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Abstract. With the invention of big data era, data releasing is becoming a hot topic
in database community. Meanwhile, data privacy also raises the attention of users.
As far as the privacy protection models that have been proposed, the differential
privacy model is widely utilized because of its many advantages over other models.
However, for the private releasing of multi-dimensional data sets, the existing algo-
rithms are publishing data usually with low availability. The reason is that the noise
in the released data is rapidly grown as the increasing of the dimensions. In view
of this issue, we propose algorithms based on regular and irregular marginal tables
of frequent item sets to protect privacy and promote availability. The main idea is
to reduce the dimension of the data set, and to achieve differential privacy protec-
tion with Laplace noise. First, we propose a marginal table cover algorithm based
on frequent items by considering the effectiveness of query cover combination, and
then obtain a regular marginal table cover set with smaller size but higher data avail-
ability. Then, a differential privacy model with irregular marginal table is proposed
in the application scenario with low data availability and high cover rate. Next, we
obtain the approximate optimal marginal table cover algorithm by our analysis to
get the query cover set which satisfies the multi-level query policy constraint. Thus,
the balance between privacy protection and data availability is achieved. Finally,
extensive experiments have been done on synthetic and real databases, demonstrat-
ing that the proposed method preforms better than state-of-the-art methods in most
cases.
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1. Introduction

With the rising attention of big data, the amount of published information is rapidly
increasing. Online office, cloud storage, data synchronization and other services have
brought convenience for us, but also generate a huge user data aggregation. These data
contain a wealth of valuable information, therefore, data releasing and sharing has become
an important topic both in scientific research and information industry [1]. However, di-
rectly releasing original data can lead to information disclosure of user. So, how to publish
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the data while protecting the user’s personal privacy has become an important issue. In
the scenario with privacy protection requirements, the differential privacy model is widely
used because it doesn’t need attack hypothesis and background knowledge of attackers,
but it can quantify and analyze the privacy risk [2] [3].

However, when publishing the multi-dimensional data sets, current privacy models
often have low performances in both privacy protection and data availability. The reasons
are explained as follows. First, the noise added into each dimension in the released data
will undoubtedly increase when the dimension of the data becomes larger. Second, the
query results are usually not very valid due to large cumulative noise of data. In view
of this issue, we propose a privacy-preserving data releasing algorithm based on regular
marginal tables to reduce the noise and improve the data availability.

To figure out the issue of regular marginal table, we propose a publishing algorithm
to reduce the dimension of the cover data set in the same dimension marginal table, thus
achieving differential privacy protection with Laplace noise [4]. We first introduces how
to choose the dimension k of marginal tables in a cover σ. Then we choose a smallest set
of k-marginal tables satisfying the cover on the condition of a proper k. Different from
the classic algorithms in this step, we use frequent item to measure the importance of the
k-marginal tables. The situation that k-marginal tables with more frequent attributes are
usually with higher data availability.

Meanwhile, we propose a differential privacy model with irregular marginal table
partitioning and find the marginal table query cover set which satisfies the multi-level
query policy constraint. This model is proposed to be used in application scenarios with
low data privacy protection requirements and high cover requirements. Thus, the balance
between privacy protection and data availability is achieved. The main contributions of
this paper is summarized as follows.

1. We do many research on bounds of k-marginal table cover and propose to use frequent
attributes to increase the usability of the released data.

2. We present a k-marginal tables publishing algorithm based on frequent items and reg-
ular marginal benefits, which is with lower time complexity and higher data usability.

3. We introduce improved marginal table differential privacy publishing algorithms based
on irregular marginal table in this paper in detail.

4. We conduct extensive experiments in both public databases, demonstrating that the
presented algorithm always performs better than the state-of-the-art approaches.

The rest of this paper is organized as follows. Section 2 shows the related work of
this paper. Then we will present regular marginal table differential privacy publishing
algorithm under frequent item set algorithms in Section 3. Another algorithm with some
theorems and proofs we give in section 4 is used in the scenario of irregular marginal
table. We make performance analysis by experiments in Section 5. Finally, Section 6 will
draw some conclusions.

2. Related Work

2.1. Differential Privacy

In literature, variable kinds of privacy-preserving algorithms [5], [6], [7] have been pro-
posed to prevent the sensitive information from being disclosed. Among these algorithms,
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perhaps the most well-known algorithm is K-anonymous algorithm proposed by Sweeney
in 2002 [8]. K-anonymous algorithm has the characteristic that a record can be pro-
tected with at least k − 1 other records with respect to the quasi-identifier. However, K-
anonymous algorithm is only focused on identity protection. To overcome the drawback,
Machanavajjhala et al. [9] proposed L-diversity algorithm inspired by K-anonymous al-
gorithm to provide sufficient protection against attribute disclosure. However, the premise
of data generalization is to know the background knowledge of the attacker, which is al-
ways impossible. Thus the data privacy protection technology that encrypts the sensitive
information is proposed.

Recently, the major efforts in this field are paid to reduce noise while protecting pri-
vacy at the same time, including histogram [10] and contingency tables [11]. But with
the increasing popularization of the big data, the amount of user information exploded.
Querying the publishing data is a problem with high sensitivity because of large quantity
noise. Therefore the Flat Method [12], Matrix [13], Data Cube [14] do not work with big
data.

To solve the problem, Dwork etc. proposed a differential privacy protection model
[15] using the Laplace mechanism. It is a common mechanism for achieving differential
privacy by adding Laplace noise to numerical data. Therefore, the method is mainly used
in the privacy protection release process of statistical data. Laplace differential privacy
model solves the problem that the attacker can easily find the user’s privacy information
through the normalized query strategy. Meanwhile, it can also achieve a high performance
in big data.

The basic idea of the differential privacy model is to randomly perturb the published
data, so that the attacker cannot obtain the private information of individual from the
published data regardless of any background knowledge and any data mining and anal-
ysis information. The advantages of this model are that there is no need to make special
assumptions about the attacker’s background knowledge and the specific attack method.
Thus, we use the privacy budget to analyze the risk of data disclosure quantitatively.

2.2. Set Cover Problem

Set Cover Problem (SCP) is a classical problem in combinatorial mathematics, computer
science and computer complexity theory. This paper uses the idea of set cover to form
mathematically model and improve the middle ware partitioning problem in the differ-
ential privacy model. Therefore, this part will introduce the basic concepts of set cover
problems. Set cover problem is divided into two categories based on the definition of the
problem: the determinant problem [16] and the optimization problem of set cover [17].
The goal of set cover optimization problem is to find cover sets that meet the optimization
conditions.

SCP has been proved to be a NPC or NPH problem [18] as early as 1976. As a result,
the study of the approximate algorithm of the optimal cover set is one of the impor-
tant point of this issue which is an approximation optimal set selected from the candidate
through the algorithm. The goal of the approximation algorithm is to reduce the time com-
plexity of the algorithm by obtaining the approximate solution [19]. Thus, the approxima-
tion algorithm cares about two aspects of the problem: time complexity and approximate
degree of solution.
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As early 1970, Edmonds has proved that the greedy algorithm for linear functions
must be optimal in the matroid structure [20]. However, the problem in practical ap-
plications is not linear but a submodule function. The submodule function is a formal
description of the “marginal utility decrement” in the set theory. In recent years, in the re-
search of the modulo algorithm of the submodule function, Sagnol G proposed the mod-
ulo algorithm of the submodule function in polynomial time [21], and applied it to the
maximum cover problem. He proved that unless P = NP is satisfied, the greedy algo-
rithm is the best maximization algorithm in polynomial time for the condition that satis-
fies the submodule function. In order to solve the problem of finding the minimum sub-
module cover set, Pengjun Wan et al. proposed MSC/SC (Minimum Submodular Cover
with Submodular Cost)[22]. The pseudo code of the algorithm is shown in Algorithm 1.

Algorithm 1: MSC
Input : a collection of E
Output: cover collection X
X←∅1

while ∃e ∈ E such that ∆ef(X) > 0 do2

select x ∈ E with maximum ∆ef(X)/c(x)3

X ← X ∪ {x}4

Nevertheless, there may be a risk that the usability of the data is reduced by mixing too
much noise based on contingency table. To overcome this problem, Qardaji et al. proposed
a differential privacy released algorithm based on marginal table [23]. Noise is effectively
reduced based on marginal table differential privacy model. However, relevance of the
real data set of attributes is not taken into account. The marginal table contains a part of
invalid query combination, which reduces the data availability. In view of this problem,
we propose marginal table differential privacy publishing algorithms based on frequent
item sets.

There are many candidate methods for mining frequent items [24], [25], [26], [27], [28]
and we choose well-known Apriori [29] to analyze the data set in practical application,
considering about the marginal table support and marginal benefit. Then the majority of
valid query combinations is covered by generated marginal table and the data availability
of query middle ware is improved further.

2.3. Differential Privacy Publishing Algorithm based on Marginal Table

Differential privacy is a model to protect information for data publishing. Therefore, in
the scenario of multi-dimensional or high-dimensional data publishing, the research and
application of differential privacy publishing algorithm is necessary. Wahbeh Qardaji et
al proposed a differential privacy publishing algorithm called PriView [30] in 2014. The
algorithm overcomes the problem of large added-noise and low data availability when
publishing high-dimensional data sets. Its key idea is to cover the partial query range of
high-dimensional data by using multiple marginal table cover sets composed of tables
of the same dimension. This section will give a brief introduction to its improvement
methods and related technologies.
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Middle Ware of Publishing Marginal Table The marginal table is a new type of query
middle ware derived from the contingency table proposed by Wahbeh Qardaji. It can be
obtained by splitting, extracting, and recombining the attributes included in the contin-
gency table. It’s noise has been significantly reduced compared to the contingency table.

In the differential privacy publishing algorithm of the Laplace mechanism, the noise
added in the analysis of the query middle ware can be reduced by publishing a low-
dimensional marginal table. However, the shortcomings of the marginal table also exist.
The marginal table implements dimension reduction by truncating the attributes of the
contingency table, which certainly leads to a reduction in the scope of the query. However,
in high-dimensional data sets, the noise error made by the contingency table publishing
method will be too hard to estimated. What’s more, as the data dimension becomes higher,
the contingency table may become more and more sparse, which means the result of
multi-attribute queries will be 0 or lack of realistic query meaning. Therefore, we sacrifice
some of the meaningless high-dimensional queries and use the marginal table instead of
the contingency table publishing in the differential privacy publishing algorithm. It has
certain practical application value in reducing noise and improving data availability.

Laplace Noise Error Analysis under Marginal Table The marginal differential privacy
publishing algorithm publish a cover set of the original d-dimensional data set consisting
of n k-dimensional marginal tables. At present, the noise mixing method used for the
marginal table cover set is mainly the direct method. Since the middle ware is a combi-
nation of multiple tables, in order to facilitate the noise error analysis, Wahbeh Qardaji
proposed the ESE (Expected Squared Error) noise estimation method. This method esti-
mates the noise error of the single marginal table by adding the each noise-added result
mij from each item to the variance of the real result nij . The calculation formula is as
shown in Eq. 1.

ESE =

2k∑
j=1

(mij − nij)2 (1)

The direct method is proposed by Dwork et al [31]. This method directly adds the noise
of Laplace(n/ε) to each item in the same-dimensional marginal table. It proves that the
marginal table cover set proposed by the method satisfies ε-differential privacy, where n
is the number of marginal tables. In general n = Ck

d , which means all the marginal table
cover sets combined by the k-dimensional table are released, in this method ESEd =
2k × (Ck

d/ε)
There is a large amount of redundant information between the marginal tables of the

same dimension that is often unnecessary to be published in practice. At the same time, the
larger the number of the marginal table, the huger Laplace noise will be mixed. Therefore,
in the PriView algorithm, Wahbeh Qardaji et al proposed the marginal table dimension
and quantity selection method based on the overlay design to complete the construction
of the marginal table cover set. This method further reduce the number of marginal tables
n under the cover requirement by reducing the cover relationship between the same di-
mension tables, which reduces the overall noise. The expected variance of the method is
ESEd = 2k × (n/ε), where n < Ck

d .
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Issue of Former Method The PriView algorithm proposed by Wahbeh Qardaji et al
completed the optimization of the number of marginal tables by the overlay design, but
the method still has the following problems.

(1) PriView only gives the approximate range of the optimal marginal table dimension
selection. It does not explicitly give the selection method of the marginal table dimension
under different dimension data sets as well as the query cover rate the set can provide
under this dimension.

(2) The method uses cover design to find the k-dimensional marginal table cover set,
and complete the full cover of the query combination of the k− 1 dimension table. How-
ever, the method is under the condition of the assumption that the relationships among
the attributes in the data set are completely independent of each other. Actually, there is
always a certain correlation between the attributes in the real data set. These correlations
determine the validity of the query combination covered by the marginal table. Obviously,
PriView’s marginal table lookup method has a certain degree of blindness, and will con-
tain redundant invalid query combinations, which will increase the number of published
marginal tables and reduce data availability.

To figure out these two problems, we propose a regular marginal table differential
privacy publishing algorithm under frequent item sets in section 3. By analyzing the re-
lationship between the dimension change of the marginal table and the cover rate, the
algorithm gives the selection method of the table dimension under different query cover
requirements. Meanwhile, this method estimates the support of the marginal table com-
bined with the frequent item mining algorithm and establishes the weighted marginal table
set cover model with the support degree. By improving the CMC algorithm, a marginal
table cover algorithm based on support degree and query is proposed. Finally, it achieves
targeting cover of valid query combinations, and reduces the number of marginal tables
that further improves data availability.

(3) PriView only uses the same dimension table to publish the marginal table cover set,
which can improve the data availability by sacrificing a part of the query scope. However,
the cover method has certain limitations in the application scenario where the data privacy
protection is not high and the query range cannot be reduced.

In order to overcome this shortcoming, we propose a differential privacy publishing
algorithm based on irregular marginal table partitioning, which uses different dimension
marginal tables to form a cover set in section IV. We control the amount of noise mixed
in the publishing marginal table as much as possible to make a balance between privacy
protection and data availability by constraining the multi-level query rules.

3. RD-Privacy Algorithm

In this section, we present our RD-Privacy (Regular marginal table Differential Privacy
releasing) algorithm. Firstly, the basic implementation flow of our algorithm is briefly
described. Secondly, by analyzing the upper and lower bounds of the cover, we propose
the relationship formula between the marginal table dimension and the cover. Finally, the
filtering condition of the candidate table of marginal table is analyzed, and the marginal
table covering algorithm is presented based on it.
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3.1. Algorithm Overview

The main idea of the proposed RD-Privacy method is to find n k-marginal tables, which
can effectively cover the query set. To improve the availability of the published data, we
want to reduce n so as to add less noise, under the condition that the noise should obey
the Laplacian distribution to satisfy ε-differential privacy.

Assuming that there is a data set D with dimension d, then a marginal table with k
(k < d) dimension is a view of data set D (only k attributes are shown) and naturally
there are

(
d
k

)
kinds of k marginal tables. Suppose UD is all the query collection of D,

we can obviously obtain that |UD| =
∑d

i=1

(
d
i

)
= 2d − 1. We define mk is the query

collection set of all k-marginal tables and mi
k(1 ≤ i ≤

(
d
k

)
) is the query collection set of

the i-th k-marginal tables. Then mk = {s : s ⊂ UD, |s| ≤ k}, and
∣∣mi

k

∣∣ = 2k − 1.
It is easy to see that finding n k-marginal table equals to discovering subsets of UD.

As shown in Eq. 2, the query cover σ is mainly related to the parameter k. We analyze it
in Section 3.2, and propose a dimension selection method based on Eq. 2.

σ =

∣∣⋃n
i=1m

i
k

∣∣
|UD|

<
n(2k − 1)

2d − 1
. (2)

To satisfy differential privacy, we need to add Laplace(n/ε) noise into the marginal
tables. The expected squared error of n marginal tables ESEn is shown in Eq. 3.

ESEn = 2k+1 × (n/ε)2. (3)

From Eq. 3, we can see that when n is too large, the publishing middle ware which
satisfy ε-differential privacy needs to be mixed into the excessive noise, resulting into
lower data availability.

To have a clear understanding of notations, we give a summary of notation of in Table
1.

Table 1. Summary of notations

Name Notion

D Database
d dimension of Dataset D
k dimension of marginal table
UD query collection of Dataset D
mi

k query collection of the i-th k marginal tables
mk query collection of all the k marginal tables
ESEn the Expected Squared Error of n marginal tables
Mopt the optimal solution
Mapp the approximate solution of Mopt

m(.) function of calculating the marginal benefit
Mben(.) represents the rate of m(.)
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Since ESEn can be decreased by reducing n, we propose to obtain smaller size k-
marginal tables based on frequent attributes. Firstly, we get the frequent item sets and
corresponding support of attributes in data set D, and then use their support to weight
marginal tables. By this way, we can filter out the ineffective marginal tables with low
and little influence on querying. A more detailed description can be found in Section 3.3.

In the following, we give the definition of our weighted k-marginal tables covering
problem.

Definition 1. For a data set D, the query collection UD and the cover σ, our weighted
k-marginal tables covering problem is to find n k-marginal tables, so as to satisfy∣∣⋃n

i=1m
i
k

∣∣ / |UD| ≥ σ, the support of these k-marginal tables
∑n

i=1 Sup(m
i
k) as large

as possible, the expected squared error ESEn as small as possible.
This kind of problem has been proved to be NP-hard, so it is hard to find the optimal

solution Mopt in polynomial time. To address this issue, we propose RD-Privacy algo-
rithm, which improves classic CMC algorithm [32]. Firstly, we generate candidate query
collection of the k-marginal table from D. Secondly, we weight each query collection
mi

k by their frequency. After that, the corresponding k-marginal tables are weighted by
their query collection. Thirdly, A algorithm FMC (Frequent item sets Marginal table Cov-
ering algorithm) is presented to obtain a nearly optimal k-marginal tables through their
weights. Finally, after the noising and consistency processing, we can get the released
marginal table query middle ware.

(a) (b) (c) (d)

Fig. 1. The flow chart of differential privacy release algorithm based on regular marginal
tables

3.2. Selection for the marginal table dimension k

The dimension k of marginal table is a main factor to the query cover. In this subsection,
we discuss about the selection of k according to σ. The cover of marginal table cover set is
σk, and the number of count queries that can be performed on n k-dimensional marginal
tables. The cover σk is shown in Eq. 4.

σk =

∣∣∣⋃n
i=1

(
k
i

)∣∣∣
2d − 1

(4)

Cover Upper Bound It is easy to understand that σk can get maximal value when all mi
k

are disjoint as Eq. 5.

σd =

∑k
i=1

(
d
i

)
2d − 1

(5)



Research on Improved Privacy Publishing Algorithm Based on Set Cover 713

As it is impossible that all mi
k are disjoint, then

k∑
i=1

(
d

i

)
> (2d − 1)× σ (6)

So, let f(d, k) =
∑k

i=1

(
d
i

)
, we get Eq. 9 and Eq. 10.

f(d, k) = 2d−1 exp
(d−2k−2)2

4(1+k−d) , where k ≤ d

2
(7)

f(d, k) = 2d−1(2− exp
(2k−d−2)2

4(1−k) ), where
d

2
< k < d (8)

σ ≤ 0.5 ∗ exp
(d−2k−2)2

4(1+k−d) , where k ≤ d

2
(9)

σ ≤ 0.5 ∗ exp2−
(2k−d−2)2

4(1−k) , where
d

2
< k < d (10)

Cover Lower Bound Since the weighted set cover problem is NP-hard, the result mapp

obtained from FMC algorithm is an approximation of the optimal set mopt, the approxi-
mate rate is 1 − 1/e. The approximate cover is lower than optimal cover. As a result, we
need to analyze the lower bound of optimal solution to choose the dimension of marginal
table to avoid the loss caused by approximation of cover. The lower bound of Moptis a
k-marginal table cover set which can cover all k-1 way marginal table query combination,

so σopt >
∑k−1

i=1 (
d
i)

2d−1 . From Eq. 7 and Eq. 8, we can get the lower limit of Mapp as shown
as Eq. 11 and Eq. 12.

σapp > 0.5(1− 1/e) ∗ exp
(d−2k)2

4(k−d) , where k ≤ d

2
(11)

σapp > 0.5 ∗ (1− 1/e) exp2+
(2k−d−4)2

4k , where
d

2
< k < d (12)

In summary, for a given σ, we can get the marginal table of dimension k according to
Eq. 11 and Eq. 12.

We give a verification for the efficiency of k-marginal tables releasing. We use 6
test data whose dimensions are {15, 17, 19, 21, 23, 25}, and use differential dimensional
marginal table to form the cover set to analyze the distribution of cover. The distribution is
shown in Fig. 2. We can observe that the cover benefit is getting slower when the dimen-
sions are getting larger. In summary, releasing the marginal table is useful for dimensional
reduction.

3.3. Selection of Marginal Table and Error Analysis

After obtaining the dimension of marginal table from σ, we need to filter out the marginal
table further. PriView is very useful, but it doesn’t take the relationship between attributes



714 Haoze Lv et al.

Fig. 2. Cover distribution of different marginal tables under different dimensions

into consideration. To improve this method, we analyze the released data set through fre-
quent item sets. In this method, we can weight the marginal table, and the marginal bene-
fits value of each marginal table are also taken into account. As a result, the marginal table
is more reasonable to reduce the redundant marginal table and improve data availability.

Marginal Benefit We use m(S) to represent the marginal benefit of a collection of
k-marginal tables S [33]. Mben(E,S) represents the increasing marginal benefit when
adding another k-marginal table to S.

Mben(E,S) = m(S ∪ E)−m(S). (13)

It is usually hard to accurately compute Mben(E,S) through Eq. 13. A good news is
that Mben(E,S) can be easily computed by the following Eq. 14, if only one k-marginal
tables is contained in S.

Mben(E,S) = (2s − 1) + (2s − 1)× (2v − 1) = 2k − 2v (14)

Where v is the size of the same attributes between E and S. Inspired by Eq. 14, we
present a novel approach to approximately compute Mben(E,S) when there are more
than one k-marginal tables in S. The approach is shown in Algorithm 4. In order to further
verify this approach, we compare the traditional method with the proposed approximate
method in Table 4.

FMC. The FMC algorithm contains marginal table generation and a filtering process.
In the marginal table preprocessing stage, this paper uses Apriori algorithm to extract
the frequent items and attach weight to marginal tables with corresponding support. The
algorithm of weighting marginal tables (Weight-MT) is shown in the algorithm 2.
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Table 2. Error analysis table of marginal benefit estimation method

Dimension k 6 7 8 9 10
Average error rate 0.167169 0.208876 0.210311 0.207712 0.229283

Accurate Method (ms) 524 899 1691 2524 3107
Mbenapp (ms) 88 83 98 132 137

Algorithm 2: Weight-MT
Input : original data set D, dimension of marginal table k, min-sup s, N
Output: Asup,Msup

Freq = Apriori(D,s)1

Mark= get k-marginal tables from D2

for each mar in Mark do3

marweight = 0, count = 04

for each f in Freq do5

if f⊂ any combination of m then6

marweight = +f.sup/ |D| ;7

count++;8

marweight = marweight ∗ (count/n) Asup.push(marweight);9

Msup.add(mar,mweight)10

The dimension of original database D is 17, and we choose k from 6 to 10 to observe
the computing time (the first two rows) and the error respectively. From Table 4, it is
clear to see that Mbenapp is computed more faster than traditional method. Meanwhile,
the relative error between the estimated value and the actual value is small. Although the
relative error increases with the increase of the marginal table dimension, the error rate
basically floats around 0.2. In the experiment we find that the trend value of the marginal
benefit value obtained by the estimation method is almost the same as the real result, so
the effect of the average error rate on the validity of the estimated value can be neglected.

Noise Error Analysis Similar to PriView, we use the expected squared error to evaluate
the noise error of RD-privacy, denoted as ESERD in Eq. 15, where m is the number of
the margin tables whose support are smaller than given threshold.

ESERD = 2k+1 ×
((

d

k

)
−m/ε

)2

(15)

3.4. The Proposed Marginal Table Covering Algorithm

Algorithm Design The weighted k-marginal tables covering problem defined in Def-
inition 1 is similar to a weighted set cover problem. In 2015, Golab proposed a CMC
algorithm [30], which is an effective solution to this kind of problem. Inspired by CMC,
we proposed the FMC algorithm to solve our problem based on frequent items.
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Algorithm 3: FMC
Input : original data set D, dimension of marginal table k,Asup,Msup,cover σ.
Output: the collection of marginal table Marres
Mark= get k-marginal tables from D1

Mar=∅2

Mben[mar]=∅3

for each mar in Mark do4

Mben[mar] =Mben(mar,Marres)5

for i = 1 to |Mark| do6

s = get marginal table whose benefit = max(Mben[Asup]);7

if cover of Marres ≥ σ then8

Return;9

if Msup[s] < 2k−1
2 &&MBEN [s] < supt then10

Break;11

delete s from MBen and s in Marres;12

updateMBen according to algorithm 413

Algorithm 3 is the procedure of FMC. In line 1 to 3, it’s the data initialization phase,
we get the k marginal table candidate Mark from D, and then calculate each marginal
benefit of k marginal table to Mben[mar]. Line 7 to 13 is the detail process of filtering
candidate marginal table. In the beginning , Marres is empty, then all marginal benefit
is the same. So we choose the max support weight marginal table. With the change of
Marres, we update the Mben[Asup] in line 13 according to algorithm 4.

Algorithm 4: MBen
Input : marginal table mark, the collection of marginal table Mark, the length of

marginal table k
Output: the marginal benefits Mben(mark,Mark)
min =∞1

sum = 02

i = 03

for s in Mark do4

v = the number of same attribute in marginal mark compared with s5

Mben = 2k − 2v6

if Mben < min then7

min =Mben8

sum+ = 2v − 19

i++10

return min− (sum/i)11

After obtain the marginal table cover set Marres, we can then calculate the size of
Marres. Add noise that follow Laplace(|Marres|) into marginal tables to make the re-
leased middle ware satisfy the ε-differential privacy.
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3.5. Consistency Analysis of k-marginal Tables

As the random noise is mixed, the direct publishing method of the marginal table covers
the existence of inconsistent query results. Therefore, this section introduces consistency
processing algorithms and the corresponding analysis.

We use the same way in PriView to consistency the query middle ware. However, the
middle ware obtained by PriView is the query combination cover of the partial dimen-
sion contained in the marginal table. The marginal table cover set proposed by the algo-
rithm based on the frequent item sets is completely used for all the query combinations
in the marginal table, involving more query combinations. Therefore, for the marginal ta-
ble cover set handled by the method in the same way, the difference between the privacy
properties and the noise error of the published marginal table is different. Therefore, in
this section, we analyze the consistency of the process, the marginal of this article to cover
the set of differential privacy model of the impact of the query results and noise error.

Differential Privacy Analysis After determining the harmonization process duplicates of
each target, each target in accordance with an marginal table is normalized. This process
is carried out after the mixing process with Laplace noise, so we need to analyze whether
privacy protection has been changed.

In order to determine whether the marginal table middle ware still retains the nature
of differential privacy protection, the post-processing inefficiencies of the differential pri-
vacy model are introduced here, as shown in Theorem 1. Obviously, since the differential
privacy model has post-processing inefficiencies, the subsequent consistency handling op-
eration for the overlay marginal table satisfying the difference privacy does not affect the
differential privacy protection feature of the overlay marginal table set itself.

Theorem1 (post-processing inefficiencies): If the algorithm S satisfies ε-differential
privacy, then for any function, the new processing mechanism M = ϕ(S(D)) still satis-
fies ε-differential privacy.

Noise Error Analysis From previous literature [34] we can get following equation.

Q(Mc) = Q(Mc) +
U(A)−Q(M)

2|M |−|A|
(16)

We can know from consistency processing, the first step is to calculate the target
value of the same query paradigm A from different marginal tables. Set query results in
original data set is U(A) and Laplace noise δ. After noise added process, the result from
a k-marginal tables Mi is shown in Eq. 17. If there are j k-marginal tables that satisfy
paradigm A, the consistent target is shown in Eq. 17.

Q(A) = µ+

|Mi|−|A|∑
i=1

δi (|A| ≤ |Mi|) (17)

U(A) = µ+
1

j

j∑
j=1

|Mi|−|A|∑
i=1

δi (|A| ≤ |Mi|) (18)
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According to the Eq. 16, Eq. 17 and Eq. 18 we can obtain Eq. 19. Let η =
∑|Mi|−|A|

i=1 δi.
As the added noise follows Laplace distribution, then E(η)→ 0. Therefore, from the Eq.
19 we can see that, the whole of noise is reduced and valid of released data is improved
while published data also satisfies ε-differential privacy.

Q(Mc) = µ+

|Mi|−|A|∑
i=1

δi +

∑|Mi|−|A|
i=1 δi − 1

j

∑j
j=1

∑|Mi|−|A|
i=1 δi

2|Mi|−|A|
(19)

4. IM-Privacy Algorithm

In the previous description, the marginal table differential privacy publishing algorithm
under frequent item sets uses many k-dimensional tables of the same dimension to en-
sure the data availability of the published data set at the expense of a certain cover rate.
However, this method has certain limitations in the application scenario where the data
privacy protection requirement is not high and the query range has high requirements.
To solve this problem, we propose a differential privacy publishing algorithm partitioned
by irregular marginal table to improve the PriView model from another perspective in
this section. The algorithm composes a cover set by leveraging different marginal tables.
By constraining the multi-level query rules, the amount of noise mixed in the publishing
marginal table is controlled as much as possible to ensure the balance between privacy
protection and data availability without sacrificing the scope of the query.

4.1. Global Sensitivity Analysis

The main idea of the proposed IM-Privacy method (Irregular partition Marginal table dif-
ferential Privacy release algorithm) is to find nmarginal tables that has 1 to d dimensions,
which can completely cover all query combinations of D. The method can achieve differ-
ential privacy protection through the Laplace mechanism. The premise of the implemen-
tation of the Laplace mechanism is that the middle ware F has a clear global sensitivity.
The calculation method is as shown in Eq. 20.

S(F ) = max
D1D2

(
∑
f∈F

|f(D1)− f(D2)|) (20)

WhereD1 andD2 are adjacent data sets, and f is arbitrary query on F . If the publish-
ing middle ware Md composed of multidimensional marginal tables cannot determine the
query strategy, the global sensitivity under the middle ware cannot be determined, and the
differential privacy protection based on the Laplace mechanism cannot be performed. If
the global sensitivity is too high, the noise mixed into the middle ware will be large, which
may directly reduce the data availability. To solve this problem, this paper proposes the
following constraint on the query strategy of the irregularly divided marginal table cover
set. We can use the same-dimensional marginal tables to perform the combined query of
the same size. If the query result cannot be obtained with the same-dimensional marginal
table, then the result of last-dimension marginal table is used to get the query result. Based
on this constraint, the formula for querying the query sensitivity S(Md) of the middle
ware Md is shown in Eq. 21. Thus, in the worst case, the global sensitivity for the query
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middle ware under the constraint is d+ 1, which means the query operation with a d− 1
attribute combination needs to use the d-dimensional marginal table, and the global sen-
sitivity is D at this time. Therefore, under this constraint, (S(Md)/λ)-differential privacy
can be satisfied when the Laplace noise distribution is Laplace(S(Md)/λ).

S(Md) = max(1, Ck−1
k + 1) (21)

In order to overcome this constraint, we need to further obtain the cover algorithm that
satisfies the query policy constraint and minimizes the marginal table cover set ESE to
get the irregular marginal table cover set Md. Therefore, this paper obtains the maximum
marginal benefit cover strategy for greedy approximation through the further analysis of
ESE, and proposes an approximate optimal marginal table cover algorithm combining this
strategy, which can get the approximate solution ρ compared with the optimal cover set
Md−opt under the premise of meeting the cover requirement.

4.2. Greedy Approximation Maximum Marginal Benefit Cover Strategy

In order to further improve the availability of the data, we need to find the optimal
marginal table cover set that satisfies the query constraint, so that the ESE of the released
middle ware is as small as possible. Obviously, the problem is a set cover problem that
minimizes the objective function min (ESE). The definition of this minimization prob-
lem is shown in Eq. 22, where E is an approximate solution and S is an optimal solution.
Since the table of different dimensions is used to form the release middle ware, the overall
noise intensity needs to be analyzed. The calculation of ESEm in this case is as shown in
the formula Eq. 23, where | mi | represents the number of i-dimensional marginal tables.

min{ESE(S) : S ∈ E} (22)

ESEm = 2d(

d∑
i=1

| mi |)Laplace(S(Md)/ε) (23)

It is difficult to directly estimate the lower bound of the optimal solution S because
variables added are randomly distributed to the marginal table, so we cannot the estimate
the approximate ratio of the approximation algorithm. However, it can be seen from Eq.
22 that there are two values affecting the change of ESEm, the number of covered con-
centrated marginal tables

∑d
i=1 | mi | and the query sensitivity S(Md). Therefore, we

analyze the marginal benefit value that directly affects the number of marginal tables and
query sensitivity, and then transform the ESE minimization problem into the optimization
problem of marginal benefit.

In the set cover problem of the marginal table, the k-dimensional marginal table bene-
fit value relative to the cover set M is equal to the number of query combinations covered
by the k-dimensional table and not covered by M . For marginal benefit and global sen-
sitivity S(Md), the description of global sensitivity is a combination of queries covered
by a marginal table. Therefore, the marginal benefit is directly proportional to the query
sensitivity. In order to guarantee the query scope be completely covered, the cover set
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Md whose global sensitivity is S(Md) = d + 1 needs to be added to the d-dimensional
marginal table. Therefor we can further derive Eq. 24 according to the Eq. 23.

ESEm = 2d(

d∑
i=1

| mi |)Laplace((d+ 1)/ε) (24)

It can be seen from the ESE estimation formula of the marginal table that, while the
published data set dimension d is determined, the overall ESEm is only related to the
number of tables. Thus the smaller the number of covered concentrated marginal tables,
the smaller the overall ESE, the higher its data availability. The greater the marginal ben-
efit value, the higher the query cover rate that a single marginal table can provide, the
smaller the number of marginal tables when conditions to reach the cover rate are satis-
fied. As a result, the marginal benefit is inversely proportional to the number of marginal
tables.

Therefore, the maximum marginal benefit can be obtained by the approximate solu-
tion of the optimal marginal table cover set. The process is as follows. Firstly, we select
the marginal table with the largest margin benefit value when filtering the k-dimensional
table for the first time. Secondly, the remaining k-dimensional marginal table is iteratively
searched until only one table with the marginal benefit value of 1 is left in the dimension.
The table with the largest margin benefit value is selected in each iteration. Then enter the
k+1 dimension search process. This is because the table with the residual margin benefit
value of 1 can only complete the cover of itself. Based on the query strategy proposed
later of this paper, it can be covered by the k + 1 dimension marginal table.

In the choice of the overall idea of the algorithm, since the marginal benefit value of
the marginal table changes to satisfy the submodule function, the greedy algorithm is se-
lected to search the marginal table, and the approximate solution of the optimal marginal
benefit value is obtained. In summary, this section transforms the ECE minimization prob-
lem into the marginal benefit maximization problem, and the optimal cover set S has the
marginal benefit value MBen(S) = 2d − 1, which means the optimal set covers all the
query combination of d-dimensional data under the constraint query condition. Assum-
ing that the marginal benefit of the approximate solution E obtained by the algorithm is∑

e∈E MBen(e), the approximation rate ρ is as shown in Eq. 25.

ρ = min
S:min−cov

∑
e∈E MBen(e)

MBen(S)
(25)

4.3. Approximate Optimal Marginal Table Covering Algorithm

In this section we propose an approximate optimal marginal table covering algorithm to
solve the marginal table cover set selection problem of the irregular partitioned differential
privacy model. The key of the differential partitioning model with irregular division is to
use the marginal table of different dimensions to form the cover set of the query range
of the original data set. For a data set whose dimension is d, if we iteratively find the
optimal marginal table set on all the 1-to-k-dimensional marginal tables, one iteration
needs to be traversed 2d − 1 times in the worst case. As the dimension of the data set
continues to increase, the number of iterations and traversals per iteration becomes larger,
the time complexity we traverse the marginal tables of all the 1 to d dimensions directly
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and update the marginal benefit values of the remaining tables will be difficult to estimate.
Assuming that the number of iterations is n and the original data set dimension is d, the
time complexity of the no-grouped algorithm that is O(n(2d − 1)2) in the worst case.

In order to reduce the time spent in marginal table traversal, we partition the tables
according to their dimensions during algorithm implementation. We find the marginal
table with the most marginal benefit in each group, and then iterate the remaining table
until the marginal benefit value of the table is 1 or there is no remaining table. The pseudo
code of the algorithm is shown in Algorithm 5 whose input is the original data set D, the
query cover rate is σ = 1, and the output is the marginal table cover set that satisfies the
cover requirement.

Algorithm 5: IM-Privacy
Input : a data set D, | D |= d, query cover fraction σ
Output: a collection of marginal table M
M = ∅1

Mun = ∅2

for each i = 1 to d do3

Margini = get i-way marginal tables4

if i=1 then5

choose d|D|/2e 1-way marginal tables6

else7

for each margin in Margini do8

m = get marginal table with max marginal benefit9

M.push(m)10

delete m from Margini11

repeat12

update marginal benefit of rest marginal table in Margini13

get 1 marginal table with max marginal benefit14

until MBen(m) = 1 or |Margini| = 0 ;15

put uncover marginal tables into Mun16

for each m in Mun do17

if MBen(m) 6= 0 then18

M.push(m)19

return M20

Algorithm 5 is the procedure of IM-Privacy. Line 1 to 5 are the data initialization and
preparation phases, where M represents the marginal table cover set and level represents
the layer to be divided. We partition the group based on the dimensions of the marginal
table. Line 7 is the processing of the 1-dimensional marginal table, and the first dd/2e
marginal tables are directly selected from the 1-dimensional marginal table and added to
the cover setM . Lines 11 to 20 are the iterative search process of the marginal table. First,
we search the marginal table whose benefit is the highest in the i-th dimension table. Then
we iterate the remaining marginal table in the i-th dimension, as shown in lines 13 to 16.
Each marginal table is recalculated to figure out the marginal benefit of the remaining
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table until the set is empty or only the table remains a marginal benefit value of 1. Lines
17 to 20 check the marginal table with a marginal benefit of 1. If there is a table with
a marginal benefit of the relative cover set M greater than 0, it can be directly inserted
into M to ensure the final published marginal table. The cover of the query set under the
multi-level query strategy is 100%.

4.4. Time Complexity Analysis

The approximate optimal marginal table covering algorithm is the key of the differential
privacy publishing algorithm based on the irregular marginal table. We analyze the time
complexity of the algorithm. The algorithm consists of two parts, the search process of the
1-to-d-dimensional marginal table and the inspection process of the table with the residual
marginal benefit of 1. The marginal table iterative search process is a traversal lookup in
the marginal table of groups 1 to d, where the number of tables in the group is n = Ck

d .
In the lookup process, the time consumption of updating the marginal benefit value of
the table is related to the solution set size s of the marginal table cover set, and the time
complexity of the process is O(d × n × s). For the marginal table set Mun(|Mk| = m)
with the remaining marginal benefit value of 1, the time complexity of the traversal check
is O(m × s). We can figure out that the overall time complexity of the marginal table
algorithm isO(s×(d×n+m)), where d� n. So the time complexity isO(s×(n+m))

5. Experiment

In this section, we will compare and analyze the two marginal table-based differential pri-
vacy publishing algorithms proposed in this paper. The experiment mainly analyzes the
feasibility of differential privacy publishing algorithm based on improved cover set from
two aspects: algorithm efficiency and data availability. By comparing with the represen-
tative differential privacy model, the advantages of the proposed method in improving
data availability are verified. The detail of the hardware used in experiment is shown in
table 3. We use public data set MSNBC and Kosarak to design experiments and make
performance analysis.

Table 3. Experimental configuration

CPU i7-6560U CPU @ 2.20GHz 2.21GHz
Memory DDR4 8GB

Disk 256GB SSD
System image Windows 10 64-bit operating system

MSNBC [35]: This data set is clicked record of web sites collected from msnbc.com
and msn.com which contains 989,818 item sets. Each sequence in the data set corresponds
to the page category that a user navigates in 24 hours.
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Kosarak [36]: This data set records the click flow information of a Hungarian news
web site, with 912,627 items. Each record in the data set represents a combination of
news identifier that the user clicks.

Now, we describe the parameters used in the experiments, the privacy default budget
λ = 1 and the dimension of marginal table k is chosen from{6, 8} for the default cases.

In the rest of the section, we compare the proposed algorithm with the existing differ-
ential privacy algorithm in data availability and efficiency. Firstly, we compare the number
of marginal tables generated by RD-privacy with the state-of-the-art method. We analyze
the average support of the obtained marginal tables between these two methods, and make
the error analysis in the last subsection.

5.1. Results on RD-Privacy

Analysis for Quantity of Marginal Table In this subsection, we select the SNBC to
conduct experiment, which has 17-dimensional attributes. We use the Apriori algorithm
to mine frequent itemsets (the Apriori algorithm sets the minsup as 0.005).

Fig. 3. Marginal table quantity distribution (k = 6)

As shown in Fig. 3 and Fig. 4, as the dimension increases, RD-Privacy finds fewer
marginal tables than PriView does. The reason is clearly that RD-Privacy make use of
Apriori, which can analyze the validation of query combination in MSNBC and delete
the combination which have a low support. It is noticeable that when d = 12, RD-Privacy
obtains more marginal tables because frequent itemsets cannot work better when dimen-
sion is low.
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Fig. 4. Marginal table quantity distribution (k = 8)

Fig. 5. Average support distribution (k = 6)

Analysis of Average Support We can see from Fig. 5 and Fig. 6, the proposed RD-
Privacy can get marginal table with lower support which means the obtained marginal
tables are more meaningful. When k = 8 in Fig. 6, the length of query combination
become larger. Then average of support maturely become larger and the Priview still
obtain lower support than proposed algorithm.
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Fig. 6. Average support distribution (k = 8)

Fig. 7. ARE distribution (λ = 1)

Analysis of ARE We definite ARE as following Eq. 26, where A is the true value and B
is the obtained value.

ARE =
|A−B|
A

(26)
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Fig. 8. ARE distribution (λ = 2)

We can infer from Fig. 7 and Fig. 8 that, in the most of case, the presented algorithm
can obtain marginal table with less errors. It is noticeable that when the dimension is small
the ARE of RD-Privacy is larger than others. The reason is that the RD-Privacy can obtain
more marginal tables based on frequent item sets and then more noises are added.

5.2. Results on IM-Privacy

Experimental Analysis on IM-Privacy This part of the experiment is based on the com-
parison of IM-Privacy with PINQ and Dwork differential privacy models whose models
are differential privacy models with a query cover of 100%. The comparative experiment
uses these three algorithms to generate the query middle ware on the Kosarak data set,
and then compares the average relative error between the query result and the true value.

The privacy budget in the experiment λ = 1, the data set used is a user click list
of the first 21 categories of news from Kosarak. First, use the IM-Privacy, Dwork, and
PINQ for the 21-dimensional Kosarrak data set to generate query middle ware that meets
the same differential privacy strength. The IM-Privacy algorithm mainly publishes the
middle ware of the marginal table query for the application scenario with high query
cover requirements, and the algorithm uses the marginal table of different dimensions
to construct the middle ware. There is no limitation of the query dimension by the RD-
Privacy algorithm. In the comparative experiment of the algorithm, the setting of the query
dimension is different from the former subsection. Due to the marginal table cover set
obtained by the IM-Privacy algorithm, the query cover is wide. Therefore, this subsection
needs to further investigate the data availability of the query middle ware under the higher
query dimension.

In the comparison experiment, in order to verify the data availability under different
query dimensions, this paper carries out 5 to 10 random attribute combinations, and each
combination distribution performs 100 random count queries. The query paradigm is as
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shown in Eq. 27. We record the results of each query with the actual values and then
compare the average relative errors of the three different middle ware.

SELECT COUNT (∗) FROM D WHERE A1 ∈ S1 AND A2 ∈ S2 · · · Am ∈ Sm

(27)

Fig. 9. Comparison chart of ARE for IM-Privacy, PINQ, Dwork

As can be seen from Fig. 9, the query brings more noise when performing a combined
count query with a smaller number of attributes since Dwork is a Laplace noise directly
added to the contingency table. Therefore, when the query dimensions are 5 to 7, the av-
erage relative error of the query results is much higher than the PINQ and the IM-Privacy
release algorithm proposed in this paper. PINQ is a way to add noise directly to the query
results. IM-Privacy is a rule-based query method (in the k-dimensional marginal table or
(k + 1)-dimensional marginal table with the same size of the combined query). PINQ
will only bring the noise in the single query result while IM-Privacy brings noise of two
results in the middleware at most, so the average relative error distribution is stable and
lower than Dwork’s traditional differential privacy model. However, in order to achieve
the same level of privacy protection, the global sensitivity of IM-Privacy calculation is
lower than half of PINQ, which means the Laplace noise added by IM-Privacy is less than
PINQ although the noise of the two results may be brought at most. As a result, the over-
all average relative error of IM-Privacy is lower than the PINQ. With the increasing of
query dimension, the number of items in the Dwork cascade query is gradually reduced.
At this time, it is similar to the PINQ method which directly adds noise to the query re-
sult. Therefore, when the query dimension is 10, the average relative error of PINQ and
Dwork is similar, but the Dwork approach introduces more noise and the query results
are more unstable which leads to low data availability. Thus, the proposed method in this
paper performs better in improving data availability.



728 Haoze Lv et al.

Approximate Rate on IM-Privacy The approximate optimal marginal table covering
algorithm in this paper is proposed for the optimal marginal table cover set. Its approxi-
mation rate is affected by the size of the data set. Therefore, it is necessary to consider the
approximate ratio of the algorithm. We should calculate the ratio between actual irregu-
lar marginal table cover set and optimal one in theory. Meanwhile, in order to verify the
availability of proposed algorithm, we will also figure out the effect of the change on data
set size to approximate ratio stability.

The data set used in the experiment is MSNBC. We select 13 to 17 attributes randomly
to form MSNBC of different dimensions and use the IM-Privacy algorithm to find the
cover set composed of irregular marginal tables. Finally, we calculate the sum of the
marginal benefit values of the marginal table and compare with the theoretical optimal
marginal benefit value to analyze the approximation rate.

It can be seen from Table 4 that the overall marginal benefit value obtained by the al-
gorithm is always between 0.8 and 0.9 as the increasing of data dimension, what’s more,
the ratio is always higher than the theoretical optimal marginal benefit value. It is proved
that the approximation algorithm has certain advantages in the stability of its approxima-
tion degree and the availabilities of the algorithm.

Table 4. Change of approximation rate for IM-Privacy algorithm

Dimension k 13 14 15 16 17
Optimal marginal benefit 8191 16383 32767 65535 131071
Actual marginal benefit 7127 14376 28881 58169 116467

Approximate rate 0.87010133 0.877494964 0.881405072 0.887602 0.88857947

6. Conclusion and Overlook

The development of the information industry has brought convenience to the office and
life of each of us, and it has also created hidden dangers of user data leakage. However,
The data publishing process becomes less secure and may result in user privacy leaks. The
traditional privacy protection method can not meet the privacy protection requirements in
the current environment. Therefore, new differential privacy model is widely used in the
data release process with privacy protection requirements. Traditional middle ware for
statistical data-based differential privacy algorithms contain more noise and lower data
availability due to the differential privacy model that uses the noise to protect data. At
present, although the marginal table based differential privacy model effectively reduces
the noise, it does not consider the relevance of the attributes in the real data set. Mean-
while, the table cover set contains some invalid query combinations, which reduces the
data availability. In the mean time, only the table of the same dimension is selected, which
can not meet the needs of practical applications.

To settle these issues, this paper proposes a differential privacy publishing algorithm
for regular marginal table differential (RD-Privacy) and irregular marginal table (IM-
Privacy) under frequent item sets.
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The differential privacy releasing algorithm based on regular marginal tables under
frequent item sets uses Apriori algorithm to analyze the actual application data set, com-
prehensively considers the marginal table support degree and marginal benefit, and pro-
vides targeted cover for effective query combination, further improving the data availabil-
ity of middle ware of the query.

Considering on the low requirements of data privacy protection but high requirements
of the cover, a differential privacy publishing algorithm based on irregular marginal table
partitioning is proposed. Using the approximate optimal marginal table covering algo-
rithm proposed in this paper, we find that the multi-level edge is satisfied. The table query
cover set of the table query policy constraint achieves a balance between privacy protec-
tion and data availability to a certain extent.

The paper only studies the differential privacy model under the count query, we can
further expand the algorithm to the field of subgraph area. The paper focuses on the re-
search of differential privacy protection for numerical statistical data. We can further study
the statistical data of multi-category and multi-valued attributes, and obtain a more appli-
cable method of constructing the marginal table differential privacy model.
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