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Abstract. Extracting the semantic relatedness of terms is an important
topic in several areas, including data mining, information retrieval and web
recommendation. This paper presents an approach for computing the se-
mantic relatedness of terns in RDF graphs based on the notion of prox-
imity. It proposes a formal definition of proximity in terms of the set paths
connecting two concept nodes, and an algorithm for finding this set and
computing proximity with a given error margin. This algorithm was imple-
mented on a tool called Shakti that extracts relevant ontological data for
a given domain from DBpedia – a community effort to extract structured
data from the Wikipedia. To validate the proposed approach Shakti was
used to recommend web pages on a Portuguese social site related to
alternative music and the results of that experiment are also reported.

Keywords: semantic similarity, semantic relatedness, ontology genera-
tion, web recommendation, processing Wikipedia data

1. Introduction

Searching effectively on a comprehensive information source as the Web or just
on the Wikipedia usually boils down to using the right search terms. Most search
engines retrieve documents where the searched terms occur exactly. Although
stemming search terms to obtain similar or related terms (e.g. synonyms) is a
well known technique for a long time [15], it is usually considered irrelevant in
general and search engines of reference no longer use it [1].

Nevertheless, there are cases where semantic search, a search where the
meaning of terms is taken in consideration, is in fact useful. For instance, to
compare the similarity of genes and proteins in bio-informatics, to compare ge-
ographic features in geographical informatics, and to relate multiword terms in
computational linguistics.

The motivation for this research in semantic relatedness comes from an-
other application area, recommendation. Most recommenders use statistical
methods, such as collaborative filtering, to make suggestions based on the
choices of users with a similar choice pattern. For instance, an on-line library
may recommend a book selected by other users that also bought the books al-
ready in the shopping basket. This approach has a cold start issue: what should
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be recommended to someone that was not yet bought or searched anything? to
whom recommend a book that was just published and few people have bought?

An alternative approach is to base recommenders on an ontology of rec-
ommend items. An on-line library can take advantage from the structure of an
existing book classification, such as the Library of Congress Classification sys-
tem. However, in many cases such classification does not exist and the cost
of creating and maintaining an ontology would be unbearable. This is specially
the case if one intends to create an ontology on a unstructured collection of
information, such as a folksonomy.

Consider a content-based web recommendation system for a social net-
work, where multimedia content (e.g. photos, videos, songs) is classified by
user-provided tags. One could simply recommend content with common tags
but this approach would provide only a few recommendations since few content
items share the exact same tags. In this case, to increment the number of re-
sults, one could search for related tags. For instance, consider that your content
is related to music that users tag with names of artists and bands, instruments,
music genres, and so forth. To compute the semantic relatedness among tags
in such a site one needs a specific ontology adapted to this type of content.

It should be noticed that, although several ontologies on music already ex-
ist, in particular the Music Ontology Specification1, they are not adjusted to this
particular use. They have a comprehensive coverage of very broad music gen-
res but lack most of the sub-genres pertinent to an alternative music site. The
same would happen with lexical thesaurus, such as WordNet. To create and
maintain an ontology adjusted to a very specific kind the best approach is to ex-
tract it from an existing source. The DBpedia2 is a knowledge base that harvests
the content of the Wikipedia and thus covers almost all imaginable subjects. It is
based on an ontology that classifies Wikipedia pages and on mapping rules that
convert the content of Wikipedia info-boxes and tables into Resource Descrip-
tion Framework (RDF) triplets available from a SPARQL endpoint (SPARQL is
a recursive acronym for SPARQL Protocol and RDF Query Language).

In this paper we present Shakti, a tool to extract an ontology for a given do-
main from DBPedia and use it to compute the semantic relatedness of terms
defined as labels of concepts in that ontology. One of the main contributions
of this paper is the algorithm used for computing relatedness. Most ontologies
based algorithms for computing relatedness assume that ontologies are tax-
onomies or at least direct acyclic graphs, which is not generally the case of
an ontology extracted from DBpedia. Also, these algorithms usually focus on
a notion of distance. Instead the proposed algorithm is based on a notion of
proximity. Proximity measures how connected two terms are, rather than how
distant they are. A term may be at the same distance to other two terms but
have more connections to one than the other. Terms with more connections are
in a sense closer and thus have an higher proximity.

1 http://musicontology.com/
2 http://dbpedia.org/About
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The rest of this paper is organized as follow. The following section presents
related work on semantic relatedness algorithms and on the use of knowledge
bases such as DBpedia. Section 3 is the main section as it introduces the con-
cept of proximity, provides a formal definition of this concept in terms of sets
of paths, and presents an algorithm for computing proximity based on the pro-
posed definition. Section 4 presents the design and implementation of Shakti,
a tool implementing the proposed algorithm. The following section describes a
use of Shakti to populate a proximity table of a recommender service that was
used as validation of the proposed approach. The final section summarizes the
contributions of this paper and highlights future directions of this research.

2. Related Work

This section summarizes the concepts and technologies that are typically used
as basis for the computation of semantic relatedness of terms in the Web.

2.1. Knowledge representation

Currently, the Web is a set of unstructured documents designed to be read by
people, not machines. The semantic web — sponsored by W3C - aims to en-
rich the existing Web with a layer of machine-interpretable metadata on Web
resources so that computer programs can predictably exchange and infer new
information. This metadata is usually represented in RDF. Its specification [2]
includes a data model and a XML binding. The RDF data model is a collection
of triples – subject, predicate and object — that can be viewed as a labeled
directed multigraph; a model well suited for knowledge representation. Ontolo-
gies formally represent knowledge as a set of concepts within a domain, and the
relationships between those concepts. Ontology languages built on top of RDF
provide a formal way to encode knowledge about specific domains, including
reasoning rules to process that knowledge [4]. In particular, RDF Schema [3]
provides a simple ontology language for RDF metadata that can be comple-
mented with the more expressive constructs of OWL [12]. The triplestores can
be queried and updated using SPARQL.

2.2. Knowledge bases

Knowledge bases are essentially information repositories that can be catego-
rized as machine or human-readable information repositories. A human-read-
able knowledge base can be coupled with a machine-readable one, through
replication or some real-time and automatic interface. In that case, client pro-
grams may use reasoning on computer-readable portion of data to provide,
for instance, better search on human-readable texts. A great example is the
machine-readable DBpedia extraction from human-readable Wikipedia.

Wikipedia articles consist mostly of free text. However, the joint efforts of
human volunteers have recently obtained numerous facts from Wikipedia, stor-
ing them as machine-harvestable triplestores in Wikipedia infoboxes [17]. The
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José Paulo Leal

DBpedia project extracts this structured information and combines this informa-
tion into a huge, cross-domain knowledge base. DBpedia uses RDF as the data
model for representing extracted information and for publishing it on the Web.
Then, SPARQL can be used as the query language to extract information allow-
ing users to query relationships and properties associated with many different
Wikipedia resources.

2.3. Semantic similarity

Extracting the semantic relatedness of terms is an important topic in several
areas, including data mining, information retrieval and web recommendation.
Typically there are two ways to compute semantic relatedness on data:

1. by defining a topological similarity using ontologies to define the distance
between words (e.g. in a directed acyclic graph the minimal distance be-
tween two term nodes);

2. by using statistical means such as a vector space model to correlate words
from a text corpus (co-occurrence).

Semantic similarity measures have been developed and applied in sev-
eral domain ontologies such as in Computational Linguistics (e.g. Wordnet3)
or Biomedical Informatics (e.g. Gene Ontology4). In order to calculate the topo-
logical similarity one can rely either on ontological concepts (edge-based or
node-based) or ontological instances (pairwise or groupwise). A well-known
node-based metric is the one developed by Resnik [13] which computes the
probability of finding the concept (term or word) in a given corpus. It relies on
the lowest common subsumer which has the shortest distance from the two
concepts compared. This metric is usually applied on WordNet [6] a lexical
database that encodes relations between words such as synonymy and hyper-
nymy. A survey [14] between human and machine similarity judgments on a
Wordnet taxonomy reveal highest correlation values on other topological met-
rics such the ones developed by Jiang [9] and Lin [10].

Statistical computation of semantic relatedness relies on algebraic models
for representing text documents (and any objects, in general) as vectors of iden-
tifiers. Comparing text fragments as bags of words in vector space [1] is the sim-
plest technique, but is restricted to learning from individual word occurrences.
The semantic sensitivity is another issue where documents with similar context
but different term vocabulary won’t be associated, resulting in a ”false nega-
tive match”. Latent Semantic Analysis (LSA) [5] is a statistical technique, which
leverage word co-occurrence information from a large unlabelled corpus of text
[8].

Currently, Wikipedia has been used for information retrieval related tasks
[16], [18], [7] and [11]. This is due to the increasing amount of articles avail-
able and the associated semantic information (e.g. article and category links).

3 http://wordnet.princeton.edu/
4 http://www.geneontology.org/
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One of these efforts is the Explicit Semantic Analysis(ESA), a novel method
that represents the meaning of texts in a high-dimensional space of concepts
derived from Wikipedia and the Open Directory Project (ODP). It uses machine
learning techniques to represent the meaning of any text as a weighted vector of
Wikipedia-based concepts. The relatedness of texts in this space is obtained by
comparing the corresponding vectors using conventional metrics (e.g. cosine)
[7].

3. Proximity

This section presents an approach to compute semantic relatedness using on-
tological information in RDF graphs. The first subsection provides the moti-
vation for using proximity, rather than distance, as the underlying concept for
computing semantic relatedness between two nodes. The following subsection
presents a formal definition of the proximity based on sets of paths connecting
the nodes. The final subsection outlines the algorithm for computing proximity
using the proposed definition.

3.1. Motivation

Concepts on DBPedia are represented by nodes. Take for instance the music
domain used for the case study presented in section 5. Singers, bands, music
genres, instruments or virtually any concept related to music is represented
as a node in DBpedia. These nodes are related by properties, such as has
genre connecting singers to genres, and thus form a graph. This graph can be
retrieved in RDF format using the SPARQL endpoint of DBpedia.

The core idea in the research presented in this paper is to use the RDF
graph to compute the similarity between nodes. Actually, the goal is the similar-
ity between terms, but each node and arc of this graph has a label — a string
representation or stringification — that can be seen as a term.

At first sight relatedness may seem to be the inverse of the distance between
nodes. Two nodes far apart are unrelated and every node is totally (infinitely) re-
lated to itself. Interpreting relatedness as a function of distance has an obvious
advantage: computing distances between nodes in a graph is a well studied
problem with several known algorithms. After assigning a weight to each arc
one can compute the distance as the minimum length of all the paths connect-
ing the two nodes.

On a closer inspection this interpretation of relatedness as the inverse of
distance reveals some problems. Consider the graph in Fig. 1. Depending on
the weight assigned to the arcs formed by the properties has type and has
genre, the distances between Lady Gaga, Madonna and Queen are the same.
If the has genre has less weight than has type, this would mean that the
band Queen is as related to Lady Gaga as Madonna, which obviously should
not be the case. On the other hand, if has type has less weight than has
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sub  g enre sub  g enre

Fig. 1. RDF graph for concepts in music domain

genre then Queen is more related to AC/DC than Lady Gaga or Madonna
simply because they are both bands, which also should not be the case.

In the proposed approach we consider proximity rather than distance as a
measure of relatedness among nodes. By definition5, proximity is closeness;
the state of being near as in space, time, or relationship. Rather than focusing
solely on minimum path length, proximity balances also the number of exist-
ing paths between nodes. As a metaphor consider the proximity between two
persons. More than resulting from a single common interest, however strong, it
results from a collection of common interests.

With this notion of proximity, Lady Gaga and Madonna are more related
to each other than with Queen since they have two different paths connecting
each other, one through Musical Artist and another Pop Rock. By the
same token the band Queen is more related to them than to the band AC/DC.

An algorithm to compute proximity must take into account the several paths
connecting two nodes and their weights. However, paths are made of several
edges, and the weight of an edge should contribute less to proximity as it is
further away in the path. In fact, there must be a limit in number of edges in a
path, as RDF graphs are usually connected graphs.

3.2. Definition

To be of practical use the notion of proximity among RDF nodes needs to be
formalized. Proximity must be a function of graph nodes returning their amount

5 https://en.wiktionary.org/wiki/proximity
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of proximity. Given a graph with a set of nodes V the objective of this subsection
is thus to define a function

p : V × V → [0, 1]

The proximity function p must take two nodes and return the “percentage” of
proximity between them. That is, proximity of related nodes must be close to 1,
with ∀v∈V p(v, v) = 1, and the proximity of unrelated nodes must be close to 0.

An RDF graph is actually a typed multigraph, meaning that any pair of nodes
can be connected by several edges, known as properties. Nodes and specially
edges (properties) in RDF graphs have an URI that can be interpreted as a
type6. For the purpose of defining a proximity function only edge types are rel-
evant. Moreover, this approach requires weights associated with edge types,
rather then directly to edges as is usual in graph theory.

Consider a direct7 typed multigraph G = (V,E, T,W ) where V is a set of
nodes or vertices, E is a set of edges, T is a set of edge types and W is
a mapping of types to positive integers. Each edge in E is an ordered triplet
(u, v, t) where u, v ∈ V and t ∈ T .

The set W defines a mapping w : T → N+ and the lower upper bound of
weights for all types is

Ω(G) ≡ max
ti∈T

w(ti)

The degree of a node is the number of edges connecting to it, deg(u) =
#{(u′, v′, t′) ∈ E : u′ = u} and the degree of a graph G, denoted ∆(G), is
usually defined as the maximum of the node degrees

∆(G) = max
v∈V

deg(v)

Given the multigraph G, an acyclical path p of size n ∈ N+ is defined as a
sequence of unrepeated nodes u0 . . . un∀0≤i,j≤nui 6= uj connected by edges
with type ti in either direction, that is ∀i(ui−1, ui, ti) ∈ E ∨ (ui, ui−1, ti) ∈ E, as
follows.

p = u0
t1−→ u1

t2−→ u2 . . . un−1
tn−→ un

An acyclical path must have at least one edge and cannot have loops. In the
remainder of this section an acyclical path is simply referred as a path.

The weight function defined above can be extended to paths. The weight of
path p is the sum of weights of each edge’s type, w(p) = w(t1) + w(t2) + . . . +
w(tn). Since w(ti) ≤ Ω(G) it results that w(p) ≤ Ω(G)n, where n is the size of
the path.

The set of all paths connecting vertices u and v with exactly n ≥ 1 edges is
defined as follows.

6 A type in the usual sense of graph theory, not an RDF Schema or OWL type.
7 An RDF graph is a direct graph. However, edge direction is irrelevant for the purpose

of this definition of proximity.
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Pnu,v = {u0
t1−→ u1 . . . un−1

tn−→ un : u = uo ∧ v = un ∧ ∀0≤i,j≤n ui 6= uj}

The weight of Pnu,v can be computed using the path weight function defined
above simply by adding the contribution of each path. The reader should note
that

∑
p∈Pn

u,v
w(p) ≤ Ω(G)n∆(G)n since ∀p∈Pn

u,v
w(p) ≤ Ω(G)n and #Pnu,v ≤

∆(G)n.
A proximity function can be defined in terms of these sets of paths. The prox-

imity of a node to itself must be taken as a special case given that ∀n∈N+Pnu,u =
∅. For the general case where the two nodes are different, proximity must take
into account each path in Pnu,v, for all values of n. However, shorter paths must
weight more that longer paths. That is, paths in Pnu,v for smaller values of n must
contribute more to proximity than those of larger values of n. Having this in mind
the proposed proximity function p is defined as follows.

p(u, v) =


1 ← u = v

1
Ω(G)

∞∑
n=1

1
2nn∆(G)n

∑
p∈Pn

u,v

w(p)← u 6= v

Since this definition relies on an infinite series one must ensure that it con-
verges. Given that

∑
p∈Pn

u,v
w(p) ≤ Ω(G)n∆(G)n, if u 6= v, p(u, v) ≤

∑∞
n=1

1
2n =

1, and thus the series converges absolutely. It is trivial that the proximity func-
tion is non-negative, since all its terms and factors are natural numbers. Hence
this also proves that the image of the proposed function is defined within the
intended codomain ([0, 1]).

3.3. Algorithm

The proximity function as defined in the previous subsection requires computing
an infinite series. However, since the series defining this function converges
absolutely, the first n terms compute the proximity within a known error margin.

The proposed proximity algorithm is formalized in Algorithm 1. It takes a
multigraph and two strings, and starts by creating initial sets of paths for each
of the given terms. If these sets are equal then proximity is set to its maximum
value (1). Otherwise the algorithm computes the sets of paths linking the two
nodes with a size under a predefined limit.

To compute the set of paths of size n the algorithm expands half-paths start-
ing on both ends. The set PathSetA contains paths starting in the node with
label A and the set PathSetB contains paths ending in the node with label B.
Paths of size n are those with semi-paths in PathSetA and PathSetB with
a common ending. The contribution of these paths to proximity is computed
by summing their weights, using the PathWeight function, and divide it by a
denominator that depends on the value of n. Before proceeding to the next
value of n, first the semi-paths from sets PathSetA and PathSetB are alter-
nately expanded. If both sets were expanded at once only paths with an even
number of nodes would be generated.
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Algorithm 1: Proximity function
Input : G = (V,E,T,W), A, B
Output: Proximity

Ω ← MaxWeight(T,W )
∆← MaxDegree(V,E)
PathSetA← NodeSetWithLabel (A,V,E,T)
PathSetB← NodeSetWithLabel (B,V,E,T)

Proximity← 0
ExpandLeft← true

if PathSetA = PathSetB then
Proximity = 1

else
for N← 0 to MaxLevel do

Denominator← 2NΩN∆N

. Process all paths of size N
for PathA ∈ PathSetA do

for PathB ∈ PathSetB do
if LastNodeInPath(PathA) = LastNodeInPath(PathB) then

Weight← PathWeight(PathA) + PathWeight(PathB)
Proximity← Proximity +Weight/Denominator

. Expand paths one level alternately in each side
if ExpandLeft then

PathSetA← ExpandPaths(PathSetA,E)

else
PathSetB← ExpandPaths(PathSetB,E)

ExpandLeft← Not(ExpandLeft)

Function ExpandPaths(PathSet,Edges)
Data: PathSet,Edges
Result: NewPathSet

NewPathSet← ∅
for Path ∈ PathSet do

LastNode← LastNodeInPath(Path)
for NextNode ∈ {n : (LastNode, n) ∈ Edges ∨ (n, LastNode) ∈ Edges} do

if NextNode /∈ Path then
NewPathSet 3 (Path,NextNode)
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The function ExpandPaths expands each path in the given set of paths
using a set of edges. Paths are expanded at their end with nodes for which there
is an edge starting (or ending) at their last node. If the new node already occurs
in the selected path then this is not a valid expansion as it would contain a cycle
and it is not added to the expanded path set. Note that this function expands the
size of the paths rather than the cardinality of the set. The expanded path set
contains paths of size n+ 1 where n is the size of the paths in the original path
set. The cardinality of the expanded path set may either increase, decrease, or
remain unchanged by this expansion.

Madonna Britney Spears

Pop Music

Dance Pop

Musical Artist

Rock Music

Music Genre

Fig. 2. Using the proximity algorithm to relate “Madonna” and “Britney Spears”

Figure 2 shows how the proximity algorithm proceeds to relate the nodes
“Madonna” and “Britney Spears”. This example omits the label nodes and starts
with concept nodes associated with the relevant terms. We can see that each
node is at the center of a pair of concentric circles. Each circle intersects a set of
nodes that are reached from the center with a certain number of path segments.
For instance, “Rock Music”, “Musical Artist” and “Pop Music” are all a path seg-
ment away from “Madonna”. A similar situation occurs with “Britney Spears”
and some nodes are common to both circles, in this case “Musical Artist” and
“Pop Music”. These two intermediary nodes contribute with two independent
paths connecting the original modes. The remaining nodes, “Rock music” for
“Madonna” and “Dance Pop” for “Britney Spears” are used to continue unfold-
ing the sets of nearby nodes connected to the original ones. In this case the
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node “Music genre” is common to both circles on the second level. This path
is longer than the previous ones (i.e. has more path segments) and thus con-
tributes less to proximity. At each level the contribution of new paths diminishes,
although they are usually in greater number. After a few levels (typically 5) the
algorithm stops.

The proximity algorithm can be extended to compare groups of concepts.
This is relevant to relate two web pages, for instance. For this purpose a web
page is represented by a bag-of-words, where each word occurs in the web
page and is also a label of a graph node. The proximity between the two bags-
of-words can be defined as the average, or the maximum, of all proximity pairs.

4. Shakti

The algorithm described in the previous section is implemented by a system
called Shakti. This system is responsible for extracting data relevant to a given
domain from DBpedia, and to provide a measure of the proximity among con-
cepts in that domain. This system is implemented in Java using an open-source
semantic web toolbox called Jena8 including application interfaces for RDF and
OWL, a SPARQL engine, as well as parsers and serializers for RDF in several
formats such as XML, N3 and N-Triples.

The overall architecture of a Shakti use case is described in the diagram in
Figure 3. It shows that Shakti mediates between a client system and DBpedia,
that in turn harvests its data from the Wikipedia. The system itself is composed
of three main components:

controller is parametrized by a configuration file defining a domain and pro-
vides control over the other components;

extractor fetches data related to a domain from the DBpedia, pre-processes it
and stores the graph in a local database;

proximity uses local graph to compute the proximity among terms in a pre-
configured domain.

The purpose of the controller is twofold: to manage the processes of extract-
ing data and computing proximity values by proving configurations to the mod-
ules; and to abstract the domain required by client applications. For instance, to
use Shakti in a music domain it is necessary to identify the relevant classes on
concepts, such as musical artist, genre or instrument, as well as the properties
that connect them, such as type, has genre or plays instrument. To use Shakti
in a different domain, say movies, it is necessary to reconfigure it.

The controller is parametrized by an XML configuration file formally defined
by an XML Schema definition as depicted in Figure 4. The top level attributes
in this definition configure general parameters, as the URL of the SPARQL end-
point, the natural languages of the labels (e.g. English, Portuguese), the max-
imum level used in the proximity algorithm, among others. The top level ele-
ments are used for defining prefixes, types and properties. XML prefixes are

8 https://jena.apache.org/
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Client

Data

Configu
ration

DBpedia Wikipedia

Contro l

Proximity Extractor

Shakti

Fig. 3. The architecture of Shakti

routinely used in RDF to shorten the URLs used to identify nodes. This con-
figuration enables the declaration of prefixes used in SPARQL queries. The
configuration file also enumerates the types (classes) of concepts required by a
domain. This ensures that all the concepts with a declared type, having a label
in the requested language are downloaded from DBpedia. The declaration of
properties has a similar role but it also provides the weights assigned to path
segments required by the algorithm. Each property definition includes a set of
occurrences since the same name may be used to connect different types. That
is, each property occurrence has a domain (source) and a range (target) and
these must be one of the previously defined types. These definitions ensure
that only the relevant occurrences of a property are effectively fetched from
DBpedia.

The extractor retrieves data using the SPARQL endpoint of DBpedia. The
extractor processes the configuration data provided by the controller and pro-
duces SPARQL queries that fetch a DBpedia sub-graph relevant for a given
domain. Listing 1.1 shows an example of a SPARQL query to extract a type
declared in the configuration file, where the string “[TYPE]” is replaced by each
declared type. Similar queries are used for extracting properties.

Part of the data extracted this way, namely the labels, must be preprocessed.
Firstly, multiword labels are annotated incorrectly with language tags and must
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Fig. 4. The XML Schema definition of Shakti configuration

Listing 1.1. SPARQL query for extracting a type
SELECT ?R ?L
WHERE {

?R r d f : type dbpedia : [ TYPE ] ;
r d f s : l a b e l ?L .

}

be fixed. For instance, a label such as ‘‘Lady Gaga@en’’ must be converted
into ‘‘Lady Gaga’’@en. Secondly all characters between parentheses must
be removed. The Wikipedia, and consequently DBpedia, use parentheses to
disambiguate concepts when needed. For instance, ‘‘Queen (Band)’’@en
is a different concept from ‘‘Queen’’@en but in a music setting the term in
brackets is not only irrelevant but would disable the identification with the term
‘‘Queen’’ when referring to the actual band. Also, concepts with short labels
(less than 3 characters) or solely with digits (e.g. “23”) are simply discarded.

The proximity module is responsible for computing the relatedness between
two terms, or two bags-of-terms, from the graph extracted from DBpedia and
already preprocessed. This module maintains a dictionary with all labels in the
graph, implemented using a prefix tree, or trie. This data structure enables an
efficient screening of terms, discarding those for which relatedness cannot be
computed. Following this step, the implementation follows Algorithm 1.
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5. Evaluation

This section presents a use of Skati in the implementation of a recommender
developed as part of the project Palco 3.0. This project was targeted to the
re-development of an existing Portuguese social network — Palco Principal —
whose main subject is alternative music.

The goals of this project include the automatic identification, classification
and recommendation of site content. The recommendation service developed
for this project is structured around recommenders — pluggable components
that generate a recommendation for a certain request based on a given model.
Most of the recommenders developed for this service use collaborative filtering.
For instance, a typical recommender suggest songs to users in Palco Principal
based on the recorded activity of other users. If a user shares a large set of
songs in his or her playlist with other users then it is likely that he or she will
enjoy other songs in their playlist.

This approach is very effective and widely used but its main issue is cold
start. If the system has no previous record of a new user then it will not be able
to produce a recommendation. An alternative is to produce a content-based rec-
ommender. To implement such a recommender Shakti was used to find related
content on the web site. This recommender can be used on words extracted
from the web page itself, such as news articles or interviews, or on tags used
to classify web pages, such as musics, photos of videos.

The remainder of this section describes the main steps to define a content
recommender for Palco Principal using Shakti and how this experiment was
used to evaluate this approach.

5.1. Proximity based recommendation

Palco Principal is a music website hence this is the domain that must be used in
Shakti. This required selecting DBpedia classes and properties relevant to this
domain, preparing DBpedia for extracting data from the Portuguese Wikipedia
to populate these classes, and configuring Shakti with the relevant types and
properties to compute proximity values.

DBpedia already has an extensive ontology covering most of the knowl-
edge present in Wikipedia. This is certainly the case with the music domain
and all the necessary classes and properties were already available. The DB-
pedia uses a collection of mappings to extract data present in the info boxes
of Wikipedia. Unfortunately these mappings were only available for the English
pages of Wikipedia and they had to be adapted for the pages in Portuguese.
The DBpedia uses a wiki to maintain these mappings and new mappings of
some classes had to be associated with the language label ”pt”.

In the Shakti it was necessary to configure the XML file to extract the se-
lected classes and properties from DBpedia. These classes, whose mappings
were created on DBpedia wiki for Portuguese pages, are:

MusicalArtist solo performers (e.g. Madonna, Sting);
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Band groups of musicians performing as a band (e.g. Queen, Bon Jovi);
MusicGenre musical genres (e.g. rock, pop).

The properties associated with these classes that were considered relevant
were also inserted in the configuration file and are enumerated in Table 1. This
table defines also the weights assigned to properties, with values ranging from
1 to 10, needed for computing proximity values. These weights were assigned
based on the subjective perception of the authors on the proximity of different
bands and artists. A sounder approach to weight calibration was left for future
work.

Table 1. Properties of a music domain

Property Domain Range Weight
Genre Band and MusicalArtist MusicGenre 7
Instrument Band and MusicalArtist label 2
StylisticInfluences MusicGenre label 4
AssociatedBand Band Band 10
AssociatedMusicaArtist MusicalArtist MusicalArtist 10
CurrentMember Band label 5
PastMember Band label 5

To integrate Shakti with the recommender it was necessary to implement a
client application. This application is responsible for populating a table with prox-
imity values among web pages recorded on the recommender service database.
For each page this client application extracts a bag-of-words, either the words
on the actual page or its tags. For each pair of bags-of-words it computes a
proximity using methods provided by Shakti.

5.2. Results analysis

Shakti is currently being used in an experimental recommender. Thus, the rec-
ommendations are not yet available on the site the of Palco Principal. For this
reason a comprehensive analysis is not yet possible. This subsection presents
some experimental results that are possible to obtain from the current setting.

For this experiment the recommender system computed proximity values
among news and events pages, which took about a day. In total 57,982 proximity
relations among news pages were calculated, plus 59992 among event pages,
performing a grand total of 69604805 relations.

Table 2 displays the proximity table for news pages ordered by decreasing
proximity. Each id code is a news item in the web site. For this particular entity
the recommender searched for content regarding both terms from its text and
tags.

To analyze the performance of Shakti the contents of the 2 most related
pages — id 3540 (resource A) and id 2623 (resource B) — were compared in
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Table 2. Proximity between pairs of news pages.

Resource ID Resource ID Proximity
3540 2623 0.22
3540 2431 0.21
3540 3000 0.15
3540 4115 0.15
3540 2691 0.15
3540 1892 0.15
3540 2676 0.14
3540 760 0.14
3540 3189 0.14
3540 4397 0.14

detail. The text and tags of this resource can be viewed in Figure 5. In order to
calculate proximity values, Shakti merge both fields and generates a group of
concepts present in the RDF graph. Thus, from all the words of text and tags
fields only the following bag-of-words are actually used to compute proximity:
38 Special, Lynyrd Skynyrd, Bret Michaels. For resource B the bag-of-words
considered for computing compute proximity is: Lemmy, Myles Kennedy, An-
drew Stockdale, Dave Grohl, Fergie, Ian Astbury, Kid Rock, M. Shadows, Rock,
The Sword, Adam Levine, Ozzy Osbourne, Chris Cornell, Duff McKagan, Slash,
Iggy Pop. Using these two bags-of-words Shakti computes a proximity of 0.22.
The concepts are names of the bands appearing in news text, so the approach
of using the this field to determine proximity seems promising.

Fig. 5. News piece generated from resource A.

Analyzing these news items one notices that they are on two musician artists
with a musical genre in common, and both playing the guitar. This shows that
the two news items are in fact related and a 0.22 proximity seems a reasonable
figure. Note that proximity values range between 0.0 (unrelated) to 1.0 (the
same).

The proximity values computed for all pages vary between 0.1 and 0.22
and the average value of is 0.2. This value is lower than expected. Of course
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that these figures can be modified simply by reconfiguring the property weights.
On the other hand, Shakti determined a non null proximity in 24,401 of a total
of 33,616,804 possible relationships, about 0.07%, which is an unsatisfactory
figure for a recommendation system.

One of the culprits for these poor results is the text encoding using HTML en-
tities in the database of Palco Principal. For instance, the term ”Guns N’ Roses”
(which is part of the text and tags of resource B) is written in the database in
the format ”Guns N&amp;#039 Roses”. This value is sent to Shakti. As Shakti
is not prepared to receive this type of formatting, it does not detect the word in
the dictionary.

This experiment suggest that algorithm is producing the expected results.
For the pairs of pages that produced a non null proximity the obtained measure
is consistent with their degree of relatedness. However, the number of pages
that the algorithm was able to relate is insufficient for a recommender system.
The problems with text encoding alone do not justify the low number recommen-
dations obtained in this experiment. Most probably the words contained in those
pages are not labels in the sub-ontology extracted from DBpedia and it does not
not cover satisfactory the domain of Palco Principal. It should be noted that this
sub-ontology deals only with artists and bands that have sufficient recognition
to have their own entry in Wikipedia. Other concepts related to music, such as
musical instruments or music event venues, were not covered. Thus, pages on
music festivals featuring garage bands, for instance, or advertising used gui-
tars for sale, would be difficult to relate. In any event, further experimentation is
needed to validate both the algorithm itself and the approach of using semantic
relatedness a basis for recommendation.

6. Conclusions and future work

The goal of the research described in this paper is to measure the relatedness
of two terms using the knowledge base of BDPedia. The motivation for this
research is to use semantic relatedness in content-based recommenders, in
particular in tags provided by users in social networks.

This paper proposes proximity, rather than distance, as a means to compute
semantic relatedness on RDF nodes. It provides a formal definition of the prox-
imity in terms of the sets of paths connecting the nodes, and an algorithm to de-
termine these sets and compute proximity. The algorithm ponders the collection
on paths connecting the two terms using the weights associated to properties
on the ontological graph. This algorithm was implemented in a system called
Shakti. This system fetches a sub-graph of the ontology in DBpedia relevant
to a certain domain and computes the relatedness of terms assigned as labels
to concepts. To validate the proposed approach Shakti was used to populate a
proximity table on a web recommender service of Palco Principal, a Portuguese
social network whose subject is alternative music. The results are promising, al-
though the ontology extracted from DBpedia is not yet covering satisfactory the
terms contained on the pages of Palco Principal.
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Part of the future work in this research includes the experimentation with
larger ontologies, providing better coverage of the underlying domain and val-
idating scalability of Shakti. At this stage most of the effort of using Shakti is
configuring this tool. We plan the development of a graphical user interface for
assisting the tool users in defining the classes and properties to extract from
DBpedia. There are two approaches being considered for this task. On the first
approach a seed class is typed in and other related classes and properties
in that domain are suggested for possible inclusion. On the second approach
Shakti is fed with a collection of example terms and DBpedia is searched for
related classes and properties. Independently from the selected approach, the
graphical user interface will also assist in the definition of property weights and
other general configurations required by Shakti.

The validation of the algorithm itself is perhaps the most important part of
the future work. It is necessary to compare it experimentally with the results
obtained by similar algorithms using standard benchmarks. A testbed for com-
puting similarity and visualizing relatedness among any sets of terms, based on
the full DPpedia ontology, is currently being developed. This testbed is expected
to be instrumental in the validation of the proposed algorithm.

The fact that the algorithm currently relies on weights being assigned to
properties is an obstacle to use it with multiple domains. This issue can be
overcome by assigning weights to properties according to their role on the on-
tology, independently of the domain: is-a properties with the maximum weight,
part-of properties with an intermediary weight, and all other properties with
a minimum weight. The testbed will be used to fine-tune these generic weights
and to validate this approach to weight assignment.
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