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Abstract. As the development of the big data and Internet, the data sharing of
users that contains lots of useful information are needed more frequently. In par-
ticular, with the widespread of smart devices, a great deal of location-based data
information has been generated. To ensure that service providers can supply a com-
pletely optimal quality of service, users must provide exact location information.
However, in that case, privacy disclosure accident is endless. As a result, people
are paying attention to how to protect private data with location information. Of
all the solutions of this problem, the differential privacy theory is based on strict
mathematics and provides precise definition and quantitative assessed methods for
privacy protection, it is widely used in location-based application. In this paper, we
propose a self-adaptive grid-partitioning algorithm based on differential privacy for
noise enhancement, providing more rigorous protection for location information.
The algorithm first partitions into a uniform grid for spatial two dimensions data
and adds Laplace noise with uniform scale parameter in each grid, then select the
grid set to be optimized and recursively adaptively add noise to reduce the relative
error of each grid, and make a second level of partition for each optimized grid in
the end. Firstly, this algorithm can adaptively add noise according to the calculated
count values in the grid. On the other hand, the query error is reduced, as a result,
the accuracy of partition count query (the query accuracy of the differential private
two-dimensional publication data) can be improved. And it is proved that the adap-
tive algorithm proposed in this paper has a significant increase in data availability
through experiments.

Keywords: Data Publication, Privacy Protection, Differential Privacy, Noise Opti-
mization.

1. Introduction

With the increasing development of location technology, location-based service has em-
erged for a long time [1]. User’s geographic location information can be collected by
spatial data set through mobile devices and then used for server analysis to allocate tasks
and increase the efficiency of human works [2] [3]. For example, the takeaway service
can select the optimal worker who is the best for this task (the distance is relatively short
and the overhead is relatively small) by analyzing the location of takeaway task and the
worker and calculating the distance between them. Online car-hiring service should de-
termine the best match of a driver and a passenger. The weather application can infer the
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climate in our city by using our location. Hence, the service providers can supply lots of
services to help people better control their lives and make important decisions with user’s
location information collected by devices and platform. However, for many applications,
people are told to contribute their exact location information, which may cause serious
privacy disclosure problem. For example, when you submit your location to the applica-
tion, the attacker knows your information such as religion, profession, age by analyzing
the frequency of position where you appeared. In recent years, more and more attention
are paid to the privacy protection that makes a challenge for us to protect user’s private
information when publishing data. Obviously, it is possible to achieve when the data is
completely masked such as the function f(x) = 0 where lost its privacy. When the query
is submitted by the analysis, the answer returns a value of 0 regardless of the count oper-
ation of any part of the data set. Meanwhile, although we can regard that we completely
protect the privacy, we lose the availability of query data. As a result, it has become a hot
issue for researchers to maximize the availability of published data. Because it’s impor-
tant to protect the user’s two dimensions spatial data in privacy.

We consider the differential privacy (DP) [5] as a proper method of location-based pri-
vacy for issues we described. Differential privacy is a perfect model for privacy-preserving
query and analyzes under the protection of user’s privacy. Intuitively, it can ensure that
for a single individual data included in a data set, the result of statistical query won’t be
significantly changed regardless of whether this individual is in the data set or not, which
means the attacker cannot infer any individual data by the statistical result. DP focuses
on two drawbacks compared with the traditional privacy protection model (such as en-
cryption algorithm, k-anonymity [25] [5]). Firstly, DP proposes the definition of privacy
protection based on strict mathematics that can provide privacy for the data sets in dif-
ferent levels. Secondly, DP model makes the maximum assumption for the background
knowledge of attacker that it assumes the attacker knows all other records expect the tar-
get record, thus the differential privacy does not need to pay attention to the attacker’s
background knowledge. Above all, we argue the differential privacy model is the most
suitable privacy-preserving method for location-based information.

For spatial data, such as individual location information in a certain area, we need to
use a data publishing algorithm based on partition, which means Private Spatial Decom-
position (PSD) [6]. Partition distribution is a form of differentially private data spatial
publishing which basic idea is: firstly transform the original data, and then divide the
data according to certain index construction rules, and publish data according to the index
structure. Each index area is marked by a calculated count value, and noise is added for
privacy protection.

There are two kinds of errors in the query result. The first type of error is called noise
error [7]. In order to make area D to satisfy the differential privacy, we add noise to the
area which makes the original area become D′, and the error relative to D is counted as:

Error(P ) = |Count(D)− Count(D′)| (1)

The second type is called uniform assumption error [7]. In the two-dimensional spatial
data publication, it is often impossible to subdivide the two-dimensional space due to
space limitations, and it is necessary to estimate the statistical value in one area. The
commonly used estimation method is the assumption that the points within the area are
uniformly distributed. In that case, the estimated value is returned according to the ratio
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of the query area. The error due to uniform distribution estimation becomes a uniform
assumption error.

Fig. 1. Noise-added domain. (a) uniform non-partition. (b) uniform partition. (c)
non-uniform non-partition. (d) non-uniform partition.

As shown in Fig 1, assume that (a) and (b) are uniformly distributed, (a) the noise is
added to the area,(b) the noise is added after the area is partitioned. The numbers 5, 20
represent real statistics count for the area, +Y denotes the noise added to make this area
satisfy differential privacy, and the blue district means the query area. Since the privacy
budget is the same, the expected noise about two graphs (a) and (b) is the same. For the
query result, (a) is (20+Y) / 4, and (b) is (5+Y). It is easy to see that the query error in the
graph (b) is larger than in graph (a). However, for Figures (c) and (d), the query results are
(5+Y) / 4 and (5+Y). Although Figure (c) reduces the noise error, it also increases the uni-
form assumption error. So under normal circumstances, the noise error and the uniform
assumption error are opposite to each other. Utilizing the uniform assumption error esti-
mate can reduce the noise error of the query result, but it will produce additional uniform
assumption errors. However, subdivided regions can reduce the uniform assumption error
of query results but increase the noise error. So how to balance the two kinds of errors in
order to minimize the publishing error is a problem we need to discuss.

The methods described in the third section of this article all use tree structures to in-
dex sensitive data. However, the tree structure does not involve the issue of minimizing
publishing errors. Literature [8] proposed uniform grid (UG) and adaptive grid (AG) to
minimize publishing errors. The publishing errors mainly include the added Laplace noise
error and the uniform assumption error. UG and AG quantify the two parts of the error
and get the grid partition density. The UG method partitions the spatial data set equally.
However,we argue that the same partition method for sparse data and dense data will
bring greater uniform assumption error. On that basis, the author proposes an AG method
to adaptively partition the grid according to the data density. The disadvantage of the UG
and AG methods is that the same privacy budget is allocated for sparse data and dense
data whose effect on the noise error of them are different. Further consideration should be
given to the adaptive allocation of privacy budgets based on data point density.

We propose SGNO (Self-adaptive Grid-partitioning Noise Optimization algorithm)
that focuses on geo-spatial data summarizing related domestic and foreign research status
and existing algorithms. On one hand, the released data satisfies privacy protection, on
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the other hand, the availability of published data(the similarity between original data and
published data) is improved. We prove that the effectiveness of the algorithm is obtained
in the experimental part compared with the relevant algorithm.

The rest of this paper is organized as follows: In section 2 we introduce the preliminar-
ies and the related work. We propose our optimized algorithm for spatial decomposition
and evaluate the algorithm compared with some of the previous ones in section 3 and 4.
We conclude the paper in section 5.

2. Related Work

Differential privacy was originally proposed in [4] to protect the results of queries. To pre-
serve the privacy of individuals, Mechanisms must guarantee that the contribution of each
individual for a query result cannot disclose data. We introduce the related technology in
this paper in detail, including the notion of differential privacy and the data publishing
method based on partition.

2.1. Differential Privacy Model

The main idea of the differential privacy protection model is to perturb the data by ran-
dom noise before it is published. Hence, even if an attacker knows all the other record
information except the target record, the individual user’s private information cannot be
inferred through data mining and data analysis. In addition, differential privacy has a strict
mathematical model, which can provide different degrees of privacy protection for data
sets according to user requirements. This can protect users’ privacy information in various
types of background knowledge attacks. Hence, the differential privacy protection model
has been studied and perfected by scholars since its proposed, and gradually has a rigor-
ous theoretical system [9]. Since differential privacy is defined on neighbor data sets, it is
necessary for us to introduce the definition of neighboring data sets first.

Definition 1 (Neighboring data set) For two data sets D1 and D2 with the same at-
tribute structure, D1 and D2 are called neighboring data set, if and only if there is one
different data record in D1 and D2.

We give the definition of differential privacy based on the neighboring data set.
Definition 2 (ε-differential privacy) A randomized algorithm A gives ε-differential

privacy, for any pair of neighboring data sets D1 and D2 and for every set of outcomes O
(O ∈ Range(A)), A satisfies:

Pr[A(D1) = O] ≤ eε · Pr[A(D2) = O] (2)

The ε in formula 2 is called privacy budget which represents the level of the privacy
protection. The smaller the ε is, the higher the protection level is. In order to make the
results of A(D1) and A(D2) have higher similarity, the data needs to be disturbed to a
higher level, so the privacy protection level is improved and the availability of data is
reduced [10]. On the contrary, the larger the value of ε, the less level of data disturbance
will lead to better data availability, which may cause lower privacy protection. Nowadays,
there is no good standard for the value of ε. Generally, the optimal value is constantly
adjusted according to the level of privacy protection. It is always between ln 2 and ln 5
based on empirical evaluation.
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The main idea of the differential privacy protection model is to hide the impact of a
single data record on overall published data. It uses the idea of data perturbation to trans-
form the single record by guaranteeing the invariance of the overall data on the probability
to achieve the purpose of protecting the user’s private data. Figure 2 shows a statistical
model of differential privacy, which illustrates the results of the privacy protection model
implemented on a neighboring data set.

Fig. 2. Statistical Model of Differential Privacy

According to the definition of privacy we can know that it is used in data distribution
mechanisms rather than directly applied to the data set. Intuitively, it can show that the
behavior of differential privacy protection model on any two neighboring data sets are
roughly the same in addition that the presence or absence of an individual does not affect
the output of the algorithm. For example, there is a simplified medical record data set
D1 in which each record represents (name, diabetes), the second line is a boolean, 1
represents illness, and 0 represents no disease, as shown in Table 1. We assume that the
opponent wants to know if Jack is sick or not and he also knows the number of rows in
Jack’s database. Suppose the opponent’s query form is Qi, which represents the sum of
the first I rows of the Diabetes. In order to know Jack’s prevalence, opponents perform
queries Q5 (D1) and Q4 (D1) and then calculate their difference to know that Jack’s
disease status corresponds to 1. This example shows that personal information may be
affected even if no specific personal information is queried. If we construct the data set
D2 by changing the last record to (Jack, 0) of table 1, the opponent can distinguish two
neighboring data sets D1 and D2 by calculating Q5-Q4. If the opponent gets the query
value Qi through ε-differential privacy, he cannot distinguish between two neighboring
data sets after selecting the appropriate value of ε.

Achieving differential privacy generally adopts two mechanisms: the Laplace mech-
anism and the exponential mechanism. These mechanisms contains the definition of sen-
sitivity. To make these definition understood easily, we give an introduction of global
sensitivity [11].

Definition 3 (Global sensitivity) For a function f : D → Rd, for any neighboring data
sets, the global sensitivity4f of function f is defined:

4f = max
D1D2

||f(D1)− f(D2)||1 (3)

Where D refers to the data set, Rd refers to d-dimensional vector, d is a positive
integer, ||f(D1)− f(D2)||1 represents the 1-order distance between f(D1) and f(D2).
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Table 1. Medical Dataset of Diabetic Patients

Name Diabetes

Ross 1
Bob 1
Phoebe 0
Carol 0
Jack 1

Global sensitivity represents the change in the output of the algorithm when changing
any record in the data set.

Laplace Mechanism The Laplace mechanism achieves differential privacy by adding
noise that obeys the Laplace distribution to the original real query value. As shown in
Figure 3, the probability density function of the Laplace distribution is:

f(x|µ, b) = 1

2b
· e−

|x−µ|
b (4)

Where µ is position parameter, b refers to scale parameter, whose value is up to 0.
When the parameter changes, the Laplace probability distribution function changes as the
Figure shows.

Fig. 3. Probability Density Function of Laplace Distribution
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Definition 4 (Laplace mechanism) Given a function f : D → Rd over a data set D, a
privacy budget ε and the global sensitivity4f , f satisfies Laplace mechanism when:

L(D) = f(D) + Lap(
4f
ε

) (5)

Where Lap(λ) means the position parameter of Laplace distribution is 0, and the scale
parameter is λ, same as 4fε .

A Laplace mechanism is used for the numeric query result [12]. We can add noise
to the output value of original data set to affect the result of query to protect the data
set. We can know that the smaller ε corresponding larger noise value according to taking
different parameter values. The noise size of the Laplace mechanism needs to achieve a
good balance between the protection level and practical application according to actual
requirements [13].

Composition Theorems We need to consider the privacy budget of the entire process
to be controlled within ε, because a complex privacy protection scenario often requires
multiple applications of the differential privacy protection model. As a result, we need to
apply the two composition theorem of the differential privacy protection model [14,15]

Definition 5 (Sequential composition)
Assume a set of algorithms A1(D), A2(D), ..., An(D) whose privacy budgets are

ε1, ε2, ..., εn respectively that satisfy differential privacy. For the data set D, a new algo-
rithmA composed of the above algorithmsA(A1(D), A2(D), ..., An(D)) , gives

∑n
i=1 εi-

differential privacy model. This theorem indicates that the privacy protection level of com-
bined algorithms is the sum of all budgets in a differential privacy protection model se-
quences [12].

Definition 6 (Parallel composition)
Assume a set of algorithms A1(D), A2(D), ..., An(D) whose privacy budgets are

ε1, ε2, ..., εn respectively that satisfy differential privacy. For the data set D which can be
partitioned into disjoint subcell data sets D1, D2, ..., Dn, a new algorithm A composed of
the above algorithms A(A1(D), A2(D), ..., An(D)) , gives max(εi)-differential privacy
model.

In a differential privacy protection model sequences, the privacy protection level of
combined algorithms is determined by the algorithm with the largest privacy budget,
where the data sets input by each algorithm are disjoint. These two kinds of composi-
tion theorems play an important role in the proof of the differential privacy protection
model algorithm. At the same time, the algorithm that satisfies differential privacy can
also be partitioned into sub-algorithms, and then the sub-algorithm gets the correspond-
ing privacy budget. For example, algorithm A’s privacy budget is ε. If A is divided into
two processes, A1 and A2, then privacy budget ε can be divided into ε1 and ε2 and then
assigned to A1 and A2 respectively. We only need to make A1 and A2 meet the privacy
protection levels of ε1 and ε2 to satisfies differential privacy.

Metrics We usually use the degree of difference between the original and the noise-
added data set to evaluate the algorithm. The commonly used error metrics are: relative
error [16], absolute error [17], error variance [18], and Euclidean distance [19]. We use
relative error for evaluations in this paper.
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In addition, ε represents the degree of privacy protection, so it is also important to
choose appropriate allocate strategies. Common allocation strategies include linear allo-
cation, uniform distribution, exponential allocation, adaptive allocation, and mixed strat-
egy allocation [20].

The previous partition method is mainly divided into two categories: tree-based spa-
tial decomposition and grid-based spatial decomposition. We will introduce these two
methods in detail as follows [21].

2.2. Tree-Based Spatial Decomposition

The tree-based data distribution method is a method for hierarchically decomposing spa-
tial data. The data points are partitioned into leaf nodes so that the leaf nodes can contain a
small number of data points or a small data range. Non-leaf nodes represent the sum of the
counts of children’s nodes. Unless otherwise specified, we assume that the tree structure
is a complete binary tree that all root-to-leaf paths have the same length, and all internal
nodes have the same output.

The tree-based data distribution methods can be roughly divided into two categories:
data-independent partitioning and data-dependent partitioning. We define the data inde-
pendent partitioning if the area is divided regardless of involving the basic data. On the
contrary, when it is divided on the basis of the data, it is called the data-dependent parti-
tioning, which may reveal data privacy [21].

Data-independent Tree Partitioning For the 2D spatial data, a representative exam-
ple of the data-independent tree division is quadtree, which can be extended to high di-
mensions named octree and other structures to represent data. Their feature is to set the
partitioning method in advance and based on the attribute domain.

Data-dependent Tree Partitioning The representative structures of data-dependent tree
structure are kd-tree and Hilbert R-trees which mainly depends on the input. We focus on
the construction of kd-tree and the process of combining it with differential privacy.

The main construction process of kd-tree is divided into two steps: (1) select the
dimension k with the largest variance in the k-dimensional data set, and then select the
median m in this dimension as the pivot to partition the data set to obtain two Subsets,
while creating a tree node for storing the total calculated count values. (2) Repeat step
(1) for the two subsets until all subsets can no longer be divided. We store the data of the
subset to the leaf node until it can’t be partitioned anymore [22].

The algorithm of using differential privacy based on kd-tree is called kd-standard [23].
Kd-standard’s privacy budget is divided into two parts: First, we need to determine the
median value. The segmentation line may leak the true value of the median value if you
do not use differential privacy to protect the segmentation process. Then we add Laplace
noise to each level calculated count value of the kd-tree. Kd-standard may also have two
problems with the above-mentioned quadtree: inconsistent query results and non-uniform
allocation of privacy budgets. The solution is the same as a quadtree.

Mixed Tree Partitioning The mixed tree combines the data-independent and data-de-
pendent tree partitioning methods, in which kd-hybrid is representative. We use the tree-
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dependent partitioning method in the previous l layer (l is set in advance). Then select
the median with the maximum variance dimension as the pivot to divide recursively each
time [24]. The rest of the tree uses a tree-independent partitioning method that sets up
the partitioning process in advance. This algorithm makes the advantages and disadvan-
tages of the two tree partitioning methods complementary, so the query results are more
accurate.

2.3. Grid-Based Spatial Decomposition
In this section, we introduce the previous research achievements on the spatial data release
and then gradually improve the method.

Uniform Grid Partition (UG) UG partitioning is a relatively simple way to partition the
space. This method divides the data domain into m∗m equally sized grids, and then adds
noise to a calculated count value for each grid, where m is obtained by minimizing the
sum of the noise error and the uniform assumption error. The disadvantage of UG parti-
tioning is that all areas in the data set are treated equally where dense and sparse areas
are partitioned in the same way. If there are fewer data points in a region, this method
will result in the region being divided too much, which increases the noise error and
hardly reduces the uniform assumption error. In addition, if an area is dense, uniform grid
partition can make this area too rough, which in turn leads to large uniform assumption
errors. Therefore, when the area is dense, a fine-grained partitioning method should be
used because the uniform assumption error in this area far exceeds the noise error. Simi-
larly, if a region is sparse, coarse-grained partitioning is used. To overcome this problem,
researchers proposed Adaptive Grids (AG) partitioning based on the uniform grid method.

Adaptive Grid Partition (AG) The AG first performs uniform grid partition in a smaller
granularity which is set as max(10, 14d

N ·ε
c e) since there is a second grid division, and

the privacy budget of the first layer is ε1 = ε · α. Then, on the basis of the noise-added
calculated count value N of the first layer of the grid, the AG further adaptively selects
the division granularity of the second layer grid. We find that AG improves the accuracy
compared with UG obviously on the second layer.

The advantage of AG partition method is that it can quantify two error sources on
the basis of differential privacy to calculate the partition granularity. However, we find
the drawback that AG does not adaptively allocate the privacy budget. According to the
method proposed by Dwork [4], AG ignore the size of the query answer and add Laplace
noise to each answer with the same scale parameters. The proposed method is more sus-
ceptible to the amount of noise which may lead to a large relative errors especially when
the calculated count value of the query is small. For example, Figure 4 shows a part area
of the AG partitioning results: The two numbers in each grid are the original calculated
count value and the added noise value, where the noise follows the Laplace distribution
with the same scale parameters. For the dashed line area which represents the user’s query
area, the corresponding noise added query result is 21.1 when the original query result is
11, so the query error can be calculated as (21.1 − 11)/10 = 1.11. Therefore, due to
the accumulation of noise in the query area, the availability of published results is very
low. We will focus on the shortcomings of AG and provide the corresponding solutions in
Section 3.
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Fig. 4. Example of Injecting Noise into Grid Partition

3. Adaptive Grid-partitioning Noise Optimization Algorithm

In this section, we will introduce the improved algorithm in detail for the adaptive grid-
partitioning. We introduced the quantification formulas for UG and AG, and illustrated
their existing problems in related work. In that case, we proposed an optimized algorithm
based on AG to solve these problems.

3.1. The Problem and Notions

The adaptive grid noise added publishing algorithm we proposed mainly addresses two
aspects: (1) each grid adds Laplace noise with the same scale parameters (2) after the
second-level grid is generated, the first level no longer provides useful information for
the data set that may waste privacy budget. In response to the above problems, the cor-
responding solutions are presented as follows: First, to avoid receiving a larger relative
error when querying a very small value. we propose a method to reduce the relative error
by adjusting the noise scale parameter of the counter value. Second, in order to save the
first-level grid privacy budget, we generate the value in second-level grid by sampling
from first-level grid noise calculated count value.

Before proposing the overall steps, we first introduce some parameters and the calcula-
tion formula adjusted according to the differential privacy definition.G = [N1, ..., Nm1∗m1

]
is the set of count values for the first-level grid partitioning. Λ = [λ1, ..., λm1·m1 ] is
a set of positive real numbers, corresponding to the noise scale parameter λi of each
Ni,(i ∈ [1,m1 ∗m1]). Y = [y1, ..., ym1∗m1

] is a set of count values after adding noise to
G in same scale parameter, where yi = gi(G) + ηi and ηi is sampled from the Laplace
distribution with scale parameter i(i ∈ [1,m1 ∗m1]). G′ = [Y ′1 , ..., Y

′
m1∗m1

] is the result
of optimized noise added method after the use of adaptive noise adding algorithm.

The steps of the algorithm are as follows: In first step we perform a two-dimensional
data set into first-level uniform grid partition with partition granularity

mi = max(10, 14

√
N ·ε
c ). The choice of the value c mainly depends on the uniformity

of the data set. Then we add the Laplace noise in a same uniform scale parameter to
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the grid set G generated in the first step to obtain the noise-added grid calculated count
value set Y . Next the grid sets to be optimized from Y are selected recursively and op-
timized, where we use a noise optimization algorithm to satisfy the difference privacy
guarantee in the meanwhile. It construct an optimized noise calculated count value set
G′. Finally we perform adaptive grid partition on the basis of G′ with the granularity of

m2 = d
√

Y ′·ε2
c2
e, where c2 = c

2 . The calculation process of m2 and c2 are as follows:
When the grid inG′ is further divided into secondm2 ∗m2 layer grids, only those queries
whose query boundaries pass through the first layer grids are affected. These queries may
contain 0, 1, 2... m2 − 1 rows (or columns) of the second-level grids, and therefore cor-
respond to 0, m2, 2m2...(m2 − 1)m2 grids in second-level. When the query contains
more than half of the second-level grid, the query is answered using Constraint Reason-
ing, which uses the calculated count value of the first layer minus the calculated count
value in the second-level grid that is not included in the query. Therefore, the query uses
an average of 1

m2
(
∑m2−1
i=0 min(i,m2 − 1)) ∗m2 ≈ m2

2

4 second-level grids, which means

that the average noise error is approximate
√

m2
2

4 ∗
√
2
ε2

. In addition, the mean value of the

uniform assumption error is approximately Y ′

c0∗m2
. Finally, we minimize the sum of the

average noise error and the uniform hypothesis error to get the minimum value of m2 is

d
√

Y ′·ε2
c2
e, where c2 = c

2 .

Fig. 5. Example of SGNO Partition (ε=0.5,α=0.5)

Figure 5 shows the partitioning process of SGNO, whereA,B,C, andD represent the
four first-level grids. Constructing differential privacy SGNO requires three steps: First,
calculate the partition granularity of the first-level grid, where c = 10, and then add the
Laplace noise with the scale parameter to the original values of A, B, C, and D to obtain
the noise calculated count valueN ′. Secondly, we select the grid sets to be optimized from
N ′ recursively using a noise optimization algorithm satisfying the differential privacy
guarantee. The selected grid sets construct an optimized noise calculated count value set
G′. In figure 5, after the second step, the N ′A is not included in the grid sets G′, Next,
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calculate the granularity of the second-level grid on the basis of G′, where c2 = 5. We
use the above formulas to obtain different partition granularity for different noise-added
count values N ′, and add Laplace noise with scale parameter to each second-level grid.
Finally, SGNO structure is published with noise count.

3.2. Noise Optimized Partitioning

The principle of the NOP (Noise Optimization Partitioning) [16] is to add a uniform
scale parameter λi(1 ≤ i ≤ mi ∗ mi) to the second layer of the grid to obtain a set of
noise-added counts Y , and then adjust the noise scale parameter set Λ = [λ1, ..., λm1∗m1

]
continuously under the constraint of differential privacy to generate updated set of noise
count Y ′. The key question of this algorithm is whether Y ′ is to add noise to the original
value Ni(1 ≤ i ≤ mi ∗mi) through a new set of scale parameters, or to adjust the noise
value set to generate Y ′ on the basis of Y , so next we consider for both cases separately.

If the first and the second level of the grid noise adding process are independent, then
the total privacy budget is 2/λ+2/λ′, where the privacy budget of the second layer grid is
2/λ′. However, the result of the first level grid partitioning is useless after the generating
of the second layer grid, which means the privacy budget used by the first level grid is
wasted. To solve the above problems, we argue that the noise-added value of the second
level grid obeys Laplace distribution and is sampled from the distribution that depends on
the first level grid, which can save part of the privacy budget.

We use formula derivation to explain the process of reducing the privacy budget: First,
for the data set T1, the first layer of partitioning produces a result of Y , and the second
produces a result of Y ′. Y ’s result is useless after Y ′ is generated which can quantify as
the following formula:

Pr[T = T1|Y = y, Y ′ = y′] = Pr[T = T1|Y ′ = y′] (6)

Formula 6 allows us to use the privacy budget more efficiently. When Equation 6 is
satisfied, we can apply the Bayesian equation twice to derive the following derivation for
two neighbor data sets T1 and T2:

Pr[Y ′ = y′, Y = y|T = Ti]

=Pr[T = Ti|Y ′ = y′, Y = y] · Pr[Y
′ = y′, Y = y]

Pr[T = Ti]

=Pr[T = Ti, |Y ′ = y′] · Pr[Y
′ = y′, Y = y]

Pr[T = Ti]

=
Pr[Y ′ = y′|T = Ti]Pr[T = Ti]

Pr[Y ′ = y′]
· Pr[Y

′ = y′, Y = y]

Pr[T = Ti]

=Pr[Y ′ = y′|T = Ti] · Pr[Y = y, Y ′ = y′]

(7)

Next, we consider the case where the Y and the Y ′ generated by the first-level and
second-level grid with noise added are dependent. For a count query q, q(T1) − q(T2) ∈
{−1, 0, 1}. Y ′ is a random variable and satisfies two conditions: First, it obeys the Laplace
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distribution with the positional parameter q(T ) and the scale parameter λ′. Second, it is
dependent on Y. Equation 6 and 7 get the following derivation process:

Pr[Y ′ = y′, Y = y|T = T1]

Pr[Y ′ = y′, Y = y|T = T2]

=
Pr[Y ′ = y′|T = T1] · Pr[Y = y|Y = y′]

Pr[Y ′ = y′|T = T2] · Pr[Y = y|Y = y′]

=
Pr[Y ′ = y′|T = T1]

Pr[Y ′ = y′|T = T2]
≤ exp(2/λ′)

(8)

From equation 8 we can get an upper bound of the privacy budget. which means we
can achieve Y ′ on the basis of Y . The total privacy budget is only 2/λ′ to ensure no pri-
vacy budget is wasted on Y .

From the above process, we learned that if Y obeys the Laplace distribution and sam-
ples from the Y -dependent distribution, it can save some privacy overhead. So we define
the conditional probability distribution function for Y as follows:

f
µ,λ,λ′ (y

′|Y = y)=
λ

λ′
·

exp(− |y
′−µ|
λ′ )

exp(− |y−µ|
λ

)
· γ(λ′, λ, y′, y)

γ(λ
′
, λ, y

′
, y)=

1

4λ
·

1

cosh( 1
λ′ ) − 1

· (2 cosh(
1

λ′
· exp(−

|y − y′|

λ
) − exp(−

|y − y′ − 1|

λ
) − exp(−

|y − y′ + 1|

λ
))

(9)
The probability density function of Y ′ can be further obtained from the conditional

probability density function. When µ ≤ y, ξ = min{µ, y− 1}. We can obtain the follow-
ing formula according to the conditional probability density function for y′ ≤ ξ.

f(y
′
) = e

y′/λ′ · γ(λ′, λ, y′, y) ·
λ

λ′
· exp(

−µ

λ′
+
y − µ

λ
)

γ(λ
′
, λ, y

′
, y) = e

y′/λ ·
1

4λ
·

1

cosh( 1
λ′ ) − 1

· (2 cosh(
1

λ′
· exp(−

−y

λ
) − exp(−

1 − y

λ
) − exp(−

−1 − y

λ
))

(10)

Formula 7 can be simplified as f(y′) ∝ exp(y′/λ+y′/λ′), meanwhile, we can obtain
y′ ∈ (ξ, y−1], f(y′) ∝ exp(y′/λ−y′/λ′) and y′ ∈ (y+1,+∞], f(y′) ∝ exp(−y′/λ−
y′/λ′). Based on this, the random variables θ1, θ2, θ3 that follow the probability density
function f can be calculated and their formula is as follows:

θ1 =

∫ ξ

−∞
f(y′)dy′

=
λ · (cosh( 1

λ′ )− cosh( 1λ ) · exp(
1
λ′ +

1
λ ) · (ξ − µ))

2(λ′ + λ) · (cosh( 1
λ′ )− 1)

(11)

θ2 =

∫ y−1

ξ

f(y′)dy′

=
λ · (cosh( 1

λ′ )) · (e
1
λ′ − e 1

λ ) · (1− e− 1
λ′−

1
λ )

4(λ− λ′) · (cosh( 1
λ′ )− 1)

· (1− exp((
1

λ′
− 1

λ
) · (ξ − y + 1))

(12)
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θ3 =

∫ +∞

y+1

f(y′)dy′

=
λ · (cosh( 1

λ′ )− cosh( 1λ ) · exp(
µ−y−1
λ′ − µ−y+1

λ ))

2(λ′ + λ) · (cosh( 1
λ′ )− 1)

(13)

For the remaining space (y − 1, y + 1), we obtain its probability density function
through the standard importance sampling function. We will introduce the specific process
in the algorithm. The formula of ϕ in the algorithm 1 is as follows:

ϕ =
1

2λ′
·
cosh( 1

λ′ )− exp (− 1
λ )

cosh( 1
λ′ − 1)

· exp (y − µ
λ
− max{0, y − µ− 1}

λ′
) (14)

The algorithm 1 represents a specific process of NOP, where the input is original cal-
culated count value µ, a noise-added calculated count value y, an original scale parameter
λ, and an adjusted scale parameter λ′, and the output is an updated y.

3.3. Self-adaptive Grid-partitioning Noise Optimization Algorithm

We use the algorithm 2 to describe the grid-based adaptive noise-added publishing method
in detail. The pseudocode of this algorithm is shown in Algorithm 2. The input of the al-
gorithm is data set T , privacy budget ε, initial privacy budget λmax, and privacy budget
variance λ∆. The output is Adaptive Grid AG. The algorithm first averages the data set to
get a uniform grid set UG and an original privacy set Λ. Then the grid to be optimized is
selected recursively from the UG. We adjust the scale parameters and complete the noise
optimization process with former algorithm. If this process does not satisfy the differen-
tial privacy, the changes made to the noise scale parameters are restored. Finally, AG is
adaptively partitioned with the updated UG set.

We need to explain the process of selecting the grid to be optimized. Ideally, run-
ning a noise optimization algorithm on a selected set of grids may reduce the overall
more error and make slightly lower privacy overhead, so the criteria for PickQueries
function selection grids is to maximize the ratio between the value of overall error re-
duction and privacy budget increase value. First, calculate the privacy budget increase
value. Each grid has the same scale parameter λi(i ∈ [1,m1 ∗ m1]) at first with the
global sensitivity g1 =

∑
i∈[1,m1∗m1]

2
λi

. Then we use the noise optimized algorithm for
the selected j − th grid, and the corresponding global sensitivity is changed to g2 =

2
λj−λ∆ +

∑
i∈[1,m1∗m1]∧i6=j

2
λi

, the privacy budget applied by the noise optimized algo-
rithm is g2 − g1 = 2

λj−λ∆ −
2
λj

. Second, we calculate the total error reduction value.

The relative error of each grid is λi
max{yi,δ} (i ∈ [1,m1 ∗ m1]). Then, the relative error

of grid UG is
∑
i∈[1,m1∗m1]

λi
max{yi,δ} . After applying the noise optimized algorithm, the

total relative error becomes λj−λ∆
max{yi,δ} +

∑
i∈[1,m1∗m1]∧i 6=j

λi
max{yi,δ} , and the change of

total relative error is obtained to 2λj−λ∆
max{yi,δ} , so that the average relative error variation is

1
m1·m1

· 2λj−λ∆
max{yi,δ} . Therefore, the ratio between the overall error reduction value and the

privacy budget increase value is 1
m1·m1

· 2λj−λ∆
max{yi,δ}/(

2
λj−λ∆ −

2
λj
). So we choose the grid

that can maximize this ratio as the set of grids to be optimized.
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Algorithm 1: NOP (µ, y, λ, λ′)
Input: µ, y, λ, λ′1
Output: y2
Initial: mark = true3
if µ > y then4

µ=-µ,y=-y5
mark = false6

ξ = min{µ, y − 1}7
generate a random variable u uniformly distributed in [0, 1]8
if µ ∈ [0, θ1] then9

f(y′) ∝ exp(y′/λ+ y′/λ′) // y’ is a random variable generated from (−∞, ξ];10
else11

if µ ∈ [θ1, θ1 + θ2] then12
f(y′) ∝13
exp(y′/λ′−y′/λ) // y’ is a random variable generated from (ξ, y−1];

else14
if µ ∈ [1− θ3, 1] then15

f(y′) ∝ exp(−y′/λ−16
y′/λ′) // y’ is a random variable generated from (y + 1,∞);

else17
while true do18

generate a random variable y′ uniformly distributed in (y-1,y+1)19
generate a random variable µ′ uniformly distributed in [0,1]20
if µ′ ≤ f(y′)/ϕ then21

break;22

if mark = true then23
return y′24
else25

return −y′26

3.4. Privacy Analysis

We propose self-adaptive grid-partitioning noise optimization algorithm after the first-
level partition. The algorithm first adds Laplace noise with uniform scale parameters to
each grid. Then continue the process if the grid satisfies the ε-differential privacy, other-
wise return empty set. Next, the grid to be optimized is recursively selected in the grid set,
and the corresponding noise scale parameters are changed. We judge the condition that
whether the ε-differential privacy is satisfied. If it is satisfied, the noise optimized algo-
rithm is continued to be called; Otherwise, the changes made to the noise scale parameters
are restored to satisfy the ε-differential privacy requirements. In summary, the proposed
algorithm generally satisfies ε-differential privacy.
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Algorithm 2: SGNO (T,N, δ, ε, λmax, λ∆, α)
Input: Dataset T , the sanity bound δ, privacy budget ε, constant λmax, λ∆,1
Output: Adaptive Grids AG2

Initial: let T be partitioned uniformly with m1 = max(10, 1
4
dNε
c
e)3

let m = m1 ∗m1 and gi be the i− th(i ∈ [1,m, ]) grid in UG4
initialize Λ = [λ1, ..., λm1·m1 ], such that λi = λmax5
if GS(UG,Λ) > ε then6

return ∅7

Y = LaplaceNoise(UG,Λ) // Add Laplace noise to every grid in UG8
Let UG′ = UG9
while UG′ 6= ∅ do10

U∆ = PickQuries(UG′, Y, Λ, δ)11
for i from 1 to m do12

if gi ∈ U∆ then13
λi=λi-λ∆14

if GS(UG,Λ) ≤ ε then15
for i from 1 to m do16

if gi ∈ U∆ then17
yi=NOP (gi, yi, λi + λ∆, λi)18

else19
for i from 1 to m do20

if gi ∈ U∆ then21
λi=λi+λ∆22

UG′ = UG \ U∆23

Update UG by Y24

let UG be partitioned by m2 = dY
′(1−α)ε
C2

e to get AG25

Return AG;26

4. Evaluation

In this section we compare the effectiveness of the algorithm proposed in section 4 with
some previous methods. We introduce the process and results in detail.

4.1. Environment

Experiment Platform Table 2 shows the relevant configuration information of the ex-
periment platform. We have implemented the encoding algorithm proposed in section 4
in the Linux operating system.

Experiment Database We chose three data sets for spatial data and conducted exper-
iments separately because our two data publishing algorithms are applied to different
forms of data sets.



A Novel Self-adaptive Grid-partitioning Noise Optimization Algorithm 931

Table 2. Configuration of Experiment Platform

Hardware and software Configuration

Processor Intel@ Xeon@ CPU E5-2670 2.27 GHz
Internal storage 32GB
Hardware 1TB Mechanical hard disk
Network card Intel 82551 10M/100M Adaptive network card
OS Ubuntu Server 16.04.1 LTS

Fig. 6. Illustration of datasets

In order to verify our proposed grid-based adaptive noise-added publishing algorithm,
we used three datasets shown in Figure 6.

(1)Road: This data set consists of the GPS coordinates of road intersections in Wash-
ington State and New Mexico and is derived from the 2006 U.S. census data in the TIGER/
Line data set. There are approximately 1.6 million data points in the data set, roughly cor-
responding to human activities. As shown in the first picture of Figure 6, the distribution
of data points is somewhat special. Two data points are dense where is distributed in two
states, and almost no data points in there.

(2)Checkin: This data set consist of the check-in data of the location-based social net-
work Gowalla which records the time and location of the user’s check-in from February
2009 to October 2010. We use the location information for evalution. There are approxi-
mately one million data points in the data set. As shown in the second picture of Figure
6, the data distribution is sparse.

(3)Landmark: This data set contains information on the location of landmarks such
as schools, post offices, shopping malls, construction sites, and train stations in 48 states
in the United States. It originated from the 2010 Census TIGER. The data set contains
approximately 900, 000 data points. As shown in the third picture of Figure 6, the data
distribution is relatively uniform.

Table 3 gives the detailed information of the three data sets, including the number of
data points, the size of the domain, and the size of the query area used in the evaluation
of the experiment, where q1 is the smallest query area and q6 is the largest query area.

Experimental Process For spatial data, we propose a self-adaptive grid-based algorithm
for adding noise, which is based on AG and adaptively adds noise according to the number
of data points in each grid. In addition to comparing it with AG, we also compare it with
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Table 3. Information on Datasets

Dataset Number of data
points

Size of the do-
main

Size of the
query area q1

Size of the
query area q6

Road 1.6M 25*20 0.5*0.5 16*16
Checkin 1M 360*150 6*3 192*96
Landmark 0.9M 60*40 1.25*0.625 40*20

the mixed-tree partitioning algorithm [22] which belongs to the same general-distributed
class publishing algorithm to verify the effectiveness of the grid-partitioning algorithm.

Evaluation Metrics The differential privacy protection mechanism is mainly obtained
by adding noise to the original calculated count value. This mechanism has two purposes.
On one hand, it should to protect the privacy of each user. On the other hand, it should
obtain that the published results will be still usable. Therefore, we quantify these two as-
pects through various index parameters, hoping to reach a balance.

For grid-based spatial data publishing algorithms, we measure the accuracy of pub-
lished data by calculating relative errors.

For a query r, we use A(r) to represent the correct answer for r. For the method M
and a query r, we use to represent the query r which is answered using an index structure
constructed by the method M . The formula for the relative error is:

REM (r) =
|QM (r)−A(r)|
max{A(r), ρ}

(15)

where the query r has 6 kinds of sizes, q1 is the smallest, and the length and width
of qi+1 are respectively increased by 2 times on the basis of qi, and q6 is maximal and
covers 1/4 to 1/2 of the entire space. The specific information is shown in Table 3. We
randomly generate 200 queries for each query size and calculate their relative errors.

ρ is set to 0.001|D|, whereD represents the total number of data points in the data set.
The reason why we maximize the denominator is to prevent A(r) = 0. When the query
r is medium in size, REM (r) tends to be the largest. When the query is large, it may be
small because A(r) is large.

4.2. Evaluation

We proposed a grid-based spatial partitioning data publishing algorithm for publishing
geo-spatial data based on a differential privacy protection model. In the experimental re-
sults, Khy represents the kd-hybrid algorithm proposed in [24], UG represents uniform
grid partition, AG represents adaptive grid partition, and SGNO represents our proposed
grid-based advanced noise-added self-adaptive grid publishing algorithm. When ε = 0.1,
the granularity of the Road, Checkin, and Landmark datasets is 126, 100, and 95, re-
spectively calculated by the UG method by the formula. When ε = 1, the granularity
of the Road, Checkin, and Landmark data sets is 400, 316, and 300, respectively. When
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ε = 0.1, the first level of the AG method divides the granularity of the reference [26] rec-
ommended value of the experiment, which means the granularity of the Road, Checkin,
and Landmark data sets is 16, 32, and 32 respectively. When ε = 0.1, the granularity of
the Road, Checkin, and Landmark data sets is 32, 64, and 64 respectively. UG and AG
take the corresponding c = 10, c2 = 5, β = 0.5, in the granularity formula. Figure 7 to
Figure 12 give the average curve of the relative error of the random query region for the
four algorithms on the three data sets when the value of ε is 0.1 or 1 respectively. In order
to make the experimental results more general, we will run the four algorithms 50 times,
and finally take the average of them.

Fig. 7. Experiment Result on Dataset Road with ε = 0.1

Fig. 8. Experiment Result on Dataset Road with ε = 1
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Fig. 9. Experiment Result on Dataset Checkin with ε = 0.1

Fig. 10. Experiment Result on Dataset Checkin with ε = 1

Fig. 11. Experiment Result on Dataset Landmark with ε = 0.1
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Fig. 12. Experiment Result on Dataset Landmark with ε = 1

Figure 7 and Figure 8 show the experimental results for the data set Road at ε =
0.1 and ε = 1 respectively. It can be seen that the relative error of the four algorithms
increases with the increase of the query area, and the relative error at the query q5 reaches
the maximum, at q6 decreases sharply and is almost close to zero. The reason for this
trend is that the query area q6 occupies between 1/4 and 1/2 of the entire query space,
making the true answer value large, thus the relative error is small.

When ε = 0.1, the relative errors of the first four queries of kd-hybird and UG are
relatively close, but the kd-hybird changes more greatly in the latter two queries. The AG
and our method SGNO are superior to kd-hybird and UG on any query. The relative error
of the first four queries of SGNO is better than AG, and the query result of q5 is close
to AG. The reason is that when the query range is relatively large, the actual query value
is also relatively large, which makes the effect of noise optimization cannot be clearly
displayed. When ε = 1, the relative error of the corresponding four algorithms is reduced
since the degree of privacy protection is reduced thus the amount of added noise is reduced
too.

Figure 9 and Figure 10 show the experimental results of the data set Checkin when
ε = 0.1 and ε = 1 respectively. It can be seen that the relative error of the four algorithms
increases with the increase of the query area, and the relative error at the query q4 reaches
a maximum when decreasing sharply at q5 and q6.

When ε = 0.1, the results of kd-hybrid and UG are mostly similar. The overall trend
of UG and SGNO is relatively close, but the relative error of SGNO is generally lower
than AG, especially when the query area is relatively small. The reason is that SGNO
optimizes the amount of noise added in each grid. In that case, we reduce the relative error
of each grid so the entire error is improved. However, when the query area is relatively
large, the real calculated count value is relatively large, making the optimization effect
difficult to show. When ε = 1, kd-hybrid and UG results change more drastically. Figure
11 and Figure 12 show the results of the Landmark data sets when ε = 0.1 and ε = 1
respectively. With the increase of the query area, the four algorithms increase the relative
error, and because the data points of the data set are relatively evenly distributed, the
relative error reaches the maximum at the relatively small q3 in the query area. When
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ε = 0.1 and ε = 1, the overall trend of UG and SGNO is relatively close. SGNO is
mostly better than the other three algorithms.

From the figure, we can observe our SGNO methods have performed better than other
methods. The performance of the UG method is similar to that of the kd-hybrid method.
Above all, the results of SGNO in most queries are better than the other three algorithms.

5. Conclusion

This article is based on application scenarios for the partition based data distribution algo-
rithm. For the partition-based data distribution method, we first uniformly partitions the
original spatial data, add a Laplace noise with uniform scale parameters, and then select
the set of grids to be optimized in a standard way that is based on the maximum ratio
between the value of overall error reduction and privacy budget increase value, then op-
erate noise optimized algorithm for the grid. This process is recursive until all grids have
been optimized. This grid-based self-adaptive noise-added publishing algorithm solves
the problem of the noise scale parameters added uniformly to each grid and the waste of
the first-level grid privacy budget.

At the same time, for the above differential privacy data publishing algorithm, prob-
lem how to support dynamic data partitioning is the future research direction.

Acknowledgements Supported by the Double-class Construction Innovation Project 014-
3190518. Supported by the National Nature Science Foundation of China 61370198,
61370199, 61672379 and 61300187. Supported by the Liaoning Provincial Natural Sci-
ence Foundation of China NO. 2019-MS-028.

References

1. Xiong, P., Zhu, T. Q., Meng, X. F.: A Survey on Differential Privacy and Applications, Chinese
Journal of Computers, 37(1), 101-120.(2014)

2. Gherari, M., Amirat, A., Laouar, R., Oussalah, M.: A smart mobile cloud environment for
modelling and simulation of mobile cloud applications, International Journal of Embedded
Systems, 9(5), 426-443.(2017)

3. Chen, P., Chen, J., Huang, J.: Multi-user location-dependent skyline query based on dominance
graph, International Journal of Computational Science and Engineering, 13(3), 209-218.(2016)

4. Dwork, C.: Differential privacy[J], Lecture Notes in Computer Science, 26(2), 1-12.(2006)
5. Li, N., Li, T., Venkatasubramanian, S.: T-closeness: privacy beyond k-anonymity and l-

diversity[C], Proceeding of the IEEE 23rd International Conference on Data Engineering
(ICDE), 106-115.(2007)

6. Cormode, G., Procopiuc, C., Srivastava, D., Shen, E., Yu, T.: Differential private spatial de-
compositions, IEEE International Conference on Data Engineering (ICDE), 20-31.(2012)

7. Zhang, X. J., Meng, X. F., Chen, R.: Differentially Private Set-Valued Data Release against In-
cremental Updates, International Conference on Database Systems for Advanced Applications,
392-406.(2013)

8. Qardaji, W., Yang, W., Li, N.: Differentially private grids for geospatial data[C], Proceedings
of IEEE 29th International Conference on Data Engineering (ICDE), 757-768.(2012)

9. Ebadi, H., Sands, D., Schneider, G.: Differential privacy: now it’s getting personal[C], Proceed-
ings of the 42nd Annual Symposium on Principles of Programming Languages, 69-81.(2015)



A Novel Self-adaptive Grid-partitioning Noise Optimization Algorithm 937

10. Gruska, D. P.: Differential privacy and security[J], Fundamenta Infomaticae, 143(1), 73-
87.(2016)

11. Dwork, C., McSherry, F., Nissim, K. et al.: Calibrating noise to sensitivity in private data anal-
ysis, Theory of Cryptography, 265-284.(2006)

12. Mcsherry, F., Talwar, K.: Mechanism design via differential privacy, IEEE Symposium on
Foundations of Computer Science, 94-103.(2007)

13. Geng, Q., Viswanath, P.: The optimal noise-adding mechanism in differential privacy, IEEE
Transactions on Information Theory, 62(2), 925-951.(2016)

14. Kairouz, P., Oh, S., Viswanath, P.: The composition theorem for differential privacy, Proceed-
ings of the 32nd International Conference on Machine Learning, 63(6), 4037-4049.(2015)

15. Mcsherry, F. D., Meng, X. F.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis, Communications of the ACM, 53(9), 89-97.(2015)

16. Xiao, XX., Bender, G., Hay, H. et al.: iReduct:differential privacy with reduced relative errors,
ACM SIGMOD International Conference on Management of Data, 229-240.(2011)

17. Li, Y. D., Zhang, Z., Winslett, M. et al.: Compressive mechanism:utilizing sparse representa-
tion in differential privacy, Proceedings of the 10th Annual ACM Workshop on Privacy in the
Electronic Society(WPES), 177-182.(2011)

18. Peng, S., Yang, Y., Zhang, Z. et al.: DP-tree:indexing multi-dimensional data under differential
privacy, Proceedings of the 2012 ACM SIGMOD International Conference on Management of
Data, 864-864.(2012)

19. Hardt, M., Talwar, K.: On the geometry of differential Privacy, Proceedings of the 42nd Annual
ACM Symposium on Theory of Computing(STOC), 705-714.(2010)

20. Zhang, X. L., Wu, Y. J., Wang, X. D.: Differential Privacy Data Release through Adding Noise
on Average ValuE, International Conference on Network and System Security, 37(1), 417-
429.(2012)

21. Dwork, C.: Differential privacy: a Survey of results, International Conference on Theory and
Applications of MODELS of Computation, 1-19.(2008)

22. Cormode, G., Procopiuc, C., Srivastava, D. et al.: Differentially private spatial decompositions,
Proceedings of IEEE 28th International Conference on Data Engineering (ICDE), 41(4), 21-
31.(2011)

23. Kamel, I., Faloutsos, C.: Hilbert R-tree: an improved R-tree using fractals, International Con-
ference on Very Large Data Bases, 500-509.(1994)

24. Roy, I., Setty, S. T. V., Kilzer, A. et al.: Airavat: security and privacy for MapReduce, Pro-
ceedings of the 7th USENIX Symposium on Networked Systems Design and Implementa-
tion(NSDI), 297-312.(2010)

25. Machanavajjhala, A., Kifer, D., Gehrke, J. et al.: L-diversity: privacy beyond k-anonymity,
ACM Transactions on Knowledge Discovery from Data(TKDD), 1(1), 3-14.(2007)

26. Xiao, Y., Xiong, L., Yuan, C.: Differentially private data release through multidimensional
partitioning, Proceedings of the 7th VLDB Workshop on Secure Data Management (SDM),
150-168.(2011)

Zhaobin Liu received the Ph.D degree in computer science from Huazhong University
of Science and Technology, China, in 2004. He is currently a Professor in the school of
information science and technology, Dalian Maritime University, China. He has been a
Senior Visiting Scientist at The University of Auckland, New Zealand, in 2017, and a vis-
iting scholar at University of Central Florida, USA, in 2014 and University of Otago, New
Zealand in 2008 respectively. His research interests include big data, cloud computing and
data privacy.



938 Zhaobin Liu et al.

Haoze Lv is currently in school with the Department of Computer Science in Dalian
Maritime University. His research mainly focuses on Big data and privacy protection.

Minghui Li is currently pursuing the master’s degree with the Department of Computer
Science in Dalian Maritime University. Her research mainly focuses on Big data and
privacy protection.

Zhiyang Li (corresponding author) is currently an associate professor at the Information
Science and Technology College, Dalian Maritime University, China. He received the
Ph.D. degree in computation mathematics from Dalian University of Technology, China
in 2011. His research interests include computer vision, cloud computing and data mining.

Zhiyi Huang received the BSc degree in 1986 and the PhD degree in 1992 in computer
science from the National University of Defense Technology (NUDT) in China. He is an
Associate Professor at the Department of Computer Science, University of Otago. He was
a visiting professor at EPFL and Tsinghua University in 2005, a visiting scientist at MIT
CSAIL in 2009, and a visiting professor at Shanghai Jiao Tong University in 2013. His
research fields include parallel/distributed computing, multicore architectures, operating
systems, green computing, cluster/grid/cloud computing, high-performance computing,
and computer networks. He has more than 130 publications in peer-reviewed conferences
and journals, many of which are top ranked.

Received: September 1, 2018; Accepted: September 12, 2019.


	Introduction
	Related Work
	Differential Privacy Model
	Laplace Mechanism
	Composition Theorems
	Metrics

	Tree-Based Spatial Decomposition
	Data-independent Tree Partitioning
	Data-dependent Tree Partitioning
	Mixed Tree Partitioning

	Grid-Based Spatial Decomposition
	Uniform Grid Partition (UG)
	Adaptive Grid Partition (AG)


	Adaptive Grid-partitioning Noise Optimization Algorithm
	The Problem and Notions
	Noise Optimized Partitioning
	Self-adaptive Grid-partitioning Noise Optimization Algorithm
	Privacy Analysis

	Evaluation
	Environment
	Experiment Platform
	Experiment Database
	Experimental Process
	Evaluation Metrics

	Evaluation

	Conclusion
	Acknowledgements


