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Abstract. Traditional sensor nodes ignore the packet loss rate during information
transmission and the access control security problem caused by server utilization
when uploading data. To solve the problem, we propose a SARSA based access
control method with approximation by TileCoding (SACT), which takes the sen-
sor packet loss rate and the server error rate into account. The network state is
estimated by the packet loss rate and variable bit error rate to get a server access
control strategy to improve security performance. The eventual strategy complies
with the minimum information loss and the maximum server utilization. Results of
experiments show that the algorithm is capable of achieving good results in the to-
tal amount of information received by the server system. The SACT improves the
server utilization rate and the overall security performance of the network.
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1. Introduction

Access control is a way of granting or restricting the subject’s access to the object explic-
itly featuring a very important information security technology. Access control technol-
ogy is applied in many areas of information systems such as intrusion detection system
[5], information encryption [12], identity authentication [7], security audit [3], security
and risk analysis [14]. It combines technology with theory to guarantee safe and reliable
transmission. It is also applied to access information system [32], which largely retains
the integrality of information effectively and reduces the information leak and omission.
Access control system takes some defensive measures to manage the access of system
resources so as to ensure the full use of system resources.

Authorization policy [4] is the core issue of access control. With the development
of distributed computing and information technology, heterogeneous networks are inter-
connected and are increasingly communicating. In order to ensure secure networks, we
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should consider the tense, environment and other factors when establishing the access
control model. However, information error and loss will inevitably occur in the entire in-
formation transmission process from the overall and long-term perspective. Consequently,
the critical issue is to maximize the safety and effectiveness of transmission of informa-
tion. Quantitative security of information transmission needs to be focused.

In the wireless sensor network, the sensor nodes will have unique information loss
[27] when they upload data to the server, which is called lose bag and will cause the
server to receive the unevenly distributed data flow. The number of servers available is
rarely taken into account in the traditional access control strategy, which often leads to
the inability to receive as much amount of information as possible. On the other hand,
the error rate of the port of the wireless sensor network is high enough to the point of
resulting the instability of communication between the server and the sensor equipment.
At the same time a dynamic change process ought to be reckoned.

Considering different packet loss rates [22] and bit error rates [30] concerning trans-
mission security problems, we propose an access control strategy based on TileCoding
reinforcement learning algorithm, referred as SACT, that considers the sensor with packet
loss and a limited number of servers, and takes different sensor nodes that upload data at
different times as the starting point. Considering the number of available servers and the
error rate, it coordinates the rejection and reception of the sensor at certain timestamps,
which makes the whole system receive the most information. Access control strategy and
the algorithms of SARSA are introduced in the next section.

2. Related work

2.1. Access control

The core of access control is the authorization policy [15], which controls the subject’s
access to the object. Access control models can be divided into various types including
traditional access control models, role-based access control models (RBAC), task-based
and role-based access control models (T-RBAC), and task-based and workflow-based ac-
cess control models (TBAC).

Traditional Access Control Model In general, the traditional access control model can
be divided into 2 categories: mandatory access control (MAC) [26] and discretionary
access control (DAC) [10]. Mandatory access control takes a coercive measure. It uses
up reading/down writing to ensure data integrity and up writing/down reading to ensure
data confidentiality. Although the implementation work of the MAC is heavy and the
management is inconvenient and not flexible enough, MAC can realize the one-way flow
of information to prevent Trojan horses effectively.

The MAC is to search for all users who have access to a particular resource. It can
effectively implement authorization management. It is difficult for MAC to deal with
situations where an organization modifies its members and where functions are changed.

Role-Based Access Control In role-based access control(RBAC) [29], the concept of
roles is introduced, that is, the responsibilities and functions of users within the organiza-
tion. Each role is under a corresponding function. In this model, permissions are assigned
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to roles, and users are assigned to previously assigned roles to obtain permission for roles.
Different users are assigned different roles according to their corresponding functions.
The system can be simplified by pre-defining the role-permission relationships.

In a workflow environment, the user performing the operation is changing, so are
the user’s permissions when data flows in a workflow. This is linked to the context of
data processing, which traditional access control technologies DAC and MAC cannot
implement. The RBAC reference model also includes functional specifications, which are
subdivided into management functions [24], support functions [1], review functions and
so on.

Task-Based Authorization Control The Task-Based Authorization model(TBAC) [35]
is an active security model, which uses dynamic authorization to realize the security model
and implement the task-oriented security mechanism . In the model, users combine tasks
with access rights. The status of the task determines the permissions that the system grants
to the user, based on the task currently executed by the topic. However, TBAC does not
make a distinction between tasks and roles and does not realize active access control
thereby exposing its own shortcomings. Generally speaking, TBAC is used in combina-
tion with RBAC.

The access control of the object is not static, but varies with the context in which
the task is performed. The active and dynamic nature of TBAC makes it widely used
in workflow, distributed processing, information processing of multi-point access control
and decision making of the the transaction management system.

Task-role-based Access Control Task-role-based Access Control(T-RBAC) [19] is an
Access Control Model Based on the enterprise environment. Unlike RBAC, the T-RBAC
model treats tasks and roles as equals. In this model, the task owner has specific task
requirements and authority constraints. The corresponding task has the corresponding
permission, which makes the permission change with the task execution. This can truly
realize the demand allocation and dynamic allocation of permission. When the task com-
pletes, the role’s permission is revoked; when the task is not started, the role has no per-
mission; when the task is executing, the role is assigned permission.

Roles in T-REAC are associated with permission, and tasks serve as the bridge for
roles and permission to exchange information. It not only achieves easy and convenient
operational maintenance of the roles and task management, but also achieves a more se-
cure system.

2.2. Introduce to SARSA

Reinforcement learning(RL) [34] is a classic and effective method in machine learning.
As a branch of the machine learning discipline, deep learning constructs a neural network
to simulate the human brain to achieve observational learning. It mimics the working prin-
ciple of human brain to understand external input data, such as images, texts and sounds.
So it is a great tool for implementing artificial intelligence. Reinforcement learning is
a class of algorithms that are extremely suitable for achieving artificial intelligence. This
discipline is based on the study of animal learning and adaptive control theory. In artificial
intelligence problems, Agents are generally used to represent an object with behavioral
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capabilities, such as robots, unmanned vehicles, animals, and so on. Agents generally
have some specific properties: sociality, autonomy, responsiveness, initiative, and so on.
The main issue is the interaction between the agent and the external environment. The
probability of a certain behavioral choice increases when the agent chooses it and is re-
warded by the external environment and decreases when the agent is punished. However,
reinforcement learning does not have a clear decidable signal like the common machine
learning. It can only evaluate if the action is encouraged according to the symbol and size
of the enhanced signal, so the whole learning process is time consuming.

Reinforcement learning includes many famous algorithms such as Q-learning [36],
SARSA [2], function approximation [8] and so on. Reinforcement learning has been
widely used in practice in many areas [17,11]. It also has achieved numerous contri-
butions in biomedicine [23] and game playing [18]. In reinforcement learning, the agent
interacts with Markov Decision Process(MDP) [33] so as to model the reinforcement
learning problem. Reinforcement learning can be described as Fig. 1.

Fig. 1. The process of reinforcement learning

The Markov Decision Process (MDP) is used for modeling. An MDP model is often
represented as a tuple < S,A, P,R >.

S denotes the state set of agent,st∈S represents the state of agent at time t.
A denotes the action set for a state,at∈A represents the action that can be taken at

time t.
P denotes the transition probability, which is usually expressed as P (st+1|at, st),

indicating the probability that the agent takes action a′ and reach the next state st+1 at the
time of t and state st.

R denotes the reward function, which is expressed as rt+1 = R(st, st+1, at), indicat-
ing the immediate reward rt given by the environment after the action at was taken from
state st to state st+1.

The policy of reinforcement learning π : S→A is a mapping from states to actions.
In general, reinforcement learning uses state-action function values to evaluate and to
improve strategies. The state-action value function is the expected reward when imple-
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menting the strategy, which can be generally expressed as:

Q(st, at) = E[Rt|st, at, π] (1)

In traditional reinforcement learning, Bellman equation[28] plays an important role,
which can be expressed as:

Q(s, a) = E[r + γmax(Q(s′, a′)|s, a] (2)

where r is the immediate reward,γ is the discount factor, s is the state and a is the action.
SARSA algorithm estimates the action-value function (Q function)[31] rather than the

state value function. In other words, we estimate the action value function of all available
actions a on any state s under the policy. SARSA algorithm makes full use of markov
property, that is, the future state is only related to the current state. SARSA updates the
status value at each step using formula as follows:

Q(s, a) = Q(s, a) + α(R+ γQ(s′, a′)−Q(s, a)) (3)

The complete process of SARSA algorithm is shown in Algorithm 1.

Algorithm 1 SARSA
Input: Q(s, a) arbitrarily
Output: Q(s, a) updated

1: Initialize S
2: repeat
3: Choose A from S using policy from Q (e.g., Boltzmann’s method)
4: Q(s, a)←Q(s, a) + α[Q(s′, a′)−Q(s, a)]
5: s← s′, a← a′

6: until terminal
7: return Q(s, a)

The state space and action space are usually large in practical applications. The itera-
tive algorithm used to seek the optimal policy is more computationally intensive and less
feasible. Therefore, it is necessary to generalize the large-scale state space. The represent-
ing method of function is used to approximate the Q value,as follows:

δ = rt+1 + γmaxuQ(st+1, at+1; θt+1)−Q(st, at; θt) (4)

θt+1 = θt + αδet (5)

et = γλet−1 +∇Q(st, at; θt) (6)

where δ is TD error, e is eligibility trace,and θ is function parameter. Linear functions or
nonlinear functions are used to approximate the function. In this paper, function approxi-
mation is performed with TileCoding.
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In recent years, there are a lot of researches on applying reinforcement learning to the
field of access control, routing planning and others. In wireless sensor network structure,
the majority of them goes toward two directions. The first is how to reduce the waste
of resources, that is, to maximize the use of resources. The second is to improve the
efficiency of node and to minimize the cost. Fathi et al.presents q-learning for multiple
access control in wireless sensor networks to save energy of sensor node [9]. Chu Yi
et al. applies Q-learning to frame based ALOHA as an intelligent slot selection strategy
capable of migrating from random access to perfect scheduling [6]. Yun Lin et al. proposes
a hybrid spectrum access algorithm that is based on a reinforcement learning model for
the power allocation problem of both the control channel and the transmission channel
[20]. Many scholars also use the planning method [21] to obtain the optimal solution.

However, these algorithms still suffer from some general issues such as low mobility,
security, collision avoidance [25]. Built on the reinforcement learning method, this paper
proposes an access control method to maximize the received information data and select
the policy with the minimized loss of information.

3. SARSA based Access Control

In the access control of wireless sensor network [16], data transmitted to the server by
different sensors may be affected by different levels of error rates, resulting in the loss
of important information. The energy consumption of the sensor is also a problem that
needs to be considered. In order to address the deficiency of the current sensor network,
an optimal access control strategy is got to obtain the most complete information by the
server with the minimum energy consumption of the sensor. The algorithm can guarantee
a satisfying secure transmission.

In this paper, SARSA based access control with approximation by TileCoding is pro-
posed. The algorithm builds a model based on the idea of reinforcement learning, con-
sidering error when uploading, and the package loss of different sensors. We will show
the optimal access control policy to achieve the overall minimum information loss and the
highest security rate of transmission. The SACT algorithm uses TileCoding to improve the
function approximation parameters in the enhanced learning, exploits differential semi-
gradient SARSA to constantly update the Q value [13], and utilizes the average reward to
update the reward function. After several iterations, the information loss in the transmis-
sion of multiple sensors is reduced.

3.1. Model and Algorithm Description

In wireless sensor network, each sensor node may suffer from a series of problems such
as information loss, energy consumption and data error when transmitting information
to the server. Taking these data security factors into consideration, an algorithm for the
access control problem of the sensor node can be obtained. In the algorithm referred in
this paper, each server can at the same time receive only one sensor to upload data. We
assume the server control system as an agent, which can take steps to accept or reject a
sensor. Our goal is to seek the action strategy of the control system for the new sensor
node for different states consisting the sensor node and servers.
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The optimization of wireless sensor network can be described as a single agent’s rein-
forcement learning problem of seeking out optimal strategies for separate states. In other
words, this reinforcement learning problem can be seen as the agent’s value function being
continuously updated. It is presumed that a wireless sensor network with multiple sensor
nodes is sent to a fixed number of servers in a random queue sequence. The system has
several features as follows: every server has a certain error rate due to energy loss, which
relates to its performance decline over time. Only one sensor node uploads data in a time
slice. The server system can decide whether to accept the data uploaded by the sensor
node according to the current status. And different sensor nodes have different package
loss rates.

Reinforcement learning algorithms require modeling and analysis of state, action, and
reward functions. In this wireless sensor network system, ni servers are initially used to
receive data, and there are enough sensor nodes in the queue to transmit data. The sensor
nodes are divided into nj types, and their package loss rate is e1, e2· · ·ej , respectively. In
a time slice, only one sensor node can upload data to a server. A busy server has a certain
possibility p to complete data transmission and continue to receive the node data of the
next sensor. The error rate of the server increases by w% for every T period. The agent
here refers to the server control system, and the state refers to the current number of idle
servers, the error rate priority of the server receiving data and the type of sensor node
at the current queue head. Action a refers to the option to reject or receive the uploaded
data of the current queue head sensor according to the current state. According to the
reinforcement learning method, the Q value of state-action team function as well as the
state function are evaluated. Some exploration method, such as ε-greedy and boltzmann
exploration, is used to select the action according to the state function.

3.2. SACT Algorithm

The SACT algorithm is proposed in this paper to obtain the most complete possible in-
formation against the increasing server error rate. When considering the reward function,
it is needed to integrate the bit error rate of the current server and the package loss rate of
sensor nodes. Therefore, the reward function is defined as:

r(st, at) = α(1− et)Inf − βwt (7)

where α,β denotes accordingly the weights of the packet loss rate and the bit error rate
and Inf denotes the maximum information the sensor node can upload among them.

The agent selects action at+1 with boltzmann probability under the state st+1 with
weight w, and updates the average reward and weight w. The average reward and weight
are updated as follows:

δ ← r −R+Q(st+1, at+1, w)−Q(st, at, w) (8)

R← R+mδ (9)

w ← w + nδ∇Q(st, at, w) (10)

where r means the immediate reward,m and n are updated steps.
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Exploiting the concept of average reward, we define a new type of reward as the sum
of the difference values between the rewards and the average rewards, which is called dif-
ferential reward. The algorithm of differential semi-gradient SARSA is adopted to contin-
uously sample and to learn. The value w and the Q value will converge finally. We apply
TileCoding, a kind of CourseCoding to code in the learning stage. A unit of computa-
tion is a tiling, and every sensory field characteristic value is associated with a tile. The
sensory field of the eigenvalue is divided into the computing unit of the input space. The
value function of TileCoding is composed of the weight of each tile, and the expression
is:

V (s) =

n∑
i=1

bi(s)wi (11)

where n denotes the total number of tiles, bi(s) denotes the ith tile of the corresponding
state s and wi is the corresponding weight.

It is generally not necessary to sum up several tiles for a given state. We update the
estimated value of state s according to the following updates expression under the MDP
model:

∇V (s) = maxa[R(s, a) + γV (T (s, a))]− V (s) (12)

Weight update formula is as follows:

wi ← wi +
α

m
bi(s)∇V (s) (13)

where m is the number of tilings.
The algorithm of TileCoding is as follows:

Algorithm 2 Updating the parameter by TileCoding
Input: the number of tiles n, the number of tiling m, the initial weights
Output: the weights W updated

1: for i = 1 to n do
2: Initialize the tiling by using n/m tiles
3: end for
4: for j = 1 to n/m do
5: Initialize the tile with weights
6: end for
7: repeat
8: s←Random State from S
9: ∇V (s) = maxa[R(s, a) + γV (T (s, a))]− V (s)

10: for k = 1 to m do
11: W ←W + α/m∇V (s)
12: end for
13: until terminal
14: return W

Active-tile returns the number of tiles that are activated. By utilizing multiple layers
of tilings to generalize in multiple directions, the tradeoff between accuracy and speed is
avoided. The tiling of the lattice is used to divide the state space into several tilings in this
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paper, which is obtained through the random uniqueness of the discrete grid. Coordinates
are obtained in each tiling to obtain the corresponding feature vectors for the number of
servers and the status of sensor nodes in the team head. The approximation function of its
state space is as follows:

Vt(s) = θTt φs =

n∑
i=1

θt(i)φs(i) (14)

Updating Parameter is expressed as follows:

θt+1 = θt + α[V π(st)− Vt(s)]∇θtVt(st) (15)

TileCoding allocates several large tiles at the beginning of learning. These tiles will
be then divided into several sub-tiles all at once. Tiles are split into two parts in this article
to simplify calculation. The learning speed and performance indexes were optimized on
the basis of compound tiling. Set a global counter u to record the update times. When u
reaches the threshold, select a tile to segment. Since the quota policy is based on control or
prediction, sub-tiles need to be recorded or screened. So,k status values contain 2k tiles.
When each tile is generated, the weight of the sub-tile is initialized to 0. As the status
is continuously updated, the activated sub tile k is updated accordingly. The following
diagram illustrates this process. Fig. 2 shows the sequential segmentation of tiles.

Fig. 2. Sequential segmentation of tiles

In the learning process, we utilized hash coding, which greatly reduced the amount
of storage space. We also use pseudo-random algorithm to reduce the number of tiles.
Hash correlation is used to form a limited tiling with non-adjacent tiles in the state space
randomly. Hash coding can effectively solve the dimension disaster problem. Hashing
mapping is showed in Fig. 3.

Main procedures of this algorithm are as follows: we initialize all the servers to be
idle and obtain the Q value through the TileCoding function for all the sensor nodes at
certain state. The weight parameters are initialized to 0 in tile. All the initial rewards are
initialized to 0. The package loss rate and current server bit error rate are used to obtain
information from each new sensor nodes. The initial state is chosen by the random policy.
The action is chosen by Boltzmann distribution probability according to the free servers
and the type of sensor at queue head. The Q value is updated by the SARSA Algorithm.
Finally, through multiple sensor nodes in the queue and the bit error rate of the server
which increases over time, the evaluation value gradually converges with iteration. The
specific algorithm is combined with TileCoding as follows.
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Fig. 3. The hash map of one tile

where m is the number of tilings, et is the bit error rate, λ/T is the packet loss rate
based on the growth of fixed time period and w is an array of the weights.

The traditional access control problem only considers the condition of the visitor. It
ignores the data security processing of some servers. The algorithm in this paper takes
into account the package loss rate of data uploaded by sensor nodes and the bit error rate
of the server compared to the traditional algorithm, which can be better applied to the
actual situation.

4. Experiments and Analysis

We simulate the situation of sensor nodes and servers. The simulation environment is that
there are 5 different types of sensor nodes in the queue, and their loss rates of uploaded
data are 0.01%, 0.02%, 0.04%, 0.08% and 0.16%, respectively. There are 12 servers that
receive data. And bit error rate increases by 3% every fifty thousand time steps. For each
busy server, there is an 8% probability that the busy state will change to idle state getting
ready to receive data. To facilitate comparison, we set their immediate rewards to 16, 8, 4,
2, and 1 for the sensor nodes with different packet loss rates that are randomly generated
in the queue head. Immediate rewards will be multiplied by the corresponding percentages
as time goes on. The purpose of this task is to explore a policy to decide whether to receive
data in each time step according to the nature of sensor nodes, number of servers and the
current state, so as to obtain a secure data transmission policy.

In the learning process, we used the average reward as the reward function, set accept
action as 1 and reject action as 0, set step size for learning state-action value as 0.01,
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Algorithm 3 SARSA based access control with approximation by TileCoding (SACT)
Input: the style of sensor node in the queue head Y ,step sizes α, β > 0, number of busy servers

N
Output: the server system reject or accept the new sensor node

1: for i = 0 to n do
2: Initialize the weights w of the i tile and 2k sub tiles e.g., w = 0
3: end for
4: Initialize average reward R arbitrarily(e.g.,R = 0)
5: Initialize state S = [N,Y ], actions A
6: repeat
7: Take actions A, observe state S
8: Choose A′ as the function of Q(S′, w)(e.g., Boltzmann’s method)
9: r(S,A) = (1− µ)(1− et)Inf − µλ/T

10: δ ← r −R+Q(st+1, at+1, w)−Q(st, at, w)
11: R← R+ βδ
12: w ← w + α

m
δ∇Q(st, at, w)

13: S ← S′

14: A← A′

15: until terminal
16: return (S,A)

step size for learning average reward as 0.01, and updated the parameters according to
TileCoding. Therefore, in the experiment in this paper, the aim is to get a policy after
experiencing 1 million time steps under different numbers of idle servers and the sensor
nodes at the queue head required to upload data.

Fig. 4 shows the differential value of optimal actions for sensor nodes that produce
different package loss rates in 1 million time steps. It can be observed from the figure
that for the sensor nodes with different packet loss rates, the value obtained through Tile-
Coding reinforcement learning is inversely proportional to the packet loss rate, which is
consistent with intuition. It can also be seen from the figure that when the number of
idle servers reaches 9, there is a huge amount of transitions under different sensor nodes.
When the number of busy server is 3, the data is at its most complete and all states are
traversed. In addition, the performance appears not satisfactory when the value is lower
than 0. When the number of idle servers is in range only from 0 to 4, the data obtained in
the simulation experiment cannot cover all cases.

Fig. 5 shows the result of the strategy after 1 million time steps where the dark color
means receiving new sensor node data, and light color means refusing to accept new
sensor node. On the whole, as the number of idle servers decreases, higher packet loss
rate corresponds to greater chance of rejection.

More specifically, when the number of free server is 0, all sensor nodes are rejected
which makes the algorithm reliable. The server system can take the corresponding policy
according to the figure. In order to maximize security of data transmission, the server
system can only choose the packet loss rate of type 4 and type 3 when the free server
number is 1. When the number of free servers is 2 or 3, type 0 and type 1 sensor nodes
cannot upload data. When the number of free servers is 11 or 12, the system still refuses
type 0 or type 1 because the system prefers to keep as much security as possible and get
as much reward as possible. By comparing Fig. 4 with Fig. 5, we can find that the two
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Fig. 4. The differential value of optimal actions of the five different sensor nodes that
produce different package loss rates in the 1 million time steps for the different number
of free servers. Type 0 to 4 of the sensor nodes denotes the rewards that are getting larger
from 1 to 16.

graphs can be related. When the number of idle servers is from 0 to 3, or from 11 to 12, we
find that the value is very low so most servers of these numbers are rejected accordingly.
In addition, when the values are highest, the server system is in a position to receive all
types of sensor nodes to upload data.

5. Conclusion

The defect of traditional access control in wireless sensor networks can lead to a large
number of information omissions without adopting a long-term effective strategy. This
will make the information transmission insecure. In this paper, an efficient and feasible
access control policy based on TileCoding reinforcement learning algorithm is proposed,
which provides us with a policy for sensor nodes in different complex situations. After
taking full factors into account such as the package loss rate of the sensor node and the
bit error rate of the server, the SACT algorithm adopts the method of function approxima-
tion by TileCoding and takes corresponding actions through the probability of Boltzmann
distribution. We adopt the idea of average reward and simulate the credible strategy. Sim-
ulation results show that the SACT algorithm can provide a relatively safe strategy for the
access control of sensor nodes.
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Fig. 5. The result of the strategy for the server system after 1 million time steps. Dark
color means receiving new sensor node data, and light color means refusing to accept
new sensor node. The actions can be chosen by the state of the number of free servers and
type of sensor nodes in the figure
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