈Pu,v

w(p) ≥ −
∑n
p∈Pu,v

|w(p)| ≥ −Ω(G)n∆(G)n hence the lower bound is
r(u, v) ≥ −

∑∞
n=1 1/2

n = −1. Thus, with negative weights and the new definition of
Ω(G) the proximity function r is now defined as

r : V × V 7→ [−1, 1]

It would be trivial to adjust the definition of function r to maintain its original codomain.
However, since the codomain itself is not important, as far as it has known boundaries, it
was decided to preserve the original definition given in (1).

Factoring out weights The first step is to express proximity in terms of weights of
arc types. Consider the set of all arc types T with ]T = m and the weights of its ele-
ments w(t),∀t ∈ T . The second branch of (1) can thus be rewritten as follows, where
ci(a, b), i ∈ {1..m} are the coefficients of each arc type.

r(a, b) = α

∞∑
n1

β
∑
Pj∈P

∑
t∈Pj

w(t) =

m∑
i=1

ci(a, b) · w(ti)

It should be noted that the weights of transitions types are independent of arguments
of r but the coefficients that are factored out depend of these arguments. By defining
a standard order on the elements of T both the weights of transitions and their coef-
ficients are representable as vectors, respectively (w(t1), w(t2), . . . , w(tk)) = w and
(c1(a, b), c2(a, b), . . . , cm(a, b)) = c(a, b). This way the previous definition of r may
take as parameter the weight vector as follows

rw(a, b) = c(a, b) ·w (2)

Quality as function of weights The usual method for estimating the quality of a semantic
relatedness function is to compare it with a benchmark data set. The benchmark data set
contains pairs of words and their relatedness.

The Spearman’s rank order coefficient is commonly used to compare the relatedness
values in the benchmark data set with those produced by a semantic relatedness algorithm.
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Rather than the simple correlation between the two data series, the Spearman’s rank order
sorts those data series and correlates their rank.

Consider a benchmark data set with the pairs of words (ai, bi) for 1 ≤ i ≤ k, with
a proximity xi. Given the relatedness function rw : S × S 7→ < let us define yi =
rw(ai, bi). In order to use the Spearman’s rank order coefficient both xi and yi must be
converted to the ranks x′i and y′i. The quality of the function is given by the Spearman’s
rank order ρ defined as

ρ =

∑
i

(x′i − x′)(y′i − y′)√∑
i

(x′i − x′)2
∑
i

(y′i − y′)2

The Spearman’s rank order coefficient is thus defined in terms of xi and yi, where xi
are constants from the benchmark data set. To use this coefficient as the fitness function it
must be expressed as a function of w. Considering that y = (rw(ai, bi), . . . , rw(an, bn))
then y = Cw where C and w are the following matrices.

C =


ca1b1t1 . . . ca1b1tm

. . .

. . .

canbnt1 . . . canbntm

 w =


w(t1)
. . .
. . .

w(tm)


Matrix C is a n × m matrix where each line contains the coefficients for a pair of

concepts and each column contains coefficients of a single edge (transition) type. Vector
w is a m × 1 matrix with the weights assigned to each edge type. The product of these
matrices is the proximity measure of a set of concept pairs.

Considering ρ(x,y) as the Spearman’s rank order of x and y, the quality function
q : <n 7→ < using the benchmark data set x can be defined as

qx(w) = ρ(x, Cw) (3)

The next step in this tuning methodology is to determine a w that maximizes this
quality function.

4.2. Genetic Algorithm

Genetic algorithms are a family of computational models that mimic the process of natural
selection in the evolution of the species. These algorithms use the concepts of variation,
differential reproduction and heredity to guide the co-evolution of a set of problem so-
lutions. This type of algorithm is frequently used to improve solutions of optimization
problems [33].

There are three necessary conditions for using a genetic algorithm. Firstly, the differ-
ent candidate solutions must be representable as individuals (variation). This encoding of
an individual solution is sometimes called a chromosome which are a collection of genes
that characterize the solution. Secondly, it must be possible to compare a set of individ-
uals, decide which are the fittest and allow them to pass their genetic information to the
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next generation (differential reproduction). At last, the representation of solutions as in-
dividuals must allow their recombination with other solutions (heredity) so that favorable
traits are preferred over unfavorable ones as the population of solutions evolves.

In this weight tuning approach, the individual is a vector of weight values. Consider a
sequence of weights w(t1), w(t2) . . . w(tk) (the genes) taking values in natural numbers
up to a certain limit in a standard order of arc types. Two possible solutions are the vectors
v = (v1, v2, .., vk) and t = (t1, t2, . . . , tn). They are easy to recombine by crossover,
taking “genes” from both “parents” (e.g. u = (v1, t2, . . . tn−1, vk)).

This representation contrasts with the binary representations typically used in genetic
algorithms [9]. However it is closer to the domain and it can be processed more efficiently
with large number of weights.

Genetic algorithms introduce variance also by mutation. There is a number of muta-
tion operators, such as swap, scramble, insertion, that can be used on binary representa-
tions [9]. However, the approach taken to represent individuals in this methodology makes
these operators inadequate. Since weights are independent from each other, swapping val-
ues among them is as likely to improve the solution as selecting a new random value.
Hence, the genetic algorithm created for tuning weights has a single kind of mutation:
randomly selecting a new value for a given “gene”.

The fitness function plays a decisive role in selecting the new generation of individu-
als, created by crossover and mutation of their parents. In this case individuals are a vector
of weight values w, hence the fitness function is in fact the quality function defined by
equation (3).

4.3. Bootstrapping

The genetic algorithm itself has a number of parameters that must be tuned. Generic
parameters of a genetic algorithm include the number of generations and the mutation
rate. In this particular case the range of values that may be assigned to weights must also
be considered.

Several approaches to tuning parameters of genetic algorithms have been proposed
and compared [29]. Although with different approaches, these methods highlight the ad-
vantage of using automated parameter tuning over tuning based on expert “informed opin-
ions”. In many cases the best solution contradicts the expert best intuitions.

The proposed approach relies on a single benchmark data set to compare alternative
weight attributions. To repeat a large number of experiments using the genetic algorithm
to co-evolve a set solutions one needs a larger number test samples. Bootstrapping [8] is
a statistical method for assigning measures of accuracy to data samples using a simple
technique known as resampling that solves this issue.

Resampling is applied to the original data set to build a collection of sample data sets.
Each sample data set has the same size as the original data set and is built from the same
elements. If the original data set has size n then n elements from that set are randomly
chosen to create the sample set. When an element is selected it is not removed from the
original data set. Hence, a particular element may occur repeatedly on the sample data set
while other may not occur at all.

The bootstrapping method is used for comparing different combination of parameters.
Each combination is repeated a large number of times, typically 200, each time with
a different sample set, being summarized by a statistics, such as the mean or the third



Tuning a Semantic Relatedness Algorithm using a Multiscale Approach 645

quartile. In the end, these statistics are compared to select the most effective combination.
Since the objective is to select the set of parameters that may lead to the highest quality,
the third quartile is specially relevant since it is a lower bound of the largest solutions.

In this tuning approach, each combination corresponds to a particular setting of the
genetic algorithm. Candidate settings include values for parameters such as the number
of generations or the mutation rate. Another important parameter that is specific to this
approach is the range of values that are used as possible values for weights. As these val-
ues have to be enumerated, this procedure considers only integer values bellow a certain
threshold.

As the result of the bootstrapping method a particular setting of the genetic algorithm’s
parameters is selected. The final stage is to run the genetic algorithm with these settings,
using the full benchmark data set in the fitness function. The selected genetic algorithm
is repeated an even larger number of times, typically 1000, and the best result is selected
as weights for the relatedness algorithm.

5. Implementation

The approach presented for parameter tuning has a high computational complexity. At its
core it has to find all paths connecting two concepts to compute a single proximity. To
test the quality of a vector of weights, the proximity has to be computed for each pair of
concepts in a benchmark data set. Bootstrapping repeats 200 times the genetic algorithm
for each setting, and this process is repeated for a large number of settings.

The proximity measure takes two strings as labels and builds a set with all the paths
that connect both terms. There is a label stemming process that explores the meaning of
related words or expressions. For instance, when one of the compared term is “book”, then
nodes having as labels “bookish” and “book shop” may also be explored. The stemming
process is a special kind of transition and may improve the quality of the relatedness
measure, but also increases the computational complexity of the tuning process.

Figure 2 provides an overview of the proposed semantic relatedness methodology. The
process begins with the graph pre-processing. This action is not mandatory but is crucial
to improve the efficiency, as detailed in the subsection 5.1.

The process itself is parametrized by a data set and begins with the bootstrap proce-
dure that tests a user defined set parameters - mutation rate, number of generations and
weight range - for different values. Each specific set of parameters is tested 200 times and
is summarized by statistic measures that are decisive to choose the best set of parameters.

Each set of parameters is tested by the genetic algorithm. To generate a weight as-
signment, the genetic algorithm runs the number of generations defined by the parame-
ters. This weight assignment is used by the proximity algorithm that returns the weight’s
quality. In the end, the best quality is selected.

A weight assignment is tuned by using the proximity algorithm. The semantic re-
latedness of each pair of words of the data set is tested using the proximity algorithm
and its value is compared against the benchmark value using the Spearman’s correlation,
returning the quality of the given assignment.

The best set of parameters determined in the processing stage is used in the final stage
of this methodology. Along with the data set, they parametrize the genetic algorithm,
which is repeated 1000 times in order to obtain the best quality with those parameters.
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Fig. 2. Methodology diagram

The strategy used for improving the efficiency of the methodology has three main
components: graph pre-processing, described in the subsection 5.1; factorization of the
proximity algorithm and concurrent evaluation of the bootstrapping method, described in
the subsection 5.2. The remainder of this section details each of these components.

5.1. Graph Pre-processing

The computation of the semantic proximity between two terms depends on a data graph
search that finds all the paths that connect them. The data graph search is implemented in
two different ways, supporting queries of remote and local data. The main difference is in
the exploratory methods used by the semantic algorithm. One of these methods retrieves a
set of nodes with a given label and the other method retrieves the transitions from a node.

Remote data is usually retrieved from SPARQL endpoints. A SPARQL endpoint is
addressed by a URI to which SPARQL queries can be sent and which returns RDF as a
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response. Paths are built from data collected by the exploratory methods using SPARQL
queries.

The initial step is to retrieve the set of nodes linked to each term of the process. Since
this methodology estimates the semantic proximity between a pair of terms, this method
is executed twice. For each node retrieved during all the process, the second exploratory
method fetches the list of nodes that are connected to it. Whenever is possible to build a
path between both terms using the expanded nodes and its transitions, that path is con-
sidered to measure the proximity. This traverse ends when there are no more nodes to
explore or when the path size limit is reached.

This SPARQL approach raises a number of issues. Firstly, the endpoint or network
may be under maintenance or with performance problems. Secondly, some endpoints have
configuration problems and do not support queries with some operators, such as UNION.
And thirdly, the SPARQL queries can have performance issues, mainly when using oper-
ators such as DISTINCT, and having a large amount of queries per proximity search can
cause a huge impact at the execution time.

In order to avoid those issues, this semantic relatedness methodology implements
searches in local data. Knowledge bases often provide dumps of their data. Local data
are pre-processed semantic graphs that are stored in the local file system with data re-
trieved from those dumps. Graph pre-processing begins with parsing the RDF data. RDF
data can be retrieved in several formats, such as Turtle, RDF/XML or N-Triples. To sim-
plify this process, all RDF data is converted to N-Triples, since this is the simplest RDF
serialization.

This process takes some time to execute but it is only necessary to execute once. Also,
the most used data is cached in memory which has a significant impact on performance.

The computation of the proximity of a single pair of concepts using the WordNet
2.1 SPARQL endpoint6 takes about 20 minutes. With the pre-processed graph7 that is
executed once and takes 30 minutes, the same computation takes about 6 seconds.

5.2. Other Optimizations

Traversing the graph searching for paths connecting two labels is the most frequently
executed part of this semantic relatedness methodology. Nevertheless, this procedure is
almost the same for each pair of concepts, varying only on the weights that are used
for each arc type. This computation is repeated many times since the exact same pair of
concepts is used each time that the genetic algorithm is run.

The solution found was to alter the proximity algorithm to compute the set of coef-
ficients that are multiplied to each weight. These coefficients are organized in a vector,
using the same order of the weight vector used in the genetic algorithm. Thus, computing
the proximity of a pair of concepts given a different weight vector is just the inner product
of the weight vector and the coefficient vector, as shown in (2).

With this modification a single run of the genetic algorithm with 200 generations takes
less than 1 minute and computing the coefficients for all the pairs takes about 30 minutes.

The final optimization was concurrent evaluation of the bootstrapping method. Each
of the settings can be processed independently, hence they could be assigned to a different

6 wordnet.rkbexplorer.com/sparql/
7 The tests were executed in a 8 core machine at 3.5 GHz and 16Gb of RAM
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processor of a multi-core machine7. Each run of the bootstrapping method takes about 200
minutes. It run 120 configurations that sequentially would have taken more than 16.5 days
in about 2 days.

6. Validation

The validation of the proposed tuning approach consisted of tuning the weights of the
relatedness algorithm for WordNet 2.1.

The WordNet8 [10] is widely used in most of the mentioned knowledge-based ap-
proaches [6, 15, 1, 21, 31]. It is a large lexical knowledge base for English words. It groups
nouns, verbs, adjectives and adverbs into synsets (set of cognitive synonyms) that express
distinct concepts. Synsets are interlinked by lexical and conceptual-semantic relation-
ships. This knowledge-base is well-known but lacks some specialized vocabularies and
named entites, such as Diego Maradona or Freddie Mercury. WordNet 2.1 is a compar-
atively small knowledge base with 26 different types of properties that interlink 464.795
nodes and thus it is ideal for the inital tests of a tuning methodology.

This tuning process used as benchmark the WordSimilarity-353 data set [11]. It has
353 pairs of concepts with the mean of the relatedness values given by humans. Since
WordNet 2.1 does not have all the words listed in this data set, the pairs with missing
elements were removed, creating a new data set with the non-missing pairs. In total 7
pairs were removed.

The tuning was performed in two rounds. In the first round a large number of settings
was explored to determine which were the most relevant. A second round was then per-
formed to explore a wider range of values on those parameters that have more impact on
performance.

5 10 15 20

0.
00

0.
10

0.
20

0.
30

negative 3rd quartile
negative mean
positive 3rd quartil
positive mean

Amount of weight values

S
pe

ar
m

an
's

 r
an

k 
or

de
r

mixed 3rd quartile
mixed mean
positive 3rd quartil
positive mean

Fig. 3. Graph of weights distribution

8 http://wordnet.princeton.edu/
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In the first round the bootstrapping process tested three parameters: weight values,
mutation rate, and number of generations. The weight values were divided in positive
and mixed (positive and negative) values; the positive values ranged in [0, n] with n ∈
N+ and n ≤ 10. The mixed values ranged in [−n, n] for the same values of n. The
mutation rate took values in the set {0.3, 0.4, 0.5} values and the number of generations
in {100, 200}. Permutating these values, 120 different sets of parameters were tested.
Each set of parameters was executed 200 times in the bootstrapping process. The results
of those tests can be seen in the following graphs. These graphs show the statistics of the
correlation as function of a single variable: number of weight values, mutation rate and
number of generations.

Figure 3 shows how the correlation varies with different ranges of weight values. The
correlation obtained when there are only positive values in the weight set is much lower
than when positive and negative weights are used. The positive values also appear to
reach a maximum value. However, the sets with positive and negative values do not show
that stabilization, suggesting the need for more tests with a larger range of values. Third
quartile and mean were used in order to verify if the variations were consistent.
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The graph on the left of Figure 4 shows the impact of changing the mutation rate.
Despite the large overall variation, the mean and third quartile values are similar, showing
that variations in this parameter have a small impact on the tuning process. Still, the
variation of the maximums indicate the relevance of also testing lower mutation rates in
the future.

The graph on the right of Figure 4 presents the variation of the number of genera-
tions. As it occurs with the mutation rate, changes in the number of generations have no
significant impact in the correlation values.
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After the first round, changes in range of weight values appear to have a higher impact
in the correlation values, specially if they allow negative values, increasing the correlation
as the range size increases. New tests were conducted to investigate for how long the
correlation continues to increase, if it converges to an asymptote, or if the correlation
degrades after a certain threshold.

A new round of tests was made to investigate these hypothesis. This time only pos-
itive and negative values were used, with fixed values of mutation rate and number of
generations. These new configurations uses ranges from [−10× n, 10× n] with n ∈ N+

and n ≤ 10. The mutation rate value was fixed at 0.4 and the number of generations was
fixed at 200. The results are displayed in Figure 5. The values obtained by increasing the
range of values show a maximum value at the range [-20,20]. Ranges with higher values
seem to never exceed the Spearman’s rank order obtained at that point, indicating that
performance degrades after this threshold.
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Using the best configuration obtained by the bootstrap process the genetic algorithm
was executed 1000 times aiming to obtain the best correlation value and the related con-
figuration.

The best Spearman’s rank order value obtained was 0.409 and the corresponding
weight set is listed in the Table 1. The arcs with the prefix wn correspond to the WordNet
2.1 URI9 and the prefix rdfs to the RDF Schema URI10. The arc type :stemming is
the custom arc created in the stemming process.

Table 2 compares the results obtained by our semantic measure with weights tuned by
the proposed methodology with other similar semantic measures described in the litera-
ture, that use also the WordNet 2.1 as semantic graph and that validate their results using
WordSim-353.

9 http://www.w3.org/2006/03/wn/wn20/schema/
10 http://www.w3.org/1999/02/22-rdf-syntax-ns#type
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Table 1. Weight values obtained after tuning process

Edge type Weight Edge type Weight
:stemming 1 wn:classifiedByUsage 18
wn:memberMeronymOf -2 wn:tagCount 1
wn:participleOf -6 wn:sameVerbGroupAs -8
wn:antonymOf -5 wn:derivationallyRelated 0
wn:classifiedByTopic 19 wn:attribute -15
wn:partMeronymOf 19 wn:synsetId 18
wn:word 12 wn:seeAlso 6
wn:gloss 19 rdfs:type -2
wn:similarTo -19 entails -1
wn:containsWordSense 4 wn:classifiedByRegion -9
wn:causes -17 wn:adverbPertainsTo 12
wn:frame 7 wn:hyponymOf 9
wn:adjectivePertainsTo 3 wn:substanceMeronymOf 18

Table 2. Previous work with WordNet and WordSim-353

Method Spearman’s rank order
Jarmasz (2003) 0.33 - 0.35
Strube and Ponzetto (2006) 0.36
Proposed methodology 0.41

7. Conclusion

The major contribution of the research presented in this paper is an approach for tun-
ing a relatedness algorithm to a particular semantic graph, without requiring any domain
knowledge on the graph itself. The results obtained with this approach for WordNet 2.1
are better than the state of the art for the same graph. A number of solutions to speedup
graph processing and the evaluation of fitness functions are also relevant contributions.

The proposed approach performs a multiscale parameter tuning of a graph based se-
mantic relatedness algorithm. The main feature of the base algorithm is the fact that it
considers all paths that connect two labels and computes the contribution of each path as
a function of its length and of the arc (properties) types. The main issue with this algo-
rithm is the selection of parameters (weight values for each arc type) that maximize the
quality of the relatedness algorithm.

The quality of semantic relatedness algorithms is usually measured against a bench-
mark data set. This data set consists of the relatedness of a set of words, defined as the
mean of the relatedness attributed by a group of persons. In this approach the quality
of the algorithm is computed as the Spearman’s rank correlation coefficient between the
relatedness produced by the algorithm and the relatedness given by the data set. Evolu-
tionary algorithms in general, and genetic algorithms in particular, are popular choices
for improving the quality of solutions. The proposed approach takes advantage of the ge-
netic algorithms’ use of variation and selection to improve the quality of the semantic
relatedness algorithm. The statistical method of bootstrapping is used in this approach to
measure the accuracy of different parameter settings used in the genetic algorithm.
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The proposed approach for tuning the parameters of the semantic relatedness algo-
rithm was validated with Wordnet 2.1. The tuning procedure was actually executed twice.
In the first run several parameters of the genetic algorithm were tested to conclude that the
range of weight values is the decisive parameter, in particular if it is allowed to contain
negative values. The variation of some of the parameters, such as mutation rate and num-
ber of generations, had no impact on the quality. Based on these findings a second run of
the tuning procedure explored a wider range of values. It showed that quality improves
with the width of range values but also that a small degradation occurs after a certain
threshold. The genetic algorithm was finally repeated a large number of times with the
settings selected by this approach and the maximum Spearman’s correlation obtained is
significantly higher than the best result reported on the literature for the same graph.

The Wordnet 2.1 graph used for the evaluation is comparatively small. It has just 26
different types of properties and 464.795 nodes. The next step is to investigate how this
approach works with Wordnet 3.0 and with even larger graphs, such as the DBPedia or
Freebase. Apart from the challenges of dealing with such large graphs, it will be interest-
ing to compare the semantic relatedness potential of different graphs and try to combine
them to improve the accuracy of the semantic relatedness algorithm.
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