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Abstract. ABC elite, a novel artificial bee colony algorithm with elite-guided search
equations, has been put forward recently, with relatively good performance com-
pared with other variants of artificial bee colony (ABC) and some non-ABC meth-
ods. However, there still exist some drawbacks in ABC elite. Firstly, the elite solu-
tions employ the same equation as ordinary solutions in the employed bee phase,
which may easily result in low success rates for the elite solutions because of rela-
tively large disturbance amplitudes. Secondly, the exploitation ability of ABC elite
is still insufficient, especially in the latter half of the search process. To further
improve the performance of ABC elite, two novel search equations have been pro-
posed in this paper, the first of which is used in the employed bee phase for elite so-
lutions to exploit valuable information of the current best solution, while the second
is used in the onlooker bee phase to enhance the exploitation ability of ABC elite.
In addition, in order to better balance exploitation and exploration, a parameter Po

is introduced into the onlooker bee phase to decide which search equation is to be
used, the existing search equation of ABC elite or a new search equation proposed
in this paper. By combining the two novel search equations together with the new
parameter Po, an improved ABC elite (IABC elite) algorithm is proposed. Based
on experiments concerning 22 benchmark functions, IABC elite has been compared
with some other state-of-the-art ABC variants, showing that IABC elite performs
significantly better than ABC elite on solution quality, robustness, and convergence
speed.

Keywords: artificial bee colony, search equations, exploration ability, exploitation
ability.

1. Introduction

Many difficult problems can be expressed as optimization problems in real world. Among
these problems, however, most of them are often characterized as non-vonvex, discontin-
uous or non-differentiable. It is difficult to solve such problems with traditional optimiza-
tion methods. As one of the most popular evolutionary algorithms (EAs), the artificial bee
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colony (ABC) algorithm has shown its superior performance in dealing with optimization
problems [13], such as the flow shop scheduling problem [22], filter design problem [4],
and vehicle routing problem [26].

However, ABC also suffers from slow convergence speed and easily being trapped by
local optimum. This is mainly caused by its solution search equations, which is good at
exploration but poor at exploitation [1, 5, 11, 21, 28]. In fact, the exploration and the ex-
ploitation contradict each other. In order to achieve the excellent performance in solving
optimization problems, the main challenge is how to maintain a delicate balance between
the exploration and exploitation during the search process [5], and numerous ABC vari-
ants have been proposed to improve ABC’s performance in this respect. Zhu et al. [28]
proposed a gbest-guided ABC (GABC) to exploit the information of the global best in-
dividual (gbest). In the ABC/best/1 algorithm [10], the information of gbest is also used
to enhance the exploitation ability of ABC. Wang et al. [27] proposed a multi-strategy
ensemble ABC algorithm, which employs three distinct search equations to form a strat-
egy pool and adaptively choose one of them in different search strategy, thus the balance
between exploration and exploitation can be maintained.

Recently, Cui et al. [5] proposed an artificial bee colony algorithm (the ABC elite)
with two novel search equations. One search equation incorporates the beneficial infor-
mation of elite solutions, which is applied to the employed bee phase, the other one not
only exploits the valuable information of the elite solutions, but also employs that of
the current best solution used in the onlooker bee phase. Furthermore, the ABC elite is
embedded into depth-first framework to form a new variant of ABC, the DFSABC elite.
Experimental results show that ABC-elite and DFSABC elite are very effective compared
with other recently proposed ABC variants.

However, there still exist some drawbacks in the ABC elite/DFSABC elite. Firstly,
in the employed bee phase of ABC elite, the elite solutions employ the same equation as
ordinary solutions, easily resulting in the low success rate for the elite solutions because
of relatively large disturbance amplitude. In the search equation of ABC elite, a candidate
solution can be treated as the lead individual to explore the search space and produced by
adding a scaled disturbance vector to a base vector. But we can draw inspiration from
many EAs that the better the fitness value is, the smaller the disturbance amplitude is [3,
17–20, 24]. In a word, the disturbance of ordinary and elite solutions should be treated in
a different way. Secondly, in the onlooker bee phase in ABC elite, the exploitation ability
of ABC elite is still insufficient, especially in the latter half stage of a search process. To
balance the exploitation and exploration ability, the search equation in the onlooker bee
phase of ABC elite uses the difference between gbest and a randomly selected ordinary
individual Xk as a disturbance vector, which is suitable for the ABC elite to maintain a
good balance between exploration and exploitation in the early stage of a search process,
but easily leads to the insufficiency of exploitation ability in the latter half stage of a
search process, because the ratio between exploration and exploitation is not constant.
Generally speaking, EAs focus on exploration at the early stage and focus on exploitation
at the latter half stage, which can also be seen in some other EAs [25].

Based on the above-mentioned considerations, an improved ABC elite, the IABC elite
has been put forward in the paper. Firstly, inspired by bare-bones particle swarm optimiza-
tion (PSO) [15], a novel search equation for the elite solutions in the employed bee phase
is designed to generate a new candidate solution to exploit the valuable information of
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the current best solution. Secondly, a novel search equation is proposed in the onlooker
bee phase of ABC elite to further enhance the exploitation ability of ABC elite. In addi-
tion, in order to obtain a better balance between exploitation and exploration, a parameter
Po is used in the onlooker bee phase to choose a search equation between the original
one of ABC elite or the newly-proposed one. The simplicity of ABC elite is maintained
in the proposed IABC elite. Moreover, the experiment results concerning 22 benchmark
functions have demonstrated its effectiveness in solving complex numerical optimization
problems when compared with the ABC elite, DFSABC elite and other ABC variants.

The rest of this paper is organized as follows. In Section 2, the original ABC algorithm
is presented. In Section 3, the most recently developed ABC variants, the ABC elite al-
gorithm, is reviewed, which is the basis of the proposed algorithm IABC elite. In Section
4, the IABC elite algorithm is proposed based on the two novel solution search equations
(i.e., the Eq.(12) and Eq. (13)) and the new introduced search equation selective probabil-
ity Po. Section 5 presents and discusses the experimental results. Finally, the conclusion
is drawn in Section 6.

2. The original ABC Algorithm

Inspired by the waggle dancing and foraging behaviors of honey bee colonies, the ABC
algorithm has been developed. The basic ABC algorithm consists of four sequentially
realized phases, i.e. the initialization, the employed bee, the onlooker bee and the scout
bee. After the initialization phase, the ABC turns into a loop of the employed bee phase,
onlooker bee phase and scout bee phase until the termination condition is satified. The
details of each phase are described as follows:

Initialization phase: At the beginning of the ABC, the initial food sources are gen-
erated randomly according to Eq. (1).

Xi,j = XL
j + randj(X

U
j −XL

j ) (1)

where i = {1, 2, ..., SN}, j = {1, 2, ..., D}, SN is the number of food sources, and
SN is equal to the number of employed bees and onlooker bees. D is the dimensionality
(variables) of the search space. XL

j and XU
j are the lower and upper bounds of the jth

variable respectively. randj is a random real number in range of [0,1]. Then, the fitness
values of the food sources are calculated by Eq. (2).

fiti =
1

1+f(Xi)
,f(Xi) ≥ 0

fiti = 1+ |f(Xi)| , f(Xi)< 0
(2)

where fiti is the fitness value of the ith food source Xi, and f(Xi) is the objective
function value of food source Xi for the optimization problem. In addition, parameter
limit should be determined and the parameter counter, which records the number of
unsuccessful updates, is set to 0 for each food source.

Employed bee phase: Each employed bee will fly to a distinct food source and try
to find out a candidate food source in the neighborhood of the corresponding parent food
source by using Eq. (3).

Vi,j = Xi,j + φi,j × (Xi,j −Xk,j) (3)
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where i, k are picked up from {1, 2, ..., SN} randomly, j is randomly selected from
{1, 2, ..., D}, Vi,j is the jth dimension of the ith candidate food source (new solution).
Xi,j is the jth dimension of the ith food source; Xk,j is the jth dimension of the kth food
source, φi,j is a random real number in the range of [-1,1].

After creating a new food source, the fitness value of the candidate food source is
calculated by Eq. (2). If the fitness value of candidate food source is better than that of
the old one, the candidate food source will replace the old one and is memorized by its
employed bee, and the counter of the food source is reset to 0. Otherwise, the counter
is increased by 1.

Onlooker bee phase: According to the quality information of the food source shared
by the employed bees, each onlooker bee will fly to a food sourceXs, which is selected by
the roulette wheel, in order to find a candidate food source by using Eq. (3). The selection
probability of the ith food source is calculated as Eq. (4). Obviously, the better the fitness
value is, the bigger the selection probability is. If a candidate food source Vs obtained by
the onlooker bee is better than the food source Xs, Xs will be replaced by the new one,
and its counter is reset to 0. Otherwise, its counter is increased by 1.

Pi =
fiti∑SN
i=1 fiti

(4)

Scout bee phase: The food source with the highest counter value is selected and its
counter value is compared with a predefined limit value. If its counter value is bigger
than the limit value, the selected food source will be abandoned by its employed bee,
and then this employed bee will become a scout bee to seek a new food source randomly
according to Eq. (1). After the new food source is obtained, the corresponding counter
value is reset to 0, and the scout bee returns to an employed bee. Note that if the jth
variable Vi,j of the ith candidate food source violates the boundary constraints in the
employed bee phase and the onlooker bee phase, it will be reset according to the Eq. (1).

3. The improved ABC variants

As is known to all, the remarkable feature of the ABC depends on its solution search
equation that differentiates the algorithm from other EAs. The search equations of ABC
play a key role in balancing the exploration and exploitation ability during a search pro-
cess. However, the search equation of ABC (see Eq. (3)) performs well in exploration but
poorly in exploitation [5, 28]. In order to solve this problem, numerous search equations
have been proposed to improve ABC’s performance.

In the beginning, Zhu et al. [28] proposed a new search equation (GABC), as shown
in the Eq. (5) with the information of the global best (gbest) to enhance the exploitation
ability of the ABC. However, as claimed in [11], the Eq. (5) may cause an oscillation phe-
nomenon and thus may degrade convergence, since the guidance of the last two terms may
be in opposite directions. Then Gao et al. [9] proposed a new search equation, as shown
in the Eq. (6). Although the information of the current best solution is utilized in the Eq.
(6). The candidate solution generated around Xbest constantly determines its emphasis
on exploitation. Therefore, in order to solve these problems in Eq. (5) and (6), they [11]
designed a new search equation in the Eq. (7) without any bias to any search direction and
under the guidance of the only one term φi,j .(r1,j-Xr2,j) the oscillation phenomenon can
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be effectively avoided. Therefore, the search ability of ABC is improved significantly by
Eq. (7). From Eq. (5) to Eq. (7), ψi,j is a uniform random number in [0,1.5]. Xbest,j is
the jth element of the current best solution. Index k is an integer randomly chosen from
{1, 2, ..., SN} and different from the base index i. r1 and r2 are two distinct integers ran-
domly picked up from {1, 2, ..., SN}, and both of them are different from the base index
i.

Vi,j = Xi,j + φi,j × (Xi,j −Xk,j) + ψi,j(Xbest,j −Xi,j) (5)

Vi,j = Xbest,j + φi,j × (Xi,j −Xr1,j) (6)

Vi,j = Xr1,j + φi,j × (Xr1,j −Xr2,j) (7)

Although the Eq. (7) can significantly improve the search ability of ABC, the ben-
eficial information of the population is not fully exploited. Recently, in order to further
improve the performance of ABC by utilizing the useful information of some good solu-
tions, Cui et al [5] proposed two novel search equations as follows:

Vi,j = Xe,j + φi,j × (Xe,j −Xk,j) (8)

Ve,j =
1

2
(Xe,j +Xbest,j) + φe,j × (Xbest,j −Xk,j) (9)

where Xe is randomly chosen from the elite solutions (the top p.SN solutions in
current population, 0 < p < 1)). Xk is randomly chosen from current population. e
unequal to k and k unequal to i, Xbest is the current best solution. φi,j and φe,j are two
random real numbers in [-1,1]. In the ABC elite, Eq. (8) is used in the employed bee
phase, making all solutions learn from elite solutions, and the Eq. (9) is employed in
the onlooker bee phase, allowing elite solutions to learn from the current best solution.
Moreover, under the guidance from only one term, the Eq. (8) and Eq. (9) can also easily
avoid the oscillation phenomenon. In this way, the ABC elite algorithm can better balance
the exploration and exploitation and has shown better performance when compared with
other state-of-the-art ABC variants, such as the GABC [28], CABC [11], Best-so-far ABC
[2], MABC [10], qABC [14], EABC [12], ABCVSS [23], BABC [8].

4. The proposed Algorithm

From the aforementioned analysis, although ABC elite has shown excellent performance,
it still has some drawbacks. In ABC elite, all individuals utilize the same search equation
in different search stages. To overcome the limitation and enhance the performance of
ABC elite, two novel search equations and a new probability Po are proposed in this pa-
per. In Section 4.1, inspired from some state-of-the-art PSO variants [15, 18, 19], a novel
search equation is proposed based on labor-division strategy in which the elite individuals
utilize the new search equation to enhance the exploitation ability. In section 4.2, a more
exploitive search equation is proposed. Meanwhile, a probability Po is introduced to de-
cide which equation is to be selected, the new search equation or the original one. At the
end of this section, the complete proposed algorithm is shown.
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4.1. The Improvement in Employed Bee Phase

In the Eq. (8), the first term Xe,j in the right-hand side is called the base vector, and the
second term φi,j .(Xe,j-Xk,j) can be called the disturbance vector. Thus, the candidate
solution Vi,j in the left hand of the Eq. (8) can be treated as a disturbance to the base vector
Xe,j . However, the disturbance amplitude is obviously too large for elite individuals. The
reason is that in the disturbance vector φi,j .(Xe,j-Xk,j) , Xe is an elite solution and Xk is
a randomly selected ordinary solution. Generally speaking, the fitness of Xe is far better
thanXk, thus φi,j .(Xe,j-Xk,j) is moderate for ordinary individuals but relatively large for
those elite solutions. Therefore, the success rate of disturbance for elite individuals is very
low. The similar conclusion can be found from some other EAs [17–20]. In general, the
better the fitness value is, the smaller the disturbance amplitude is [17–20]. In a word, the
disturbance amplitude of ordinary and elite solutions should be treated in a different way.
PSO [7,16] is another important EA, which is similar to the ABC in evolution mechanism.
Kennedy et al. [15] proposed a novel search equation in PSO shown as follows:

Pi =
c1 × pbesti + c2 × gbest

c1 + c2
(10)

Where c1 and c2 are two learning coefficients, pbest is the personal best position,
gbest is the population best solution found so far.

Based on the Eq. (10), a novel equation is proposed in [19]:

Xi = N(
gbest+ pbesti

2
, |gbest− pbesti|) (11)

where N denotes a Gaussian distribution of mean (gbest + pbesti)/2 and standard
deviation |gbest− pbesti|. By using a Gaussian distribution in Eq. (11). The information
around pbest and gbest is exploited.

Inspired by Eq. (11), a similar Gaussian search equation of ABC is proposed only for
elites in employed bee phase which is shown as follows:

Vi,j = N(
Xbest,j +Xi,j

2
, |Xbest,j −Xi,j |) (12)

Where Xi,j is the jth element of elite Xi; Xbest,j is the jth element of the global best
found so far; j is randomly selected from {1, 2, ..., D}. By way of the Eq. (12), the elite
solutions in employed bee phase search aroundXbest, which can improve the exploitation
ability of ABC and the success rate of disturbance for elite solutions.

On the other hand, the ordinary solutions in employed bee phase will still use the
same equation as the ABC-elite (i.e., Eq. (8)), which will lay emphasis on exploration.
Because ordinary solutions account for the majority of population while elite solutions
only account for a small proportion p (p = 0.1 in [5]), the employed bee phase will still
focus on exploration, which also conform to the design principle of the ABC [13]. Similar
to the labor-division strategy in literatures [18] and [19], the ordinary solutions with low
fitness can focus on locating the unexplored region, whilst the elite solutions with high
fitness can perform local search on the most promising explored regions. In this way, it is
beneficial to obtain a better balance between exploration and exploitation for the improved
algorithm.
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4.2. The Improvement in Employed Bee Phase

In the search Eq. (9) of ABC elite, (Xe,j + Xbest,j)/2 in the right-hand side can be
called base vector, and the second term φe,j(Xbest,j −Xk,j) in the right-hand side can be
called disturbance vector. The meaning of the Eq. (9) is that the jth element of candidate
solution Ve will be produced by imposing the disturbance φe,j(Xbest,j−Xk,j) on the base
vector (Xe,j +Xbest,j)/2. It is worth noting that only elite solutions in the onlooker bee
phase of ABC elite have a chance of producing candidate solutions, which will enhance
the exploitation ability of ABC. In the Eq. (9), three kind of individuals are involved,
i.e. the elite individuals Xe, the global best individual Xbest, and the ordinary individual
Xk. Because the fitness value of Xe and Xbest is generally far better than the ordinary
individual Xk, the disturbance vector φe,j(Xbest,j − Xk,j) is relatively large for base
vector (Xe,j+Xbest,j)/2 .The relatively large disturbance φe,j(Xbest,j−Xk,j) embodies
the exploration ability of ABC elite, and the excellent (Xe,j + Xbest,j)/2 embodies the
exploitation ability of ABC elite, thus the balance between exploration and exploitation
can be maintained. It can be seen from Fig.1, which is illustrated by literature [5], the
candidate solution Ve can be only generated at the red axis, which is closer to the current
best solution when φe,j(Xbest,j − Xk,j) is small, but is far away from the current best
solution when Xk is inferior and φe,j(Xbest,j −Xk,j)) is big.

Therefore, this design can result in the lack of exploitation ability, especially in the
mid-late stage of evolution process because the demand of exploitation ability in EAs
is not constant from the beginning to the ending. Generally speaking, for an EA, high
exploration ability is required in the beginning to find more potential positions, while
high exploitation ability is needed for convergence in the end. This conclusion can also
be found in some other EAs, one of the most remarkable instance is the wPSO [25],
in which linearly diminished weight is used so as to gradually increase the exploitation
ability of PSO.

Fig. 1. Evolution process of a solution according to Eq.(9).
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Because the randomly selected elite individual Xe′ has better fitness value than or-
dinary individual Xk in general and thus |Xbest,j − Xe′,j | < |Xbest,j − Xk,j | with a
high probability, if Xk is replaced with another randomly selected elite Xe′ in the Eq.
(9), the disturbance of φe,j(Xbest,j −Xk,j) to the base vector (Xe,j +Xbest,j)/2 will be
diminished, thus the exploitation ability of the Eq. (9) will be strengthened. Based on the
above observation, a novel search equation used in the onlooker bee phase is proposed as
follows:

Ve,j =
1

2
(Xe,j +Xbest,j) + φe,j(Xbest,j −Xe′,j) (13)

Where Xe′ is a randomly selected elite solution, e′ not equal to e; the rest of Eq. (13)
is same as that in Eq. (9).

Based on the above analysis, the Eq. (13) has a high exploitation ability than that
of the Eq. (9) by imposing a small disturbance φe,j(Xbest,j − Xk,j) on the base vector
(Xe,j + Xbest,j)/2. However, both the exploration ability and exploitation ability are
needed in EAs. If all bees produce new food sources using the Eq. (13), the algorithm can
easily get trapped in the local optima when solving complex multi-modal problems. In
other words, the Eq. (9) is insufficient in exploitation ability, while Eq. (13) is inadequate
in exploration ability. To address this contradiction, we propose a new search mechanism
in which the selective probability Po is introduced to balance the exploration of Eq. (9)
and the exploitation of Eq. (13). If the randomly generated number in [0,1] is less than Po,
the Eq. (9) will be executed, otherwise the Eq. (13) will be executed. Because the demand
of exploitation ability in EAs is gradually increased, the parameter Po will be diminished
linearly from 1 to 0. (see Lines 20 to 26 in Algorithm 1).

By combining Eq. (8) and (12) used in the employed bee phase, the Eq. (9) and (13)
used in the onlooker bee phase and the selective probability Po used to select the Eq. (9)
and (13), an improved ABC elite, IABC elite for short, is proposed. The pseudo-code of
IABC elite is given in Algorithm 1.

Compared with the original ABC elite, the IABC elite adds no additional computa-
tion load, the whole structure of IABC elite is the same as ABC elite. The only difference
between the two algorithms lies in their search equations. Therefore, the total complex-
ity of the IABC elite is the same as that of the ABC elite. Now that the complexity of
ABC elite is O(D ∗ SN)) [5], the complexity of IABC elite is also O(D ∗ SN)), which
is also the same as original ABC [5].

The major difference between ABC elite and IABC elite is that ABC elite employ
only one search equation Eqs. (8) and (9) in the employed bee phase and onlooker bee
phase, respectively, while IABC elite adopts two different search equations in each phase.
When the experimental results are analyzed, it is shown that the integration of search
equations is a better option than the single search equation used in ABC elite because
each search equation contributes the local search ability or global search ability, thus, the
global-local search abilities are better balanced by using different search equations.

5. Experiments and Discussions

To investigate the effectiveness of the proposed algorithm IABC elite, the IABC elite al-
gorithm is compared with the original ABC, BABC, ABC elite, EABC, ABCVSS and
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DFSABC elite. We selected these ABC variants for comparison because the search equa-
tion of the basic ABC algorithm is improved in these recently developed methods. DFS-
ABC elite is a composite algorithm consisting of the ABC elite and the depth-first frame-
work, showing relatively good performance when compared with other state-of-the-art
algorithms.

5.1. Benchmark Functions and Parameter Settings

To analyze and compare the performance and accuracy of the proposed algorithm IABC elite,
a set of 22 benchmark functions with dimension D = 30 are used in the experiments. For
instance, f1 − f6 and f8 are the continuous unimodal functions; f7 is a discontinuous
step function; f9 is a noisy quartic function. f10 is the Rosenbrock function which is
unimodal for D = 2 and D = 3, while it may have multiple optimal solutions when
D > 3. f11− f22 are multi-modal functions, and the number of their local optimal points
increases exponentially with the problem dimension. The search range, the global opti-
mal value, the acceptant value of each function and their definitions can be found in the
literature [5]. When the objective function value of the best solution obtained by an algo-
rithm in a run is less than the acceptant value, the run is regarded as a successful one.The
performance evaluation metrics are the same as those in the literature [5], which are de-
scribed as follows: (1) The mean and standard deviation of the best objective function
value are obtained by each algorithm, which are used to evaluate the quality or accuracy
of the solutions obtained by different algorithms. The smaller the value of this metric is,
the higher quality/accuracy the solution has; (2) The average FES (AVEN) is required
to reach the acceptant value, which is employed to evaluate the convergence speed. The
smaller the value of this metric is, the faster the convergence speed is. Note that AVEN
will only be calculated for the successful runs. If an algorithm cannot find any solution
whose objective function value is smaller than the acceptant value in all runs, AVEN will
be denoted by NA; (3) The success rate (SR%) of the 25 independent runs is utilized to
evaluate the robustness or reliability of different algorithms. The greater the value of this
metric is, the better the robustness/reliability is.

The parameter settings in the two experiments evaluated in the present paper have used
the same settings of the ABC elite [5], and the maximal function evaluation (max FES)
is employed as the termination condition, which is set to 150000. For all the algorithms,
SN is set to 50, D = 30, limit = SN.D; For the ABC-elite and DFSABC elite, p is
set at 0.1. The parameter settings of all the other algorithms are set as suggested in their
original papers shown in Table 1. All the algorithms are conducted with 25 independent
runs for each test function.

In the two experiments evaluated in this paper, Experiment 1 is used to validate the
effectiveness and efficiency of the improved algorithm (IABC elite). Experiment 2 is used
to further evaluate the performance of IABC elite, when compared to other ABC variants
developed recently.

The results of Experiment 1 and Experiment 2 are given in Table 2 and Table 3, re-
spectively. The better results of these two experiments are marked with boldface, and
the paired Wilcoxon [6] signed-rank test is used to compare the significance between the
two algorithms. The signs-, +,and= denotes that the performance of the corresponding
algorithm is worse than, better than and similar to that of the IABC elite, respectively,
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Algorithm 1 The procedure of IABC elite
1: Initialization:Generate SN solutions that contain variables according to Eq. (1);
2: while Fes < max Fes do
3: Select the top T = p.SN solutions as elite solutions from population;
4: for i = 1 to SN do
5: //employed bee phase
6: if i is an elite solution then
7: Generate a new candidate solution Vi in the neighborhood of Xi using Eq.(12);
8: else
9: Generate a new candidate solution Vi in neighborhood of Xi using Eq.(8);

10: end if
11: Evaluate the new solution Vi;
12: if f(Vi) < f(Xi) then
13: Replace Xi by Vi;
14: counter(i)=0;
15: else
16: counter(i)= counter(i)+1;
17: end if
18: end for//end employed bee phase
19: for i = 1 to SN do
20: //onlooker bee phase
21: Select a solution Xe from elite solutions randomly to search;
22: Po = 1− Fes/max Fes;
23: if rand(0, 1) < Po then
24: Generate a new candidate solution Ve in neighborhood of Xe using Eq.(9);
25: else
26: Select a solution Xe′ from elite solutions randomly, where e′ not equal to e;
27: Generate a new candidate solution Ve using Eq.(13);
28: end if
29: Evaluate the new solution Ve;
30: if f(Ve) < f(Xe) then
31: Replace Xe by Ve;
32: counter(e)=0;
33: else
34: counter(e)= counter(e)+1;
35: end if
36: end for//end onlooker bee phase
37: Fes = Fes+ SN*2;
38: Select the solution Xmax with max counter value; //Scout bee phase
39: if counter(max) > limit then
40: Replace Xmax by a new solution generated according to Eq.(1);
41: Fes = Fes+ 1, counter(max) = 0;
42: end if//end scout bee phase
43: end while
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Table 1. Parameters setting used in all experiments.

Algorithm Parameters setting

ABC SN = 50, limit = SN .D
EABC SN = 50, limit = SN .D,µ = 0.3, δ = 0.3, A = 1
BABC SN = 50, limit = SN .D
ABCVSS SN = 50, limit = SN .D, c = 2
ABC elite SN = 50, limit = SN .D, p = 0.1
DFSABC elite SN = 50, limit = SN .D, p = 0.1, r = 1/p
IABC elite SN = 50, limit = SN .D, p = 0.1

according to Wilcoxons rank test [6] at a 0.05 significance level. The last row in Table 2
and Table 3 each summarizes the comparison results.

5.2. Benchmark Functions and Parameter Settings

In this experiment, in order to validate the effectiveness and efficiency of IABC elite, the
IABC-elite is compared with the ABC [13], BABC [8], ABC-elite [5] respectively. The
results are shown in Table 2.

It can be clearly observed from Table 2 that the IABC elite outperforms all the other
algorithms significantly in most of tested functions in terms of solution accuracy and
convergence speed according to mean (std) and AVEN, respectively.

(1) The comparative results of unimodal functions: f1− f9 are unimodal func-
tions. For functions f1 − f6, IABC elite demonstrates best performance in terms of so-
lution accuracy and convergence speed according to mean(std) and AVEN, respectively.
Because functions f7 and f8 are easy to solve [5], the solution accuracy of all algorithms
of this two functions are similar, but IABC elite has achieved better results regarding con-
vergence speed. All in all, the results of IABC elite are better or at least similar to all other
compared algorithms in all unimodal functions according to all test metrics.

The advantage of the IABC elite on unimodal is due to the novel Eq. (12) and Eq.
(13), which can further enhance the exploitation ability of ABC elite.

(2) The comparative results on multimodal functions: In multimodal functions
f10−f22 of Table 2, IABC elite also demonstrates good performance. Firstly, in the solu-
tion accuracy, the IABC elite are better than or at least comparable to all other compared
algorithms in all multimodal functions except for only 2 functions (f10 and f18). Secondly,
in the convergence speed AVEN, the IABC elite performs better than or at least compa-
rable to all its competitors in all multimodal functions only except for the ABC elite on
f22. Thirdly, in the metric SR, the IABC elite are better than or at least comparable to all
other compared algorithms on all multimodal functions. The advantage of IABC elite on
multimodal is due to the introduced parameter Po, which helps the IABC elite to maintain
a better balance between exploration and exploitation.

The convergence curves of these involved algorithms are shown in Fig.2. Because the
length of this paper is limited, only the convergence of 4 functions are given. From Fig.2,
it can be seen that the IABC elite can achieve the fastest convergence speed and best
accuracy among the involved 4 algorithms.
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Table 2. The comparative results of ABC, BABC, ABC elite and IABC elite whenD=30.

No. metric ABC BABC ABC elite IABC elite

f1
Mean(std) 1.04e-17(1.20e-17)- 1.14e-43(1.77e-43)- 3.33e-50(5.34e-50)- 2.20e-105(7.23e-105)
SR/AVEN 100/83,702 100/43,530 100/32,166 100/19,617

f2
Mean(std) 4.38e-10(4.72e-10)- 4.18e-30(3.33e-17)- 2.08e-45(4.36e-45)- 1.31e-102(5.39e-102)
SR/AVEN 100/136,290 100/83,026 100/45,930 100/25,960

f3
Mean(std) 1.14e-19(9.89e-20)- 7.40e-15(3.70e-14)- 9.21e-51(8.50e-51)- 2.45e-107(1.17e-106)
SR/AVEN 100/75,402 100/38,022 100/30,678 100/18,615

f4
Mean(std) 2.02e-31(5.30e-31)- 4.96e-90(1.54e-89)- 1.69e-95(5.46e-95)- 1.52e-168(1.52e-168)
SR/AVEN 100/23,578 100/11,222 100/10,662 100/6945

f5
Mean(std) 7.69e-11(3.04e-11)- 1.61e-24(8.21e-25)- 6.59e-26(3.04e-26)- 9.04e-56(2.07e-55)
SR/AVEN 100/124,870 100/58,046 100/54,874 100/30,280

f6
Mean(std) 4.39e+00(1.07e+00)- 1.71e+00(1.15e+00)- 2.66e+00(1.75e+00)- 1.33e-02(1.07e-02)
SR/AVEN 0/NA 32/122,490 80/104,250 100/68,600

f7
Mean(std) 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)
SR/AVEN 100/10,994 100/9426 100/94,740 100/7650

f8
Mean(std) 7.18e-66(5.21e-73)= 7.18e-66(2.04e-77)= 7.18e-66(1.20e-79)= 7.18e-66(1.19e-81)
SR/AVEN 100/150 100/150 100/150 100/150

f9
Mean(std) 6.02e-02(1.09e-2)- 2.70e-02(8.28e-03)- 1.90e-02(4.83e-03)- 1.36e-02(3.70e-03)
SR/AVEN 100/91,786 100/35,582 100/31,034 100/18,665

f10
Mean(std) 5.45e-02(5.86e-02)+ 3.97e-02(4.96e-02)+ 1.47e-01(5.18e-01)+ 5.6e-01(1.15e+00)
SR/AVEN 88/11,014 100/83,026 84/78,817 70/65,792

f11
Mean(std) 3.50e-14(1.35e-13)- 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)
SR/AVEN 100/99,134 100/41,354 100/41,522 100/27,575

f12
Mean(std) 1.70e-12(4.36e-12)- 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)
SR/AVEN 100/112,080 100/49,050 100/44,206 100/30,175

f13
Mean(std) 2.36e-14(5.62e-14)- 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)
SR/AVEN 100/94,862 100/42,942 100/39,826 100/30,087

f14
Mean(std) 4.58e-12(1.59e-12)- 2.18e-13(7.80e-13)- 1.16e-12(1.65e-12)- 1.09e-13(3.25e-13)
SR/AVEN 100/82,946 100/50,418 100/42,794 100/41,826

f15
Mean(std) 4.31e-09(1.85e-09)- 5.65e-15(1.33e-15)= 6.08e-15(7.10e-16)- 5.52e-15(3.21e-16)
SR/AVEN 100/145,410 100/65,210 100/63,606 100/35,210

f16
Mean(std) 1.03e-18(6.90e-19)- 8.98e-14(4.49e-13)- 1.57e-32(5.59e-48)= 1.57e-32(3.42e-48)
SR/AVEN 100/77,346 100/40,542 100/30,362 100/17,660

f17
Mean(std) 4.88e-18(5.03e-18)- 1.50e-33(8.28e-33)= 1.50e-33(0.00e+00)= 1.50e-33(0.00e+00)
SR/AVEN 100/86,542 100/40,810 100/32,470 100/19,055

f18
Mean(std) 2.35e-06(1.66e-06)- 3.33e-17(1.28e-16)+ 8.88e-18(4.44e-17)+ 3.69e-16(8.23e-16)
SR/AVEN 0/NA 100/55,262 100/57,226 100/42,280

f19
Mean(std) 4.46e-14(5.39e-14)- 1.35e-31(2.23e-47)= 1.35e-31(2.23e-47)= 1.35e-31(2.23e-47)
SR/AVEN 100/90,558 100/36,362 100/33,206 100/22,180

f20
Mean(std) 2.06e-02(2.35e-02)- 2.63e-05(1.32e-04)- 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)
SR/AVEN 0/NA 96/80,696 100/72,506 100/28,025

f21
Mean(std) -78.332(0.00e+00)= -78.332(1.23e-14)= -78.332(8.70e-15)= -78.332(4.61e-15)
SR/AVEN 100/26,594 100/10,992 100/11,194 100/9530.0

f22
Mean(std) -29.999(6.36e-04)- -30.000(1.92e-06)= -30.000(0.00e+00)= -30.000(0.00e+00)
SR/AVEN 100/25,458 100/14,822 100/15,210 100/19,525

+/=/- 1/3/18 2/10/10 2/11/9 –
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Table 3. The comparative results of EABC, ABCVSS, DFSABC elite and IABC elite
when D=30.

No. metric EABC ABCVSS DFSABC elite IABC elite

f1
Mean(std) 5.85e-62(2.90e-61)- 2.40e-35(8.54e-35)- 4.14e-82(8.76e-82)- 2.20e-105(7.23e-105)
SR/AVEN 100/27,982 100/50,526 100/21,410 100/19,617

f2
Mean(std) 9.26e-60(1.41e-59)- 2.29e-27(9.79e-27)- 5.37e-78(8.66e-78)- 1.31e-102(5.39e-102)
SR/AVEN 100/39,006 100/78,802 100/28,674 100/25,960

f3
Mean(std) 4.50e-65(5.16e-65)- 9.40e-37(2.54e-36)- 2.84e-83(4.66e-83)- 2.45e-107(1.17e-106)
SR/AVEN 100/25,826 100/46,222 100/19,710 100/18,615

f4
Mean(std) 9.57e-33(3.42e-32)- 4.31e-44(1.40e-43)- 2.41e-110(1.19e-109)- 1.52e-168(1.52e-168)
SR/AVEN 100/84,180 100/15,818 100/7122 100/6945

f5
Mean(std) 9.45e-34(8.43e-34)- 7.03e-19(2.18e-18)- 2.06e-42(2.08e-42)- 9.04e-56(2.07e-55)
SR/AVEN 100/42,198 100/72,958 100/33,426 100/30,280

f6
Mean(std) 2.43e+01(5.22e+00)- 2.56e-01(9.19e-02)- 5.08e-07(3.69e-07)+ 1.33e-02(1.07e-02)
SR/AVEN 0/NA 100/111,070 100/32,802 100/68,600

f7
Mean(std) 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)= 0.00e+00(0.00e+0)= 0.00e+00(0.00e+00)
SR/AVEN 100/7602.0 100/10,042 100/7534 100/7450

f8
Mean(std) 7.18e-66/(7.49e-67)= 7.18e-66(9.98e-78)= 7.18e-66(3.23e-81)= 7.18e-66(1.19e-81)
SR/AVEN 100/150 100/150 100/150 100/150

f9
Mean(std) 1.65e-02(3.68e-03)- 2.57e-02(5.22e-03)- 1.20e-02(3.80e-03)+ 1.36e-02(3.70e-03)
SR/AVEN 100/23,398 100/40,846 100/16,878 100/18,665

f10
Mean(std) 1.14e+00(2.94e+00)- 3.25e-02(4.58e-02)+ 3.45e+00(1.45e+01)- 5.6e-01(1.15e+00)
SR/AVEN 100/85,233 96/86,483 60/58,683 70/65,792

f11
Mean(std) 3.82e-02(1.91e-01)- 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)
SR/AVEN 96/34,067 100/51,966 100/27,754 100/27,575

f12
Mean(std) 1.20e-01(3.32e-01)- 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)
SR/AVEN 88/36,005 100/60,578 100/28,602 100/30,175

f13
Mean(std) 4.29e-08(2.14e-07)- 3.45e-11(1.73e-10)- 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)
SR/AVEN 96/35,654) 100/69,514 100/31,066 100/30,087

f14
Mean(std) 3.35e-12(8.60e-13)- 1.60e-12(3.45e-13)- 4.37e-13(1.09e-12)- 1.09e-13(3.25e-13)
SR/AVEN 100/38,454 100/52,906 100/34,430 100/41,826

f15
Mean(std) 2.73e-05(1.36e-04)- 6.50e-15(2.27e-15)= 3.80e-15(1.69e-15)+ 5.52e-15(3.21e-15)
SR/AVEN 96/49,888 100/80,074 100/37,998 100/35,210

f16
Mean(std) 1.57e-32(5.59e-48)= 1.57e-32(5.59e-48)= 1.57e-32(5.59e-48)= 1.57e-32(3.42e-48)
SR/AVEN 100/24,862 100/46,142 100/18,902 100/17,660

f17
Mean(std) 1.50e-33(0.00e+00)= 1.50e-33(0.00e+00)= 1.50e-33(0.00e+00)= 1.50e-33(0.00e+00)
SR/AVEN 100/22,540 100/48,154 100/20,970 100/19,055

f18
Mean(std) 6.00e-17(3.41e-16)+ 6.26e-18(2.91e-17)+ 3.10e-40(1.03e-39)+ 3.69e-16(8.23e-16)
SR/AVEN 100/42,578 100/80,966 100/40,454 100/42,280

f19
Mean(std) 1.35e-31(2.23e-47)= 1.35e-31(2.23e-47)= 1.35e-31(2.23e-47)= 1.35e-31(2.23e-47)
SR/AVEN 100/26,762 100/48,330 100/24,890 100/22,180

f20
Mean(std) 6.03e-03(1.30e-02)- 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)
SR/AVEN 64/58,950 100/93,050 100/55,910 100/28,025

f21
Mean(std) -78.332(2.90e-15)= -78.332(1.05e-14)= -78.332(5.02e-15)= -78.332(4.61e-15)
SR/AVEN 100/8538.0 100/13,038 100/6502.0 100/9530.0

f22
Mean(std) -30.000(1.51e-06)= -30.000(3.82e-12)= -30.000(0.00e+00)= -30.000(0.00e+00)
SR/AVEN 100/12,602 100/18,726 100/5270.0 100/19,525

+/=/- 1/7/14 2/11/9 4/11/7 –
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Fig. 2. The convergence curves of ABC, BABC, ABC elite and IABC elite on 4 repre-
sentative test

5.3. Experiment 2: comparison of the IABC elite and other ABC variants

In this section, in order to further evaluate the performance of IABC elite, the IABC elite
is compared with 3 recently developed representative ABC variants, i.e.,the EABC [12],
ABCVSS [23], DFSABC elite [5] on all 22 test functions with 30D. The parameter set-
tings are shown in Table 1, and the termination condition max FES is the same as ex-
periment 1 (max FES = 150000). All the compared ABC variants have proposed an
improved search equation. It’s worth noting that the DFSABC elite is a composite algo-
rithm consisting of the ABC elite and depth-first strategy (DFS). The comparative results
are shown in Table 3.

(1) The comparative results on unimodal functions:
f1 − f9 are unimodal functions. For functions f1 − f5,According to Table 3, the

IABC elite performs significantly better than all compared algorithms regarding solution
accuracy (mean(std)) and convergence speed (AVEN), and all algorithms obtain the same
results in the success rate (SR). For functions f7 − f8, although all the algorithms get
the similar performance regarding solution accuracy and success rate because f7− f8 are
easy to solve [5], the convergence speed of the IABC elite is faster than or at least com-
parable to all the competitors. For functions f6 and f9, the IABC elite is only second to
the DFSABC elite regarding solution accuracy and convergence speed, while IABC elite
exhibits best success rate, beating all its competitors. In a word, the IABC elite shows the
best overall performance in unimodal functions.

(2) The comparative results on multimodal functions:
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f10−f22 are multimodal functions. f10 is Rosenbrock function and its global optimum
is inside a long, narrow, parabolic shaped flat valley, the variables are strongly dependent,
and the gradients do not generally point towards the optimum. If the population is guided
by the global best solution or some other good solutions, the search will fall into some un-
promising areas. Therefore, DFSABC elite is beaten by all the competitors, even original
ABC is also far better than DFSABC elite in function f10.This phenomenon reflects the
defect of DFS strategy used in DFSABC elite. Because the DFS strategy always search a
direction greedily, it tends to result in lacking of randomness of EA and make it trapped
into local optima. And the same conclusion can be drawn from literature [5] (see Table
3 of literature [5]). For function f10, the IABC elite is better than the DFSABC elite and
EABC, but still worse than ABCVSS slightly, regarding solution accuracy.

The last row of the Table 3 summarizes the comparison results. It can be seen that
the IABC elite exhibits significantly advantage when compared with other algorithms. In
the comparison with the DFSABC elite, IABC elite wins over it in 7 functions, ties in
11 functions while losed on 4 functions regarding solution accuracy. Although the DFS-
ABC elite has combined with the DFS strategy, IABC elite still outperform it. Similarly,
the IABC elite performs better than the EABC and ABCVSS on most of the test functions
regarding solution accuracy.

Overall, the IABC elite still performs better than all other algorithms on most of mul-
timodal functions.

6. Conclusions

In order to increase the exploitation ability of the ABC elite and seek a better balance be-
tween the abilities of exploration and exploitation, an improved ABC elite (the IABC elite)
algorithm is put forward in this paper, combining two novel search equation and a new
parameter with ABC elite. The first search equation is used in employed bee phase, thus
the elite solutions and ordinary solutions adopt different search equation. The second
search equation is used in the onlooker bee phase to further enhance the exploitation of
the ABC elite. The new parameter Po is introduced to maintain the balance between the
ability of exploration and that of exploitation. The experiment results have shown that
the IABC elite can significantly improve the performance of ABC elite. When further
compared to other state-of-the-art ABC variants, IABC elite also exhibits the best overall
performance.
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