Computer Science and Information Systems 16(2):657-688 https://doi.org/10.2298/CSIS181010014B

Automated Two-phase Business Model-driven
Synthesis of Conceptual Database Models™

Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

University of Banja Luka, Faculty of Electrical Engineering
Patre 5, 78 000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina
{drazen.brdjanin, danijela.banjac, goran.banjac, slavko.maric} @etf.unibl.org

Abstract. Existing approaches to business process model-driven synthesis of data
models are characterized by a direct synthesis of a target model based on source
models represented by concrete notations, where the synthesis is supported
by monolithic (semi)automatic transformation programs. This article presents an
approach to automated two-phase business process model-driven synthesis of
conceptual database models. It is based on the introduction of a domain specific
language (DSL) as an intermediate layer between different source notations and the
target notation, which splits the synthesis into two phases: (i) automatic extraction
of specific concepts from the source model and their DSL-based representation,
and (ii) automated generation of the target model based on the DSL-based
representation of the extracted concepts. The proposed approach enables develop-
ment of modular transformation tools for automatic synthesis of the target model
based on business process models represented by different concrete notations.
In this article we present an online generator, which implements the proposed
approach. The generator is implemented as a web-based, service-oriented tool,
which enables automatic generation of the initial conceptual database model
represented by the UML class diagram, based on business models represented by
two concrete notations.

Keywords: BPMN, business process model, conceptual database model, domain
specific language, extractor, generator, model-driven, service-oriented, UML.

1. Introduction

Data models are essential to any information system. The process of data modeling is not
straightforward. It is often time-consuming and requires many iterations before the final
model is obtained. Therefore, automatic data model design is very appealing and has been
the subject of research for many years.

The majority of existing approaches to automated data model design are linguistics-
based, since natural languages are commonly used for requirements specifications.
However, their utilization is questionable for languages with complex morphology.
Currently, there are several alternative approaches taking collections of forms or models
(graphically specified requirements) as the basis for automated data model design, instead
of textual specifications.

* This article constitutes an extended version of the conference paper entitled ”An Online Business Process
Model-driven Generator of the Conceptual Database Model” presented at the 8th International Conference
on Web Intelligence, Mining and Semantics — WIMS’18, June 25-27, 2018, Novi Sad, Serbia.

658 Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

The idea of model-driven design of data models is already thirty years old [15].
However, the fully automatic model-driven synthesis of the data model (MDSDM) is still
the subject of extensive research. In existing literature there is only a small number of
papers presenting the implemented automatic model-driven generator of the target data
model with corresponding evaluation results, while the great majority only present modest
achievements in (semi)automated, or even manual, data model synthesis.

The existing MDSDM approaches are characterized by the direct data model
synthesis based on source models represented by some concrete notation such as BPMN!
or UML? activity diagram, where the synthesis is supported by monolithic transformation
programs. Direct synthesis introduces dependency of the generation process from the
source notation, because different source notations require different generators. There-
fore, these generators depend on changes of notations, which are caused by metamodel
changes and/or vendor specific implementations. The existing tools are also platform-
dependent since they are mainly implemented as transformation programs deployed
in some development platform (mainly Eclipse-based). Overcoming these shortcomings
motivates our research with the following objectives: (1) define an approach to business
process model-driven synthesis of conceptual database models, which enables the
development of modular transformation tools for automatic synthesis of the target model
based on source models represented by different notations with reduced dependency of
the generation process from the source notations; (2) implement an online generator of
conceptual database models based on the proposed approach, which facilitates database
design as well as development of web-based environments for automatic business process
model-driven database design.

In this article we present an approach that fulfills the aforementioned research
objectives. It is based on the introduction of a domain specific language (DSL) as an
intermediate layer between different source notations representing business process
models (BPMs) and the target notation representing the conceptual database model
(CDM). This simple DSL, called Business Model Representation Language (BMRL), is
used to represent BPM concepts (such as participants, objects, tasks, etc.) having semantic
potential for automatic CDM synthesis. With the introduction of BMRL, the CDM
synthesis is split into two phases. In the first phase, specific concepts are to be
extracted from the source BPM and represented by BMRL. Such an extraction can
be easily implemented for different source notations. In this article we completely
present extraction from BPMN models. In the second phase, the target CDM is to be
generated based on the BMRL-based representation of the extracted BPM concepts.
This generator is to implement a rather complex set of rules, which are dependent on
simple and unique BMRL concepts, but independent of different source notations. This
constitutes the first main contribution of the article.

The second main contribution of the article is related to the development and
presentation of an online, publicly available, service-oriented CDM generator, which
implements the proposed two-phase approach to BPM-driven CDM synthesis. Its usage
could be twofold: (i) developers are able to implement their own applications consuming
the exposed web service, (ii) database designers are able to use the implemented client
application aimed at BPM-driven CDM synthesis.

! Business Process Model and Notation [50]
2 Unified Modeling Language [51]

Automated Two-phase Synthesis of Conceptual Database Models 659

This article constitutes an extended and complete version of two closely related
conference papers. The first paper [17], which proposed the first ideas about two-phase
data model synthesis, was presented at the 7th International Conference on Model and
Data Engineering — MEDI’17. The second paper [18], which presented implementation
of the first online two-phase BPM-driven CDM generator, was presented at the 8th
International Conference on Web Intelligence, Mining and Semantics — WIMS’1S.
The content of both conference papers is merged and expanded by: (1) a detailed
presentation of the related work, (2) detailed presentation of the proposed approach
with particular focus on BPMN as the starting notation, (3) recent achievements related
to the implementation of the online generator applying the proposed approach, and
(4) evaluation of the approach and implemented online generator.

The article is structured as follows. After the introduction, the second section presents
the related work. The principles of the two-phase BPM-driven CDM synthesis are
considered in the third section. The fourth section presents the semantic capacity of BPMs
for automatic CDM synthesis, as a basis for DSL specification. The first phase of the
CDM synthesis is presented in the fifth section, while the second phase is presented in the
sixth section. The seventh section presents the implementation of the online generator.
An illustrative example of the two-phase BPM-driven CDM synthesis is presented in the
eighth section. The proposed approach is evaluated in the ninth section. Finally, the last
section concludes the article.

2. Related Work

The survey [15] shows that existing MDSDM approaches, with respect to the primary
focus of the source notation, can be classified as: function-oriented, process-oriented,
communication-oriented and goal-oriented. The chronological overview of the existing
MDSDM approaches, grouped by the source notation, is given in Fig. 1. Different marks
are used to differentiate the source model completeness, which can be complete or partial
(partial source model contains a single diagram, although a real model contains a finite set
of diagrams). The figure also shows the level of automatisation for the approaches, which
can be manual (not supported by any software tool), semiautomatic (supported by a tool,
but designer’s assistance is still required), or automatic (without designer’s assistance).
The arrows are used to emphasise the related papers presenting the improvements in the
same approach.

Our approach belongs to the process-oriented approaches. As shown in Fig. 1, process-
oriented models (POMs) constitute the largest category of models used as a source for
MDSDM. Although the first data model synthesis based on a POM (A-graph) was
proposed by Wrycza [64] in 1990, the boom of these approaches was influenced by the
development of metamodel-based notations, particularly UML AD (Activity Diagram)
and BPMN, as well as model-to-model transformation languages ATL? and QVT*.

The survey [15] shows that POMs, used as a basis for data model synthesis, have
been represented by seven different notations: BPMN, UML AD, Petri Net, RAD (Role
Activity Diagram), GRAPES-BM/TCD, EPC (Event-driven Process Chain) and A-graph.
Although there are more than 40 papers considering the POM-based MDSDM, the

3 ATLAS Transformation Language [38]
4 Query/View/Transformation [49]

Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

660
year 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
) o o——>0 -
i Carswell & Markowitz Tan&Li Tanetal. Tiwari etal. :
i Navathe e} Shiroiwa et al.o @ Bloomfield o
; O Shoval Becker et al. w ®Truscan etal. Kardos &
Alabiso Femandes et al. w Drozdova DFD
IDEFO L o garos O | | Osisetal. Dopinsetal. TFM
(0o) o T 0.1 Solomencevs O
i Adam & Angetal. Kamimura Donins & Osis
i_Gangopadhy (IDEF*) etal.
Function-oriented models [UCD Santos& Machado© Essebaa & Chantit®
‘A-graph OWrycza(ISACER) | | Petri net 'RAD O Fouad
| N A L)
Nikiforova& Nikiforova w TCD:
; Kirikova etal. 7 Nikiforova etal. :
{EPC ONitttgens etal. i ~ © > o L] (BrainTool)
P \
\ O Zhang et al.
Nikiforova & Paviova © Kriouile et al. @
Rungworawut& o© Rhazali et al. ©
Senivongse_ /! e —>w T—>>w
© Rodriguezetal. Drozdova et al.
O—> O o —> O\
Process-oriented models Brambilla et al. Cruz et al. o
de la Vara et al. O —> © de la Vara OSantos 8§
livei :
BPMN Brdjanin et al. @ NI e =
| UML AD Brdjanin & Maric: \
E o "—w L]
Brdjanin Brdjaninetal. | Brdjanin et al.
&Maric (ADBdesign) | (MEDI7)
© Garcia Moli : .
Garcia Molina et al. © Koch etal. w OKherraf et al. Brdjanin et al.
(WIMS'18)

Rodriguez et al. w
Suarez etal. ©

: Barros & Gomes O
| Kosters et . (SCORES) ©

Livetal.o

Rosenberg & Scott ©

Koskinen et al. (TED) O —> O Selonenetal. |
Insfran (RETO)® 5 OHsu :

| ICONIX

OEspana

i OGonzalez et al.

Communication- - ;
oriented models : UML SD Insfran et al. @ OJian-chih
Goal-oriented models ‘V-graph Silva & Leite ®::0 Jiang etal. TROPO

i —» OMartinez Rebollar

complete partial
?:::;ZT ?T(:gg;? P Castroetal. O O Martinez et al. @ Aguilar et al.
) O ! manual Alencar et al. @ Alencar et al.
[©] o semiautomatic Castro et al. 7N (XGgOD) o
L4 @ : automatic (GOOD) ™ jencar et al. Alencar et al. Meloetal.__?
year 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Fig. 1. Overview of existing MDSDM approaches

Automated Two-phase Synthesis of Conceptual Database Models 661

survey shows that the semantic capacity of POMs has still not been sufficiently identified
to enable automatic synthesis of a complete data model. Furthermore, the majority
of the approaches enable semiautomatic generation of the target model with modest
completeness and precision. The majority of all POM-based approaches are also based on
guidelines and informal rules that do not enable automatic MDSDM.

The BPMN is the most commonly used source notation for POM-based MDSDM.
Among almost 20 papers, there are three QVT-based proposals [53,54,42], but with
modest achievements in the automatic generation of analysis level class diagrams. There
is an XSLT-based proposal [29] for automatic generation, as well as several proposals
[55,11, 12,28, 30] for semiautomatic generation of class diagrams. A MDSDM based on
BPMN is also considered in [65, 48, 30], but without implementation. The formal rules for
automatic CDM synthesis based on BPMN are presented in [21, 56], and partially in [26,
27]. Other papers consider only the guidelines that do not enable automatic synthesis. A
set of interrelated BPMs is considered in [27, 56], but the approaches are not implemented.

Among more than ten papers using UML AD as the source notation, only [23] presents
an automatic CDM generator (named ADBdesign) based on the complete source model.
Several papers [39,40, 52, 16, 13,22, 14] present the automatic, mainly ATL- and QVT-
based, data model generation based on the incomplete source model, but with modest
completeness and precision, while the others present only manual data model derivation.

There are also several related papers proposing the usage of TCD notation as a
starting point for MDSDM, initially through an intermediate model, while [46] presents
the BrainTool generator, which generates the data model directly from the TCD. However,
like the majority, they do not consider the complete source model. Among the other
POM-based approaches, there are only two papers [10, 34] presenting software tools for
the (semi)automatic data model generation based on the partial source model.

The survey [15] shows that function-oriented models (FOMs), used as a basis for
data model synthesis, have been represented by four different notations: DFD (Data
Flow Diagram), SADT/IDEFO, TFM (Topological Functioning Model), and UML UCD
(Use Case Diagram). Although the first ideas about the FOM-based MDSDM appeared
in the second half of the 1980s, the survey shows that the semantic capacity of FOMs
has not been sufficiently identified to enable automatic synthesis of the complete target
data model. The large majority of the approaches are based on guidelines and informal
rules and take an incomplete source model as the basis for data model synthesis. The
automatic data model generation is presented in [8, 62,33, 9, 32], while the semiautomatic
generation is presented in [61,43,6,57].

The survey [15] shows that goal-oriented models (GOMs), used as a starting point for
data model synthesis, have been represented by the i* notation and some i*-originated
notations like TROPOS, V-graph, and WebGRL. The automatic data model synthesis (to
some extent) is presented in [25,4,3,5,59,37,45,2, 1, 60]. The GOM-based approaches
use complete source models.

The smallest number of models used for MDSDM are communication-oriented
models (COMs). They have been represented by three different notations: UML SD
(Sequence Diagram), CED (Communicative Event Diagram) and ICONIX (Robustness
Diagram). UML SD is used in the majority of COM-based MDSDM approaches. The
automatic data model synthesis is presented in [35, 36], while the semiautomatic synthesis
is presented in [41, 58,44, 31].

662 Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

The large majority of all proposed MDSDM approaches are not evaluated at all (more
than 90% according to [15]). Most of the papers reporting evaluation results mainly
focus on approach usability, but not on the qualitative/quantitative assessment of the
implemented tools or generated data models. The GOM-based approaches are not
evaluated. Only one COM-based approach [31] is evaluated based on lab demos and a
controlled experiment with master students (model completeness is ~70%). Regarding
the evaluation of the FOM-based approaches, only [61] presents evaluation results based
on a controlled experiment (but the authors do not focus on the assessment of method
effectiveness and efficiency). Regarding the evaluation of the POM-based approaches,
three papers [21,23,47] report case-study based evaluation, while the results of con-
trolled experiments are reported in [28, 34,7, 19]. The most complete evaluation results
of an MDSDM approach, which are based on the experiment conducted with a significant
number of database practitioners, are presented in [19, 20] (average model completeness
and precision are over 80%).

This article presents the recent achievements of an ongoing long-term research
project about automatic BPM-driven CDM synthesis. The first ideas and prototype
implementation (ADBdesign) were presented in 2010 [16]. The initial implementation
was based on BPMs represented by UML ADs. The initial set of rules was upgraded,
amended, and formalised in [14]. The automatic synthesis based on the finite set of UML
ADs, was presented in [23]. The set of formal rules [14] was amended and applied [21] to
collaborative BPMs represented by BPMN, and subsequently improved after a controlled
experiment conducted with undergraduate students [7]. Through the experiment with
students we obtained a very high completeness and precision of automatically generated
CDMs (both average measures over 85%). After that experiment, we conducted the
experiment [19,20] with database practitioners, which almost confirmed the previous
results. Based on the semantic capacity of POMs, which was identified and proved in the
previous research and conducted experiments, we specified the aforementioned DSL
named BMRL and proposed the two-phase BPM-driven approach to CDM synthesis
[17]. This approach is depicted in Fig. 1 as notation-independent and outside of any
POM region. In this article, we provide a detailed presentation of the approach, and
the most recent implementation of the online CDM generator [18] based on the proposed
approach.

In comparison to the existing approaches, the proposed approach is characterized by
two-phase synthesis of the target model, while the existing approaches are characterized
by direct synthesis. The implemented tool, in comparison to the existing tools, is
the first online, web-based, publicly available tool. It is not dependent on any particular
modeling platform, and enables automatic synthesis based on two different concrete
source notations, in contrast to the existing tools, which are platform-dependent and
enable (semi)automatic synthesis on the basis of a single starting notation. Furthermore,
the implemented functionality is also available through the publicly available web service,
which could be consumed from other modeling tools and platforms. Since the proposed
two-phase approach is based on the previously experimentally evaluated approach to
direct synthesis, this online tool is also characterized by very high effectiveness and
efficiency, while the existing tools are not experimentally evaluated.

Automated Two-phase Synthesis of Conceptual Database Models 663

3. Two-phase BPM-driven CDM Synthesis

The MDSDM process is driven by a set of transformation rules combining two
related sets of actions aimed at extracting characteristic concepts from the source model(s)
and generating the corresponding concepts in the target model. In the existing MDSDM
approaches, these two sets of actions are strongly coupled, meaning that the synthesis
is performed by a single transformation program extracting concepts from the source
model(s) and generating the target model. In the case of BPM-driven approaches, this
means that a transformation program takes source BPMs represented by some concrete
notation such as BPMN or UML AD, and generates the target data model represented by
another concrete notation such as UML class diagram. Such direct synthesis has certain
advantages such as directness and implementation facilitated by standardized transforma-
tion languages (e.g. ATL and QVT). However, it also requires different generators
for different source notations. Therefore, these generators depend on modifications of
the source and target notations (caused by metamodel changes and/or vendor specific
implementations), and transformation rules as well. While the source notation-related
modifications require modifications of only the corresponding generator, any modification
of the transformation rules and/or target notation requires modifications of all generators,
which can be considered a disadvantage of the direct synthesis.

In this article we argue that the above-described disadvantage can be reduced by
decoupling the extracting and generating actions by separating them into two indepen-
dent and consecutive activities, and splitting the synthesis into two phases. This can be
achieved by introducing an intermediate layer between the source and target models. In
the first phase, specific concepts are to be extracted from the source model(s) and
represented at the intermediate layer. This can be achieved by transformation programs
called extractors. A different extractor is required for each source notation. In the second
phase, the target data model is to be generated based on the intermediate representation of
the extracted concepts, which can be achieved by a single transformation program called
generator. If we assume that the introduced intermediate layer is invariable’, then the
extractors depend only on the source notation-based modifications, while the generator
depends on the modifications of the transformation rules and/or target notation. Like
in the direct synthesis, the source notation-related modifications require modifications
of only the corresponding extractor. However, any modification of the transformation
rules and/or target notation requires modifications of only one generator. In this way
the indirect two-phase data model synthesis can significantly reduce implementation
efforts required to support diversity and/or modifications of the source notations and
transformation rules for data model synthesis. Apart from the easier maintenance, the
indirect synthesis could also be more effective in solving portability and interoperability
issues, model checking, etc.

Alternatively to the proposed approach, some disadvantages of the direct synthesis
could be reduced by applying a hybrid approach, which means that we may choose
one (primary) source notation and implement the appropriate generator applying the
principles of direct synthesis. The source models represented by other (secondary)
modeling notations should be firstly transformed into the corresponding (equivalent)

5 Strictly speaking, the intermediate layer is not immutable. Its changes occur with the additionally identified
semantic capacity of BPMs for automatic CDM synthesis. However, these changes happen quite seldom
compared with the related changes of source BPM notations.

664 Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

models represented by the primary notation, and then the generator could be applied in
order to obtain the target data model. For example, if we choose BPMN as the primary
notation, then we need only the BPMN-based CDM generator, while the source models
represented by some other notation (e.g. UML AD) should be firstly transformed into
the corresponding BPMN models and subsequently used as the source for BPMN-based
CDM synthesis. However, such a hybrid approach will also share the majority of
the direct synthesis’ disadvantages (transformers are dependent on both primary and
secondary notations).

Following the idea of indirect data model synthesis, this article presents an approach
to automated two-phase BPM-driven CDM synthesis. Although the intermediate layer
could be differently represented, we use a DSL called Business Model Representation
Language (BMRL) for its representation. It is a simple DSL for the representation of
BPM concepts enabling the automatic CDM synthesis. Its specification is based on the
results of our previous research [14,21] indicating that BPMs are characterised by
some typical concepts (such as participants and objects) and facts (such as creation of
objects and usage of objects) that enable automatic CDM synthesis. Those concepts and
facts are inherent to BPMs, but their representation may differ in different modelling
languages. Independently of the used modelling notation, those concepts and facts
have certain properties, meanings and roles (we use the semantic capacity term) that
allow us to derive conclusions about the corresponding data model concepts (entity types,
relationship types, etc.) and rules for mapping source BPMs to the target CDM.

With the introduction of BMRL, the CDM synthesis is split into two phases (Fig. 2). In
the first phase, specific concepts are to be extracted from the source BPM and represented
by BMRL. We illustrate the approach for two different notations (UML AD and BPMN)
and provide details about the implemented extractors. In the second phase, the CDM
(represented by the UML class diagram) is to be generated based on the BMRL-based
representation of the extracted concepts. The generator has to implement a rather complex
set of rules, which are dependent on simple and unique BMRL concepts, but independent
of different source BPM notations.

N ~
BPMN to UML CD
generator BPMN
R extractor
N\ <
T oH®
o> I\ | W [Eel e | 2|
S et 7| umLAD BMRL
UML AD UML i extractor t UML
to UML CD o UML CD
Class enerator Class
generator Diagram umML 9 Diagram
Activity Activity
Diagram f Diagram
7/
° s o - i
[] _ [—
° [
Direct data model synthesis Two-phase data model synthesis)
, i

Fig. 2. Transition from direct (one-phase) to indirect (two-phase) data model synthesis

Automated Two-phase Synthesis of Conceptual Database Models 665

From the technical perspective (Fig. 3), the implemented extractors extract specific
concepts from the source models conforming to the corresponding metamodels, and
generate the corresponding BMRL representation of the extracted concepts according
to the BMRL metamodel. The CDM generator generates the target model represented
by UML class diagram conforming to the corresponding metamodel. As illustrated in
Fig. 3, the proposed two-phase approach enables simple extensibility and support for other
process-oriented notations (which are not necessarily metamodel-based) by implementing
additional extractors.

Source BMRL UML CD
Mgth:fnﬁga <_<_f9<_)[lf9r_n_1_s_>_>_ 1 UMLAD UML AD Metamodel Metamodel
model _extractor A A

' |
<<conforms>> <<conforms>>

A
BPMN <<conforms>> SOLES o eeman BMRL Target
PRl . BPMN 5 — > >
Metamodel model v code UML CD

BPMN BMRL

. extractor to UML CD
° v generator
° -~

prernmeioeeseeeeeen : . Source XYZ
H A > XYZ extractor

model

Fig. 3. Technical perspective of two-phase BPM-driven CDM synthesis

4. Semantic Capacity of BPMs for Automatic CDM Synthesis

As already stated, the previous research [14,21,7,19,20] implies that several common
BPM concepts have semantic capacity for automatic CDM synthesis. This section
provides a brief overview® and illustration (Fig. 4) of the identified semantic capacity of
BPMs for automatic MDSDM. The identified semantic capacity constitutes the basis for
the specification of BMRL and corresponding rules for both phases.

Typical BPM concepts that enable automatic generation of entity types (classes) in
the target CDM are: participants, roles, objects, message flows, and activations of existing
objects. Participants (may) have different roles. Participants and their roles are represented
differently in BPMs (pools/lanes, partitions/subpartitions). All types of participants, and
all their roles as well, are to be mapped into the corresponding classes in the target CDM
(rule T7). During the execution of a business process, participants perform tasks (actions)
and exchange messages. Each different type of objects, and message flows as well, is to be
mapped into the corresponding class in the target CDM (75%). Each task/action may have
a number of input and output objects that can be in different states. The objects can be
generated in the given process, or existing — created in some other process. An activation
represents the fact that an existing object constitutes input in a task that changes its state.
Activated objects have the semantics similar to that of generated objects and need to be
represented with a corresponding class (activation class) (753).

6 A complete formal specification of transformation rules for direct BPM-driven CDM synthesis is given in
[14,21,20].

666 Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

Rules BPM Concepts CDM Concepts
T m‘ﬁ_ [p | [pPut][Prz]
o |
[Pt || P2 |
gl I
o]]
|
T | p | [ostate| [0 |
= 1 1+
T = [PL1 |——<>|P_P_L1 P |$—|_P_L2 PL2 |
D | 1 L |
Ts a P [—1 o
’ ° T
B . | .. o
Ts y M | P1 Ip1_M|l " IP2_I\:1“Il i I
g [&] |
HIR RGN
B ‘ID T
[state] U"1T2 *
Ts a Q TQ [0t |ormf 02 |

Fig. 4. Mapping of BPM concepts into CDM concepts

There are several common patterns in BPMs enabling automatic generation of
relationship types (associations) in the target CDM. They enable generation of three types
of associations: participant-participant, participant-object, and object-object. Participant-
participant associations originate from the fact that a participant may have different roles.
This implies that the class representing a pool should have associations with classes
representing corresponding lanes (7}). Process patterns having semantic potential for
the generation of participant-object associations are: creation and subsequent usage of

Automated Two-phase Synthesis of Conceptual Database Models 667

generated objects (75), exchange of messages (7g), and activation and subsequent usage
of activated objects (7%). Every mentioned fact is to be represented by corresponding
association(s) with multiplicities 1:* or 0..1:*. There are two bases for the generation of
object-object associations: (i) activation (7g), which is represented with an association
between the class that represents the existing object and the class that represents its
activation, and (ii) tasks having input and output objects of different types (71y), where
the association end multiplicities depend on the nature of the objects (if they are either
generated, non-activated existing or activated existing objects).

5. Phase I: DSL-based Representation of BPM Concepts

The first phase of the CDM synthesis includes the extraction of concepts from the
source BPM and their BMRL-based representation. This section presents the BMRL
specification and implementation of BPM extractors.

5.1. BMRL Specification

DSL is a computer programming language of limited expressiveness focusing on a
particular domain. Programming languages, including DSLs, consist of three main
elements: concrete syntax, abstract syntax and semantics [63]. The concrete syntax
defines the notation with which users can express programs (it may be textual, graphical,
tabular or combined). The abstract syntax is a data structure that can hold the semantically
relevant information expressed by a program (most often represented by a tree or
graph). There are two kinds of semantics. The static semantics is defined by a set
of constraints and/or type system rules to which programs have to conform, while
execution semantics refers to the meaning of a program once it is executed [63].

Based on the identified semantic capacity of BPMs for MDSDM, we defined a
DSL named Business Model Representation Language (BMRL). For its specification we
used Xtext’ framework. Xtext belongs to parser-based approaches, in which a grammar
specifies the sequence of tokens that forms structurally valid programs. In such systems,
users interact only with concrete syntax, while the abstract syntax tree (AST) is
constructed from the concrete syntax of a program [63]. Xtext relies on Eclipse Modeling
Framework (EMF) [24] models for internal AST representation.

The Ecore metamodel of BMRL and its grammar are shown in Fig. 5. A BMRL
program contains an arbitrary number of abstract elements: PackageDeclaration.
Import, GeneralizedParticipant, Task,Object,ObjectReference, and
I0ObjectReference. Each business process participant can be represented by the
Participant element. Participants can have roles (Role), and each role can have sub-
roles. The Participant and Role elements have the name attribute. Participants (or
participants with specified roles) perform tasks (Task). The Task element has the name
attribute. Each task can have inputs and outputs, which are represented by input/output
specification elements (IOObjectReference). Each different type of objects is
represented by the Object element. For each type of objects, one or more references
(ObjectReference) can be specified, since objects can be in different states (state).
The existing attribute shows whether the given reference represents a reference to an

7 http://www.eclipse.org/Xtext/

668 Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

Model + elements AbstractElement + elements PackageDeclaration
* + name: EString

[+ inputObjects
ObjectReference + reference 100bjectReference S Task
—{ + name: EString 0.1 + multiplicity: EString + outputObjects | + name: EString
+ state: EString

+ existing: EBoolean = false

*

. Participant
0.1Y\/ + object
|| Object 0.1 + actor

N i GeneralizedParticipant

+ name: EString + participant 0.1
t + name: EString
0.1

Import |; Role

+ importedNamespace: EString + superRole

grammar org.unibl.etf.BMRL with org.eclipse.xtext.common.Terminals
generate bMRL "http://www.etf.unibl.org/bmrl2cd/BMRL"
Model:
(elements+=AbstractElement) x;
PackageDeclaration:
’'package’ name=QualifiedName ’{’ (elements+=AbstractElement)x ’'}’;
AbstractElement:
PackageDeclaration | Import | GeneralizedParticipant | Object |
ObjectReference | Task;
QualifiedName:
ID (' .’ 1ID)*;
Import:
’import’ importedNamespace=QualifiedNameWithWildcard;
QualifiedNameWithWildcard:
QualifiedName ' .x"7?;
GeneralizedParticipant:
Participant | Role;
Participant:
’'participant’ name=ID;

Role:
"role’ name=ID ('’ (' superRole=[Role|QualifiedName] ')’ | ’'of
participant=[Participant|QualifiedName]) ;
Object:
’"object’ name=ID;
ObjectReference:
’objectReference’ name=ID ’references’ object=[Object|QualifiedName]
(" [" state=ID "]’)? (existing?=’existing’)?;
IOObjectReference:

reference=[0ObjectReference|QualifiedName]
'multiplicity’ multiplicity=Multiplicity;
Task:
"task’ name=ID ' {’
"actor’ ’:’ actor=[GeneralizedParticipant|QualifiedName]

("input’ '’ (inputObjects+=I00bjectReference) ’"}’)?
(Youtput’ ’{’ (outputObjects+=I00bjectReference)* ’"}’)?2 "}’;
Multiplicity:

INT | ’'-1';

Fig. 5. BMRL metamodel (top) and grammar (bottom)

existing object, or to an object generated in the given BPM. The TOOb jectReference
references one of the Ob ject Reference elements and specifies its multiplicity. BMRL
supports the use of packages (PackageDeclaration)and imports (Import) in order
to avoid name ambiguities.

Automated Two-phase Synthesis of Conceptual Database Models 669

5.2. BPM Extractors

As previously described, the first phase includes the extraction of important concepts
from the source BPM and their representation according to the implemented DSL.
This extraction and generation of the corresponding BMRL code can be implemented in
different ways, either by using general purpose or specialized transformation languages.
We used Acceleo® for the implementation of extractors. So far, we have implemented
two extractors — one for BPMN and another one for UML AD. In this article we provide
implementation details only for the BPMN extractor”.

The BPMN extractor performs the extraction of characteristic concepts from the source
BPM represented by BPMN (the related BPMN metamodel [50] excerpt is shown in
Fig. 6), and generates the corresponding BMRL representation of the extracted concepts.

+sourceRef

+parentLane +childLaneSet,
0.1 0.1
+lanes +aneSet

1 +ioSpecification
InputOutputSpecification 0.1

1 =

= Interactic

+aneSets

1
+name: String +targetRef

= 1
frmessageFlows 4

Participant

%

Datalnput

. +name: String[0..1]
+datalnputs | +isCollection: Boolean = false

+name: String[0..1]
9 +ioSpecification

+participants’]'= =
+collaboration

1 *
o1 0..1 - DataOutput

-

+name: String[0..1]

Coktaboration |1 Activity i"l iation +isCollection: Boolean = false
iations L
+name: String |+collaboration 0.1 py
- 9| iati DataAssodiation
0..1'+definitionalCollaborationRef +dataO iation’s| - —
+targetRefJ/1 +s°“rceRef\l/x

DataObjectReference ItemAwareElement |

4

+processRef

+dataObjectRef ll

+lowElements "
DataObject | | Datastate | 0-1

+container
! |+|sCoI[ect|on: Boolean = false| |+name: String | +dataState

o 0-1

p 1,0-1 ontainer

Fig. 6. BPMN metamodel [50]

The formal rules for the extraction of concepts from BPMN and their BMRL-based
representation are given in Tables 1 and 2. This set of rules enables the extraction of:
participants and their roles, generated and existing objects, as well as tasks having input
and/or output objects.

For each Participant in the source model, the corresponding Participant
element (of the same name) has to be generated in the BMRL. For each Lane the
corresponding Role element has to be generated. The generated Role belongs to the
Participant that corresponds to the Participant containing the given Lane.

Each Task may have input and/or output objects (DataInput, DataOutput,
DataObjectReference, and MessageF1ow), which can be in different states. For
each DataInput, DataOutput, MessageFlow, and DataObject referenced
by DataObjectReference, the corresponding Object and ObjectReference
elements have to be generated. The Ob ject element represents different type of objects

8 http://www.eclipse.org/acceleo/
9 Implementation details for the UML AD extractor are presented in [17].

670 Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

and it has to be named the same as the given source element. The ObjectReference
element represents the concrete object and it should be named by concatenating the names
of the object and its state. Attributes state and existingofthe ObjectReference
depend on the state and nature (generated/existing) of the given source element. If it
represents the existing object, then its name should be prefixed with ' Existing’.

For each Task element in the source model, the corresponding Task has to be
generated, whose actor attribute corresponds to the GeneralizedParticipant
performing the given task, while the inputObjects and outputObjects attributes
are represented by the TOObjectReference elements generated for dataInput—
Associations and dataOutputAssociations elements of the task, as well as
for MessageF lows referencing the given task. The multiplicity attribute has to
be set based on the isCollection attribute of the element referenced by the (input or
output) data association or message flow.

For each MessageF low element referencing Participant or Event in the source
model, the corresponding Task (named ' SendMessage’ or ' ReceiveMessage'’)
has to be generated. Actor of the generated task is GeneralizedParticipant which
corresponds to the Part i cipant referenced by the message flow, or the Participant
related with the Event referenced by the message flow.

Figure 7 (on the left) provides an illustration of the extraction of specific concepts
from a simple BPM (BPMN) and generation of the corresponding BMRL code. This
simple BPM represents an activation of the existing object Book, which is performed by
the Librarian participant. The dashed arrows depict the mapping of source BPMN
concepts into the target BMRL concepts.

BPMN
- - /* Participants and roles */
Librarian ®—|— — > participant Librarian — UmL cb
-

-~ R R

Librarian
/* Objects */ S~ _
J — —> object Book o— — __ + id: Integer
™~
N 1
Sthrt /* Object references */ N :
Loanin
Book \\\\ // DataInputs - existing objects \ Vad oaning
» objectReference ExistingBook_ \ / Book L d
. isti 00 oane
Loaning e references Book existing \ | =
N > 7 +id: Integer
// DataObjects, DataOutputs, and MFE/ «
. *
» oObjectReference Book_Loaned o / X
}AK” references Book[Loaned] X Loaning 1
A Z - \
e N\ /* Tasks */ =" - Book
L Book > task Loaning { *— — — i Int
[Loaned] actor: Librarian + 1d: Integer
input { ExistingBook_ multiplicity 1 }

output { Book_Loaned multiplicity 1 } }

Fig. 7. From BPM (BPMN) through BMRL to CDM (UML CD)

671

Automated Two-phase Synthesis of Conceptual Database Models

\%

{sweu-sjejgeiep- 10p=23e3s - I0
(sweu-e3elgelep - I0P ‘sweu - Joyloalgoeiep " I0p) 3e0U0D=2WeU " 10
\V 9STeI=DbUT]ISTXD 10 V onuomﬂQO.MOM
sousIxagayloalqo:ao
{sweu- yeyy308fqoeiep - I0pP="wWEU- O}
108lqo:o souaIzayayloalgoeieq: aop

OSIMIOY}O ‘oureu JoyeSessow Ju
{ = eureu’Io
(3oyeSessow Ju)paut FopunsT ‘oweu Ju
VvV esTej=HburisTxe 10 \V 0=309[qo 10}

sousaxagayloslqo: a0

OSIMIOU}0 ‘eureu JoyoSesseuw yu
{ = suweuro }
(FogeSessaw ju)psut FopunsT ‘owWeu’ Ju

109lqo:o MmOTAobessaR: Ju

{eweu-sje3geiep op=23e3s-io
V (Sweu-sjejlselepop ‘sweurop) 3eOUOD=SWeU " I0
VvV @sTej=HutisTxe 10 \V 0=309[qo 10}
souaIxagayioslqo:ao
{suwreu- op=suweu-o} {s3andanpe3ep-uorieoryToedsoT yaysseooad-dsdop}
10alqgo:o andanpe3eq: op

{oweu-sjejgeyep Tp=o3e3s- 10
\V (sweursjeijgejep-Tp‘sweurIp’ ,PUTISTXH,) IEOUOD=SWPRU " 10
VvV eni3i=Hburisixe-io v o=308fqo- 10}

oousxagayloslqo:xo

{sweu - Tp=sweu-o} {sandurejep-uorieoryroadsor - yoysseooad-ds>Tp}
309Lqo:o andurejeq: Ip

{z=eT0¥iedns s1 Vv sweu-'sT=2wWeU SI} {ssueT-31esoURTIPTTUD " TDST}
oToy:s1 sueT:sT

{d=3uedtoTqaed 1 v sweu-T=sweu-1} {seuet-siegouet - yoysseooad-dsdT1}
oToyd:x sueT: T

{eweu-ds=sweu-d}
JquedroTtiaed:d quedroTiaedg:ds

1daduod TN 19S1e], NIA4 ur 3dasuod 3danog

uonejuasaidor THING 110y} pue NJNJF woj s3doouod Jo uonoenxa 1oy soyny *I dqeL

Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

672

{ uOT308TTODST JoWelT " IJoyyebessau - Ju
\V (FJoqwelT - Joyobessaur” Jw) pouUTISpUNS T
\V (Joysbesssw: Ju) pauTISpuUAST—=§D
9SIMILaYI0 ‘T OSIMIOYJO ‘oureu yoysSessow Ju
‘ = ut ¢ =
D ‘x) (3oyeSessow Ju)paut FopunsT ‘oWRU Ju ¢s
‘WT=A3TOTTdTITAW IOTT V I0=90USISFSI IOTT
Vv s308Lgo3indut 3310TT
V (s A 2 A d)=T030®°1 V (ZS‘,oDbeSsoNeATS08Y,) JeOUOD=aweu 1}
yser:a

ﬁﬁp:o\,m \u:mgﬂouummw S (zo¥219baea- Jw) woom\ﬂuw
MOT gobessap: Ju

{ uoT309TTODS T JoWe T " JoybesSaU " JU
V (JoywelT - Joysbhesssurr Jw) poauTIopunsS T—
\V (Joyebessaw: Ju) PAUTIDPUAST—=£D

9SIMIBYJO ‘T 9SIMISY}0 ‘oureu: JoyeSessouw Ju

¢ . = wo ¢ =18
€0 “* (3oyeSessow yu)paut FopuST ‘OWRU’ Ju
‘Wo=A3TOTTATITNW IOTO \/ IO0=90USISISI°IOTO
\
s3o0algoindiano-3310T0 Vv (SI A I A d)=7030€°73 V :”m\b@mwmwzvcmeumozoonwEm:.uw mmu:w\ﬁ\ucmmﬂouummw =) GmmwouSOm.wvaomoﬁuw
yser:3 MOT obessapn: Ju
{uoT308TTODST JoYwel T Joyebessaw Ino Vv (JoHwelT ' Joyyebesssu’ Ino) pauTIspuns T
V (Iogsbessswrino)psutyspunsT— A UOTIOSTTODST " Ioyioslqoeiep:ino
V (3eyg30elqoeiep Ino)pauTIepunsT— A UOT3IOSTTODST ' 3IN0=ZD
‘UOT]0STTODST " JOUWaIT Joygabessau- ur Vv (JoHwWolT " Joyahessaw uT) pauTISpunNS T
V (3oyebesssuw uT)pauTISpuUAST— A UOTIOSTTODST' Foujosalqoeiep ut
VvV (Fog308(lqoelep uT)pauTIspunsT— A UOTIOSTTODST UT=TD
9SIMIS)0 ‘T 9SIMIS)0 ‘T
‘ . = wo ‘ . = ut
T '* TO "% { {3=7°9eoanos-ju | moTgebessen:Ju}
‘Wo=A3TOTTdTI3ITNW IOTO \V I0=9D0USISDISI"IOTO M JFoy¥3sbiel-suoTieroossyindinoelep- 3is S 3no
Vv s32o0algoindino- 331010 Vv WI=A3TOTTdTIITNW IOTT \/ I0=90USI8JSI1°IJIOTT \Vi Auuwmmwwmumu.wE | SOﬂmwmmmwa"wEw
VvV §302(q03nduT 3dI0TT V (I A I A d)=1030B°3 \ SWRU'3IS=8Weu- 3} N Foyeoinos-suoTrjeroossyindureiep-is S ut}
yser:a JusweTESSedg: N0 ‘jusweaTESseg:uT ‘}Sser:ls
1daouod TYIANY 198ae], NIA4 ut 3daouo0d 32anog

(panunuood) uoneyuasardar TN 110yl pue NJAJE wolj s3doouod jo uonoenxe 10y sa[ny *g dqeL

Automated Two-phase Synthesis of Conceptual Database Models 673

6. Phase II: DSL-based CDM Synthesis

The second phase includes automatic generation of the target CDM represented by UML
class diagram (related UML metamodel [51] excerpt is shown in Fig. 8) based on the
BMRL representation of the source BPM.

The rules for the automatic generation of the UML class diagram, based on the BMRL
representation of the source BPM, are given in Tables 3 and 4. The first two columns
contain source and target concepts, while the third column contains labels for the
corresponding mapping rules illustrated in Fig. 4. An informal description of these rules
is given in Sect. 4.

The formal rules constitute the basis for the implementation of the CDM generator.
The generator can be implemented in different ways. In our case, it is implemented as an
automatic Xtend-based'® generator.

Figure 7 above (right side) provides an illustration of the automatic generation of
the UML class diagram. The dashed arrows are used to illustrate mappings of BMRL
concepts into the UML concepts.

MultiplicityElement Element NamedElement PackageableElement Type
+isOrdered: Boolean = false +name: String[0..1]
+isUnique: Boolean = true
+/lower: Integer +type Tonl A +/endType | 1..*
+/upper: UnlimitedNatural
* |+typedElement
<<enumeration>> StructuralFeature TypedElement StructuredClassifier Classifier
AggregationKind —>
+none
+shared A
+composite
Property :ownedAttribute +dass [Class }—D{ EncapsulatedClassifier| .
- — 0.1 +association| *
+aggregation: Aggregationkind = none | 4 memberEnd +association Association
2.% 0..1
+ownedEnd +owningAssociation
* 0.1
Fig. 8. UML CD metamodel [51]
Table 3. Mapping of BMRL concepts into UML class diagram concepts
Source BMRL concepts Target UML CD concepts Rules
p:Participant ep:Class T
{ep.name=p.name}
r:Role er:Class T1
{r.participant=p} {er.name=concat (r.participant.name, r.name) }
rpr:Association Ty

{rpr .name=concat (r.participant.name, er.name) A
rpr.memberEnd.source=ep A

multiplicity (rpr.memberEnd.source)=1 A
rpr.memberEnd.target=er A

multiplicity (rpr.memberEnd.target)=x+}

10 http://www.eclipse.org/xtend/

674

Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

Table 4. Mapping of BMRL concepts into UML class diagram concepts (continued)

Source BMRL concepts Target UML CD concepts Rules
o:0bject eo:Class Ty
{eo.name=0.name}
t:Task, ea:Class T3
in:IOObjectReference[0..x*], {ea.name=concat(in.reference.object.name,
out :IOObjectReference[0..*] out.reference.state)}
{in=t.inputObjects A rpa:Association T
out=t.outputObjects A {rpa.name:t.name) A
in.reference.existing=true A rpa.memberEnd.source=(ep V er) A
in.reference.object= multiplicity (rpa.memberEnd.source)=1 A
out.reference.object} rpa.memberEnd.target=ea A
multiplicity (rpa.memberEnd.target)=x}
roa:Association Ts
{roa.name=t.name) A
roa.memberEnd.source=eo A
multiplicity (roa.memberEnd.source)=1 A
roa.memberEnd.target=ea A
multiplicity(roa.memberEnd.target):*}
t:Task, rgc:Association Ts
in:IOObjectReference[0..%], {rgc.name=t.name) A Te
out :IOObjectReference[0..*] rgc.memberEnd.source=(ep V er) A
{in=t.inputObjects A multiplicity (rgc.memberEnd.source)=1 A
out=t.outputObjects A rgc.memberEnd.target=eo A
ﬂin | in.reference.object= multiplicity (rgc.memberEnd.target)=x+}
out.reference.object}
t:Task, ru:Association Ts
in:IOObjectReference[0..x*] {ru.name=t.name) A Ts
{in=t.inputObjects A ru.memberEnd.source=(ep V er) A T~
in.reference.existing=false} multiplicity (ru.memberEnd.source)=0..1 A
ru.memberEnd.target=(eo V ea) A
multiplicity(ru.memberEnd.target):*}
t:Task, roo:Association[n] Ty

in:I0ObjectReference[0..x],
out :IOObjectReference[0..*]
{in=t.inputObjects A
out=t.outputObjects A
in.reference.object#
out.reference.object}

{roo.name=t.name) A
roo.memberEnd.source=(eo V ea) A
multiplicity (roo.memberEnd.source)=sm A
roo.memberEnd.target=(eo V ea) A
multiplicity(roo.memberEnd.target)=tm}
1, in.multiplicity € {1, =}
n =
in.multiplicity, otherwise
0, in.multiplicity = * V
Jr € in | r.reference.object =
low(sm) = out.reference.object A
r.reference.existing = false
1, otherwise
*, in.multiplicity = *

high(sm) = {

low(tm) =0

1, otherwise

*, out.multiplicity # 1V
high(tm) = in.reference.existing = true

1, otherwise

Automated Two-phase Synthesis of Conceptual Database Models 675

7. Online Two-phase BPM-driven CDM Generator

The proposed approach enables implementation of a modular tool for BPM-driven CDM
synthesis, which consists of loosely coupled components aimed at automatic extraction of
specific concepts from the source BPMs represented by different concrete notations, their
BMRL-based representation, and automatic CDM generation.

Like all tools in the existing tool-supported MDSDM approaches, our initial set of
tools, presented in [17], was also platform-dependent, since all tools were implemented
as Eclipse plug-ins. In order to obtain a platform-independent and publicly available tool
for the BPM-driven CDM synthesis, we performed the migration of these tools into a
SOA!! application.

7.1. Architecture of Online Generator

The online generator is implemented as an orchestration of web services. Its architecture is
presented in Fig 9. We used the REST architectural style for implementation of services.
In a positive scenario, the orchestrator service receives a source BPM represented by
BPMN or UML AD (input .bpmn/input . uml), and returns the corresponding CDM
(cdm.uml) to the caller.

In the first phase, the orchestrator service sends the source BPM to the correspond-
ing extractor service, which takes the XMI representation of the source model, genera-
tes the corresponding BMRL code (input.bmrl) and returns it to the orchestrator
service. Currently, two extractor services (shown as BPMN extractor and UML AD
extractor in Fig 9) are implemented. Implementation is based on the Java archives
(JAR) obtained by exporting the Acceleo-based extractors [17]. The proposed architecture
enables easy extension of the online generator by additional extractors aimed at extraction
of characteristic concepts from BPMs represented by other notations.

AMADEQOS server
Apache Tomcat
Web application BPMN
7 input.bpmn BPMN Lt repo
jﬁ'ﬁafﬁ,‘,{ﬂ"' extractor I~ BVIRL
HT:TP R input.uml UML AD | repo
!nput.umll rlE Shputbmi extractor NN
input.opmn £ s . UML AD
Client || HTTP S 2 repo
" cdm.uml T § inout.bmrl
HTTP o o UmL cD »|UML CD
cdmuml + || ™7’ “cdmami generator Lre_po/
cdm.notation cdm.uml UML CD
|_[*cdmmotation|___layouter

Fig. 9. Architecture of the online CDM generator

1" Service-oriented architecture

676 Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

In the second phase, the orchestrator service sends the generated BMRL representa-
tion (input.bmrl) to the generator service (UML CD generator), which takes
the BMRL code, generates the XMI representation of the target CDM (cdm.uml) and
returns it to the orchestrator service. Implementation of the generator service is based on
the Java archive obtained by exporting the Xtend-based generator [17].

Each extractor stores the source model and generated BMRL code in appropriate
server repositories. The generator service stores the generated CDM in the corresponding
repository, as well. These repositories will be used in the future for further analysis of the
approach and implemented system.

Currently, we are developing the online generator further. The next release will include
the layouter service (UML CD layouter inFig9)aimed at automatic generation of the
layout of the UML class diagram (cdm.notation), in order to enable visualization of
the automatically generated CDM in the browser.

7.2. Usage of Online Generator

The usage of the implemented online generator can be twofold. In the first scenario,
developers are able to implement their own applications invoking the exposed web service
that orchestrates the two-phase CDM synthesis. In the second scenario, database designers
are able to use the implemented client application.

For the first usage scenario, the online CDM generator'? exposes one method for
the target CDM generation, which accepts the multipart/form-data media type.
The request should consist of two required named body parts "source_model_type"
and "input". The "source.model_type" body part defines the type of the
input model. The permitted values are "AD" for UML AD and "BPMN" for BPMN.
The "input" body part is the uploaded source model file. In the case of a success-
ful generation of the target model, the service responds with status 200 (OK) and
produces the application/octet-stream media type representing the generated
target model. In the case of any error, the service responds with status 204 (no
content)'. An example of the service client'* is given in Fig 10.

The second usage scenario of the online generator is a client application'> (Fig 11).
Through this application database designers are able to upload the source BPM and
download the XMI-representation of the automatically generated CDM, which can subse-
quently be imported and visualized in a certain modeling tool/platform. The visualization
and editing functionalities of automatically generated models in the web browser are
not currently supported by the implemented client application. The relevant work is
underway.

12 The implemented online generator is available at:
http://m-lab.etf.unibl.org:8080/amadeos/services/generate/cdm

13 We would like to emphasize the fact that the currently supported BPM specifications are BPMN 2.0 [50] and
UML 2.5 [51]. However, it is possible that the generator will return status 204 in cases of some vendor’s
specificities. Currently, we are developing robust extractor services in order to overcome problems related to
platform and vendor serialization specificities.

14 In order to facilitate development of client applications consuming the implemented online generator, as well
its usage, some sample source models, Eclipse-based modeling platform and sample client code are available
at GitLab: https://gitlab.com/m-lab-research/amadeos

15 The client application is available at:
http://m-lab.etf.unibl.org:8080/amadeos/generator.html

Automated Two-phase Synthesis of Conceptual Database Models 677

FileDataBodyPart filePart =

new FileDataBodyPart ("input", new File ("path_to_source_model"));
FormDataMultiPart multipart = new FormDataMultiPart ();
multipart.field("source_model_type", "AD") .bodyPart (filePart);
// For BPMN: multipart.field("source_model_type", "BPMN").bodyPart (filePart);

ClientConfig clientConfig = new ClientConfig() .register (MultiPartFeature.class);
Client client = ClientBuilder.newClient (clientConfig);

String server = "http://m-lab.etf.unibl.org:8080/amadeos/services/";

WebTarget target = client.target (server) .path("generate") .path("cdm");

Response response =
target.request () .post (Entity.entity (multipart, multipart.getMediaType()));

if (response.getStatus() == 200) {
InputStream is = response.readEntity (InputStream.class);
File f = new File("path_to_target_model.uml");
FileUtils.copyToFile(is, f);
is.close();

}

filePart.cleanup();
multipart.close();
client.close();
response.close();

Fig. 10. An example of the service client

M-lab Generator

Feel free to try our generator.

You can use the source models that we have prepared:
BPMN - Book Loan or UML AD - Book Loan

Select source model type: Activity Diagram (UML 2.5) v

Select a file: | choose File | No file chosen

Fig. 11. Screenshot of the client application form

8. Illustrative Example of Two-phase BPM-driven CDM Synthesis

This section presents an illustrative example of the proposed approach. This example
aims to illustrate the process of two-phase synthesis as such, and to prove that BPMs,
regardless of the used notation, have the semantic capacity for automatic CDM synthesis.
We prepared two simple BPMs represented by two concrete notations (UML AD and
BPMN), which are currently supported by the online tool. Both BPMs represent the same
business process (Book loaning)'¢. These two models are shown on the top of Fig. 12.

16 A detailed description of these sample models is omitted due to their simplicity.

678 Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

Member Librarian
«centralBuffer» 5
Catalog £ \/ Catalog
[}
= =
. «centralBuffer» Requesting Reception ->O
Requesting Book
00 Start) Y End
! |
i
«centralBuffer» . i
Loaning 1
Request !
1
v =
«centralBuffer» «centralBuffer» Bdok
Book Book Y Q

[Issued] [Loaned] O.El Loaning H Issuing ->O
Start Al A End
|
Book Book

O [Loaned]

\l/UML AD\I/ \L

Librarian
4

extractor extractor
participant Librarian participant Librarian
participant Member participant Member
object Book object Book
object Request object Request
object Catalog object Catalog
objectReference ExistingCatalog_ objectReference ExistingBook_
references Catalog existing references Book existing
objectReference ExistingBook_ objectReference ExistingCatalog_
references Book existing references Catalog existing
objectReference Request_ objectReference Book_
references Request references Book
objectReference Book_Issued objectReference Request_
references Book[Issued] references Request
objectReference Book_Loaned objectReference Book_Loaned
references Book[Loaned] references Book[Loaned]
task Loaning { task Reception {
actor: Librarian actor: Member
input { Request_ multiplicity 1 input { Book_ multiplicity 1 }
ExistingBook_ multiplicity 1 } output { } }
output { Book_Loaned multiplicity 1 } } task Issuing {
task Reception { actor: Librarian
actor: Member input { Book_Loaned multiplicity 1 }
input { Book_Issued multiplicity 1 } output { Book_ multiplicity 1 } }
output { } } task Requesting {
task Issuing { actor: Member
actor: Librarian input { ExistingCatalog_ multiplicity 1 }
input { Book_Loaned multiplicity 1 } output { Request_ multiplicity 1 } }
output { Book_Issued multiplicity 1 } } task Loaning {
task Requesting { actor: Librarian
actor: Member input { ExistingBook_ multiplicity 1
input { ExistingCatalog_ multiplicity 1 } Request_ multiplicity 1 }
output { Request_ multiplicity 1 } } output { Book_Loaned multiplicity 1 } }

Fig. 12. BMRL representation of sample BPMs: UML AD (left) and BPMN (right)

Automated Two-phase Synthesis of Conceptual Database Models 679

Apart from the sample BPMs, Fig. 12 also shows their BMRL representation (bottom)
automatically generated by the implemented extractors. In this way, Fig. 12 illustrates the
first phase of the proposed approach.

Figure 13 depicts the result of the second phase of BPM-driven CDM synthesis.
The depicted class diagram is visualized by the Papyrus'” tool in the Eclipse IDE.
It represents the automatically generated CDM based on the BMRL representation of the
sample source BPM(s) shown in Fig. 12.

The fact that the same CDM represents the result of the application of the implemented
tools to both sample BPMs (although represented by two different notations), proves the
hypothesis that BPMs, regardless of the modeling notation, are characterized by some
common concepts and facts having semantic capacity for automatic CDM synthesis.

The sample BPMs constitute the simplified models of the book loaning process.
Consequently, the automatically generated CDM also constitutes a simplified version of
the corresponding target CDM. Given the model simplicity, we do not provide a
detailed analysis and evaluation of the automatically generated CDM, particularly its
completeness. However, regardless of its simplicity, the correctness of the automatically
generated CDM is very high.

Catalog Member Book
+ id: Integer + id: Integer + id: Integer
1 1 0.1] 1
Requesting | Requesting Reception | haning
* * * *
Loaning Request Loaning Book_Loaned
*| +id:Integer | q 0.1| +id: Integer
0.1
Librarian | 1 Loaning
+id: Integer | 0.1 Issuing

Fig. 13. UML class diagram representing the automatically generated CDM based on the source
BPM(s) shown in Fig. 12

9. Verification and Validation

In this section we evaluate the proposed approach to automated two-phase BPM-driven
CDM synthesis based on the experimental evaluation of the implemented online CDM
generator.

9.1. Verification

Verification is the process of checking that the software meets the specification. We
verified the implemented online two-phase generator against the existing direct ATL-
based generator [20].

17 https://eclipse.org/papyrus/

680 Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

In order to verify implementation of the online generator, we applied it on real BPMs.
Here we provide a real BPMN model (Fig. 14) of order processing, which was also used
in the experiment conducted with database professionals [19, 20]. Although the presented
workflow (Fig. 14) is quite intuitive, we still provide a short description. The given model
represents an online purchasing and selling business process, with deferred payment
option assumed. The process starts with the customer online order specification, which
consists of a header and order details. After the order has been created, the salesman
checks the customer’s status (validity, creditworthiness, etc.) and availability of ordered
items in stock. Based on the performed checks, the salesman decides whether the
order is acceptable or not (in the latter case the order is canceled). If the order is
acceptable, the invoice (consisting of a header and invoice details) is created and the
stockman starts collecting and packing for shipment and delivery stock items for
all confirmed order details. After all items have been prepared for delivery, the driver
picks up the documentation and loads and delivers them to the customer. After delivery
the customer confirms receipt of goods and the process finishes with setting the related
document status to delivered.

Figure 15 depicts a class diagram (visualised by Papyrus) representing the auto-
matically generated CDM based on the BMRL representation of the source BPMN
model of order processing. This CDM, automatically generated by the implemented
online two-phase generator, is equal to the CDM automatically generated by the
direct ATL-based generator [20]. By applying the same verification procedure for other
BPMs, we also obtain the complete matching of the corresponding generated CDMs.
This fact, that we obtain equal CDMs by applying both two-phase generator and direct
ATL-based generator, confirms that the online two-phase generator properly implements
the same functionality of the automatic BPM-driven CDM synthesis.

9.2. Validation

Validation is the process of checking whether the specification captures the customer’s
needs. In the context of evaluation of the proposed approach and implemented online
generator, validation could be twofold — from perspectives of two different classes of
users: database designers and developers.

Validation from the database designers’ perspective includes an assessment of the
effectiveness and efficiency of the implemented online generator. Since both online CDM
generator and the direct ATL-based generator [20] generate the same two CDMs based
on the same BPM, the effectiveness of the two-phase BPM-driven synthesis is equal to
the effectiveness of the direct BPM-driven synthesis. The efficiency is similar due to the
equal complexity'® of the approaches.

Here we refer to the main results of the experiment conducted with database
practitioners [19,20] in order to evaluate the direct BPM-driven CDM synthesis and
direct ATL-based generator [20]. The evaluation was twofold. Firstly, it focused on the
assessment of approach effectiveness, through the assessment of correctness (precision)
and completeness (recall) of the automatically generated model. The average effecti-
veness (F-measure) was ~78% for automatic generation of classes, and ~85% for

18 Both approaches have linear complexity (O(n)).

Automated Two-phase Synthesis of Conceptual Database Models 681

8 00000 peeeseedd] e,
£ g > @ g
2 H £ g
7] g h g H
3 A OrderHeader N4 2
o [New] H
b= InitiateOrder OrderDetails’ OrderDetail
o Specification [New]
Start
J
CheckCustomer CancelOrder
A T InvoiceHeader

i H [New]
U A\ EL E EL IV AN U > T e
s
£ A H
2 OrderHeader i OrderHeader ; OrderHeaderi : | [
«n Stockitem

Customerg OrderfAcce [New] [Canceled] i [Accepted]

ptabje?

CheckOrderDetail _,«"E')mernetail
"""" [Checked]

OrderDetail InvoiceDetail

Vi [Checked] \/ W/ i [New]

"""""" g Generatelnvoice
AcceptOrder Preparinglnvoice Detail ‘

OrderDetail """ >

[New] JI
1=
2
2
172200 N N e O oo)
PrepareStockitem [, Packing =~ resseesesssssnsssennnn,,
- > H InvoiceHeader
g Prepgring A V A A [Delivered]
5 Finistled? — g
-1 L4 & UpdateDocument
o 1 e JREEY IR (R P
D i D 7] St
g R— End
InvoiceDetail InvoiceHeader ; Delivery InvoiceHeader A
[New] [Prepared] [Prepared)| [New] H [New] [InDelivery]
Yes i
LoadDelivery
g 7
§ e Delivering Receivelnvoice
&
Delivery Q é
[Received] N !
|
Receive Del ery .
InvoiceHeader™**++++++++-->> Documentation fesessesss*"" InvoiceHeader ! i
[New] [InDelivery] 1 r—l—1
1 ‘@‘
6 Invoicesleader
]
E
o
]
3
o

Fig. 14. BPMN model of order processing [19, 20]

associations. The average recall of the generated model was above 80%. The average
precision for automatically generated classes was above 75%, while the average precision
for associations was about 90%. Secondly, it focused on the assessment of usability of the
automatically generated model as a starting base for manual design of the target model,
as well as the assessment of efficiency of such an approach in contrast to the manual
design from scratch. The experiment confirmed that the automatically generated model
can also be efficiently used as a starting point for manual design of the target model,
since it significantly shortens the time required for design. The calculated speed-up factors
confirmed that the manual design, which takes the automatically generated model as a
starting base, almost bisects the estimated efforts and actual time spent to obtain the target
model in contrast to the manual design from scratch.

Some potential threats to validity of the experiment [19, 20] and derived conclusions
are related to the source model quality. Someone may find that the used source BPM
differs from the typical real BPMs, since it represents the result of a disciplined approach
which forces modeling of resources. The approach is certainly dependent on the source

682 Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

OrderDetailSpecification 1 |
Catalog OrderHeader OrderDetailSpecification System_OnlineCustomer _| System_System_OnlineCustomer
+id: Integer +id: Integer " InitiateOrder 0.1 +id: Integer B
1
* 1
1 . System
IS w | x| > Preparinglnvoice
ISpefif 1 1l id:
OrderDetailSpefification System_System_Sal I 1<> +id: Integer
QrderDetailSpetification CancelOrder 0.1 I
GeneratelnvoiceDetail * - <>1 <>1
- * * AcceptOrder = inginvoice " InvoiceHeader
OrderDetail +id: Integer
0.1 0.1 1o |1 1
+id: Integer Prep I e
* 0.1 System_Sal I 1
* *| * | GeneratelnvoiceDetail +id: Integer
CheckOrderDetail CheckOrderDetail 0.1
eDetail InvoiceDetail 0.1 1]
eDetail Customer_InvoiceHeader
* * * UpdateDocumentStatus System_System_Driver
InvoiceDetail Pa(limg—
+id: Integer P, Kitem 0.1 0.1 0:1 ReceiveD i
Prep:
- 01 System_Stockman Customer . .
0.1 1 Pick " | +id: Integer +id: Integer Receivelnvoice
Stockltem acking
+id: Integer L 1 b 1 0.1 Packing
Cust Del
1 PrepareStockitem ustomer_Delivery
PrepareStockitem Packing
0.1 o . * * 0.1 0.1 |0.1 |*
PrepareStockltem Stockltem_Prepared Delivery m loadDeIweryO 7 System_Driver
« | +id: Integer . 0.1| *id: Integer Delivering “7| +id: Integer
Packing " 1
System_System_Stockman)

Fig.15. UML class diagram representing the automatically generated CDM based on the BPMN
model shown in Fig. 14

model quality, particularly on the representation of objects and object flows, since the
completeness and correctness of the automatically generated CDM directly depend on
the content of the source BPM. However, other approaches to automatic CDM synthesis
are also dependent on the quality of the used source specification, regardless of whether
it is textual or graphical. The experiment [19,20] showed that a source BPM, as a result
of the disciplined business modeling approach (respecting used objects and object flows),
may constitute a reliable starting base for automatic CDM synthesis.

Apart from the assessment of the effectiveness and efficiency of the implemented tool,
its usability could also be evaluated from the database designer’s perspective. Currently
we do not have any quantitative evaluation results, but we can compare the implemented
system against the existing tools aimed to MDSDM. The implemented client application,
which consumes the online CDM generator service, constitutes the first online publicly
available tool for automatic BPM-driven CDM synthesis, which can be used for auto-
matic synthesis of the initial CDM based on BPMs represented by two different concrete
notations (BPMN and UML AD). After downloading the automatically generated CDM,
a designer is able to use it in other modeling tools/platforms, without any installation and
customization of additional tools and/or plugins in contrast to the existing approaches.

Validation from the developers’ perspective is the process of checking whether
the proposed approach and implemented online system (including all related services)
satisfy the developers’ needs.

Automated Two-phase Synthesis of Conceptual Database Models 683

In the context of the main goal of this research — development of an approach
that enables implementation of an online service for automatic CDM synthesis based
on BPMs represented by different concrete notations with the minimized dependency
on the platform/vendor specificities, we can conclude that the implemented online service
satisfies the developers’ needs. Firstly, the proposed approach enables service-oriented
architecture of the online system. Such a modular architecture enables separation of
concerns and concurrent development of different services included in the orchestration,
which further brings other related benefits. Secondly, the publicly available online CDM
generator service enables other developers to simply consume it in their own applications
and modeling platforms without any installation and customization of additional tools
and/or plugins in contrast to the existing approaches. This could be very beneficial for
researchers and other categories of developers.

10. Conclusions

In this article we presented an approach that enables automated CDM synthesis
independently of different starting BPM notations. We identified BPM concepts having
semantic potential for automated CDM synthesis, and we specified a simple DSL named
BMRL for the representation of those characteristic concepts. With the introduction of
DSL, the CDM synthesis is split into two phases. In the first phase, the specified
concepts are extracted from the source BPM and represented by BMRL. In the
second phase, the BMRL-based representation of the extracted BPM concepts is used for
the automated generation of the target CDM. Each phase is based on a set of formal
transformation rules enabling automatization of the whole process.

The proposed approach has several advantages over the existing approaches since it
enables splitting of the CDM synthesis into two different phases. The first phase
deals only with the extraction of the characteristic concepts from the source BPM
independently of the target CDM synthesis, while the second phase only deals with the
target CDM synthesis independently of the source BPM extraction. This approach
reduces the CDM synthesis dependency on the source BPM notations that are caused by
the metamodel changes and/or vendor specific implementations as well. If some source
BPM notation is changed, then only the corresponding BPM extractor is to be changed.
If some modifications of the generation rules are necessary, then only the CDM generator
is to be modified, while the BPM extractors remain unchanged. Thus, the proposed
approach facilitates the implementation of the required tools and simplifies the target
CDM synthesis.

The proposed approach enables implementation of modular tools for BPM-driven
CDM synthesis, which consist of loosely coupled components aimed at automatic
extraction of specific concepts from the source models and automatic generation of
the target model. Based on the proposed approach, we implemented the first online
BPM-driven CDM generator as a web-based, platform- and source notation-independent
tool. Currently, it enables automatic generation of the target CDM represented by the
UML class diagram, based on BPMs represented by two concrete notations: BPMN and
UML activity diagram. Its usage can be twofold. Firstly, database designers are able to
use it through the implemented client application, which enables the source BPM upload
and target CDM download — after downloading the automatically generated CDM, a

684 Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

designer is able to use it in other modeling tools/platforms, without any installation
and/or customization of additional tools/plugins in contrast to the existing approaches.
Secondly, developers are able to consume the exposed web service from their own
applications and modeling platforms, which could be very beneficial for researchers and
other categories of developers.

Since the proposed approach to two-phase BPM-driven CDM synthesis is based on the
identified semantic capacity of BPMs for the direct synthesis, which has previously been
experimentally confirmed, the implemented online CDM generator is characterized by
the same effectiveness and efficiency as the existing, experimentally evaluated, direct
ATL-based generator. This means that the generator enables automatic generation of the
target conceptual database model with very high completeness and precision: the
average effectiveness was ~80% for automatic generation of classes, and ~85% for
associations; the average recall of the generated model was above 80%; the average
precision for automatically generated classes was above 75%, while the average precision
for associations was about 90%. The experiments imply that the automatically generated
model can also be efficiently used as a starting point for a manual design of the target
model, since it significantly shortens the time required for design — the calculated
speed-up factors confirm that the manual design, which takes the automatically generated
model as a starting base, almost bisects the estimated efforts and actual time spent to
obtain the target model in contrast to the manual design from scratch.

Our future work will focus on further identification of the semantic capacity of BPMs
for automatic CDM synthesis, as well as improvements of the implemented tools,
particularly BPM extractors in order to minimize vendor specificities. We also intend to
provide visualization and editing functionalities of automatically generated models in the
web browser.

References

1. Aguilar, J.A., Garrigés, 1., Mazén, J.N., Trujillo, J.: An MDA approach for goal-oriented re-
quirement analysis in web engineering. Journal of Universal Computer Science 16(17), 2475—
2494 (2010)

2. Alencar, F.,, Marin, B., Giachetti, G., Pastor, O., Pimentel, J.H.: From i* requirements models
to conceptual models of a model driven development process. In: Persson, A., Stirna, J. (eds.)
POEM 2009, LNBIP, vol. 39, pp. 99-114. Springer, Berlin Heidelberg (2009)

3. Alencar, F., Pedroza, F., Castro, J., Amorim, R.: New mechanisms for the integration of orga-
nizational requirements and object oriented modeling. In: Proc. of WER 2003. pp. 109-123
(2003)

4. Alencar, EM.R., Filho, G.A.C., Castro, J.F.: Support for structuring mechanism in the integra-
tion of organizational requirements and object oriented modeling. In: Proc. of WER 2002. pp.
147-161 (2002)

5. Alencar, FM.R, Pedroza, FE.P., Castro, J., Silva, C.T.L., Ramos, R.A.: XGOOD: A tool to au-
tomatize the mapping rules between i* framework and UML. In: Proc. of CIbSE 2006. pp.
125-138 (2006)

6. Ang, C.L., Khoo, L.P,, Gay, R.K.L.: IDEF*: a comprehensive modelling methodology for the
development of manufacturing enterprise systems. Int. Journal of Production Research 37(17),
3839-3858 (1999)

7. Banjac, D., Brdjanin, D., Banjac, G., Maric, S.: Evaluation of automatically generated concep-
tual database model based on collaborative business process model: Controlled experiment. In:

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Automated Two-phase Synthesis of Conceptual Database Models 685

Stojanov, G., Kulakov, A. (eds.) ICT Innovations 2016, AISC, vol. 665, pp. 134—145. Springer
(2016)

. Becker, L.B., Pereira, C.E., Dias, O.P,, Teixeira, .M., Teixeira, J.P.. MOSYS: A methodology

for automatic object identification from system specification. In: Proc. of ISORC 2000. pp.
198-201. IEEE Computer Society (2000)

. Bloomfield, T.: MDA, meta-modelling and model transformation: Introducing new technology

into the defence industry. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005, LNCS, vol.
3748, pp. 9-18. Springer, Berlin Heidelberg (2005)

Boccalatte, A., Giglio, D., Paolucci, M.: ISYDES: the project of a tool aimed at information
system development. In: Proc. of ATIWORC 2000. pp. 293-298. IEEE (2000)

Brambilla, M., Cabot, J., Comai, S.: Automatic generation of workflow-extended domain mod-
els. In: Engels, G, et al. (eds.) MoDELS 2007, LNCS, vol. 4735, pp. 375-389. Springer, Berlin
Heidelberg (2007)

Brambilla, M., Cabot, J., Comai, S.: Extending conceptual schemas with business process in-
formation. Advances in Software Engineering, vol. 2010, Article ID 525121 (2010)

Brdjanin, D., Maric, S.: Towards the initial conceptual database model through the UML meta-
model transformations. In: Proc. of Eurocon 2011. pp. 1-4. IEEE (2011)

Brdjanin, D., Maric, S.: An Approach to Automated Conceptual Database Design Based on the
UML Activity Diagram. Computer Science and Information Systems 9(1), 249-283 (2012)
Brdjanin, D., Maric, S.: Model-driven Techniques for Data Model Synthesis. Electronics 17(2),
130-136 (2013)

Brdjanin, D., Maric, S., Gunjic, D.: ADBdesign: An approach to automated initial conceptual
database design based on business activity diagrams. In: Catania, B., Ivanovic, M., Thalheim,
B. (eds.) ADBIS 2010, LNCS, vol. 6295, pp. 117-131. Springer, Berlin Heidelberg (2010)
Brdjanin, D., Banjac, D., Banjac, G., Maric, S.: An approach to automated two-phase busi-
ness model-driven synthesis of data models. In: Ouhammou, Y., et al. (eds.) Model and Data
Engineering, LNCS, vol. 10563, pp. 57-70. Springer (2017)

Brdjanin, D., Banjac, D., Banjac, G., Maric, S.: An online business process model-driven gen-
erator of the conceptual database model. In: 8th International Conference on Web Intelligence,
Mining and Semantics — WIMS’18. pp. 16:1-16:9. ACM (2018)

Brdjanin, D., Banjac, G., Banjac, D., Maric, S.: Controlled experiment in business model-
driven conceptual database design. In: Reinhartz-Berger, 1., et al. (eds.) Enterprise, Business-
Process and Information Systems Modeling, LNBIP, vol. 287, pp. 289-304. Springer (2017)
Brdjanin, D., Banjac, G., Banjac, D., Maric, S.: An experiment in model-driven conceptual
database design. Software & Systems Modeling pp. 1-25 (2018)

Brdjanin, D., Banjac, G., Maric, S.: Automated synthesis of initial conceptual database model
based on collaborative business process model. In: Bogdanova, M.A., Gjorgjevikj, D. (eds.)
ICT Innovations 2014: World of Data, AISC, vol. 311, pp. 145-156. Springer International
Publishing, Cham (2015)

Brdjanin, D., Maric, S.: On automated generation of associations in conceptual database model.
In: De Troyer, O., et al. (eds.) ER Workshops 2011, LNCS, vol. 6999, pp. 292-301. Springer-
Verlag, Berlin Heidelberg (2011)

Brdjanin, D., Maric, S.: Towards the automated business model-driven conceptual database
design. In: Morzy, T., Harder, T., Wrembel, R. (eds.) Advances in Databases and Information
Systems, AISC, vol. 186, pp. 31-43. Springer-Verlag, Berlin Heidelberg (2012)

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling Framework.
Pearson Education, Boston, USA (2003)

Castro, J.F., Alencar, EM.R., Filho, G.A.C., Mylopoulos, J.: Integrating organizational require-
ments and object oriented modeling. In: Proc. of ISRE 2001. pp. 146-153. IEEE (2001)

Cruz, E.F.,, Machado, R.J., Santos, M.Y.: From business process modeling to data model: A
systematic approach. In: Proc. of QUATIC 2012. pp. 205-210. IEEE (2012)

686

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

Cruz, E.F.,, Machado, R.J., Santos, M.Y.: Deriving a data model from a set of interrelated busi-
ness process models. In: Proc. of ICEIS 2015. pp. 49-59 (2015)

de la Vara, J.L.: Business process-based requirements specification and object-oriented con-
ceptual modelling of information systems. PhD Thesis, Valencia Polytechnic Uni. (2011)
Drozdova, M., Kardos, M., Kurillova, Z., Bucko, B.: Transformation in model driven architec-
ture. In: Information Systems Architecture and Technology: Proceedings of 36th International
Conference on Information Systems Architecture and Technology — ISAT 2015 — Part 1. pp.
193-203. Springer, Cham (2016)

Drozdové, M., Mokrys, M., Kardos, M., Kurillov4, Z., Papén, J.: Change of paradigm for de-
velopment of software support for elearning. In: Proc. of ICETA 2012. pp. 81-84. IEEE (2012)
Espaifia, S.: Methodological integration of communication analysis into a model-driven soft-
ware development framework. PhD Thesis, Valencia Polytechnic Uni. (2011)

Essebaa, I., Chantit, S.: Toward an automatic approach to get pim level from cim level using qvt
rules. In: 2016 11th International Conference on Intelligent Systems: Theories and Applications
(SITA). pp. 1-6. Mohammedia (2016)

Fernandes, J.M., Lilius, J., Truscan, D.: Integration of DFDs into a UML-based model-driven
engineering approach. Software and Systems Modeling 5(4), 403—-428 (2006)

Fouad, A.: Embedding requirements within the model driven architecture. PhD Thesis,
Bournemouth Uni. (2011)

Insfran, E., Pastor, O., Wieringa, R.: Requirements Engineering-Based Conceptual Modelling.
Requirements Engineering 7(2), 61-72 (2002)

Insfran, E.: Requirements engineering approach for object-oriented conceptual modeling. PhD
Thesis, Valencia Polytechnic Uni. (2003)

Jiang, L., Topaloglou, T., Borgida, A., Mylopoulos, J.: Goal-oriented conceptual database de-
sign. In: Proc. of RE ’07. pp. 195-204. IEEE, Los Alamitos, USA (2007)

Jouault, F,, Allilaire, F., Bezivin, J., Kurtev, I.: ATL: A model transformation tool. Science of
Computer Programming 72(1-2), 31-39 (2008)

Koch, N.: Transformation Techniques in the Model-Driven Development Process of UWE. In:
Proc. of the Workshops at ICWE’06, Art. No. 3. ACM (2006)

Koch, N., Zhang, G., Escalona, M.J.: Model Transformations from Requirements to Web Sys-
tem Design. In: Proc. of ICWE’06. pp. 281-288. ACM (2006)

Koskinen, J., Peltonen, J., Selonen, P., Systa, T., Koskimies, K.: Model processing tools in
UML. In: Proc. of ICSE 2001. pp. 819-820. IEEE Computer Society (2001)

Kriouile, A., Addamssiri, N., Gadi, T.: An MDA Method for Automatic Transformation of
Models from CIM to PIM. American Journal of Software Engineering and Applications 4(1),
1-14 (2015)

Lingzhi, L., Ang, C.L., Gay, R.K.L.: Integration of Information Model (IDEF1) with Func-
tion Model (IDEFO) for CIM Information System Design. Expert Systems with Applications
10(3/4), 373-380 (1996)

Liu, D., Subramaniam, K., Far, B., Eberlein, A.: Automating Transition from Use-cases to
Class Model. In: Proc. of CCECE 2003. pp. 831-834. IEEE (2003)

Martinez Rebollar, A.: Conceptual schemas generation from organizational models in an auto-
matic software production process. PhD Thesis, Valencia Polytechnic Uni. (2008)

Nikiforova, O., Gusarovs, K., Gorbiks, O., Pavlova, N.: BrainTool: A tool for generation of the
UML class diagrams. In: Proc. of ICSEA 2012. pp. 60—69. IARIA (2012)

Nikiforova, O., Gusarovs, K., Gorbiks, O., Pavlova, N.: Improvement of the two-hemisphere
model-driven approach for generation of the uml class diagram. Applied Computer Systems
14(1), 19-30 (2013)

Nikiforova, O., Pavlova, N.: Application of BPMN instead of GRAPES for two-hemisphere
model driven approach. In: Grundspenkis, J., et al. (eds.) ADBIS 2009 Workshops, LNCS, vol.
5968, pp. 185-192. Springer, Berlin Heidelberg (2010)

49.
50.
51.
52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Automated Two-phase Synthesis of Conceptual Database Models 687

OMG: MOF 2.0 Query/View/Transformation Specification, v1.0. OMG (2008)

OMG: Business Process Model and Notation (BPMN), v2.0. OMG (2011)

OMG: Unified Modeling Language (OMG UML), v2.5. OMG (2015)

Rodriguez, A., Fernandez-Medina, E., Piattini, M.: Analysis-level classes from secure business
processes through model transformations. In: Lambrinoudakis, C., Pernul, G., Tjoa, A.M. (eds.)
TrustBus 2007, LNCS, vol. 4657, pp. 104—114. Springer, Berlin Heidelberg (2007)
Rodriguez, A., Fernandez-Medina, E., Piattini, M.: Towards obtaining analysis-level class and
use case diagrams from business process models. In: Song, I.Y., et al. (eds.) ER Workshops
2008, LNCS, vol. 5232, pp. 103—112. Springer, Berlin Heidelberg (2008)

Rodriguez, A., Garcia-Rodriguez de Guzman, 1., Fernandez-Medina, E., Piattini, M.: Semi-
formal transformation of secure business processes into analysis class and use case models: An
MDA approach. Information and Software Technology 52(9), 945-971 (2010)

Rungworawut, W., Senivongse, T.: Using ontology search in the design of class diagram from
business process model. PWASET 12, 165-170 (2006)

Santos, M.Y., Oliveira e S4, J.: A Data Warehouse Model for Business Processes Data Analyt-
ics, pp. 241-256. Springer International Publishing, Cham (2016)

Santos, M.Y., Machado, R.J.: On the derivation of class diagrams from use cases and logical
software architectures. In: Proc. of ICSEA ’10. pp. 107-113. IEEE (2010)

Selonen, P., Koskimies, K., Sakkinen, M.: Transformations Between UML Diagrams. Journal
of Database Management 14(3), 37-55 (2003)

Silva, L.F.,, Leite, J.C.S.P.: Generating requirements views: A transformation-driven approach.
Electronic Communications of the EASST 3, 1-14 (2006)

Srivastava, S.: Model transformation approach for a goal oriented requirements engineering
based webgrl to design models. International Journal of Soft Computing and Engineering
(IJSCE) 3(6), 66-75 (2014)

Tan, H.B.K., Yang, Y., Blan, L.: Systematic transformation of functional analysis model in
object oriented design and implementation. IEEE Transaction on Software Engineering 32(2),
111-135 (2006)

Truscan, D., Fernandes, J.M., Lilius, J.: Tool support for DFD-UML based transformation. In:
Proc. of ECBS ’04. pp. 378-387. IEEE (2004)

Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L., Visser, E.,
Wachsmuth, G.: DSL Engineering — Designing, Implementing and Using Domain-Specific
Languages (2013)

Wrycza, S.: The ISAC-driven transition between requirements analysis and ER conceptual
modelling. Information Systems 15(6), 603—-614 (1990)

Zhang, J., Feng, P., Wu, Z., Yu, D., Chen, K.: Activity based CIM modeling and transformation
for business process systems. International Journal of Software Engineering and Knowledge
Engineering 20(3), 289-309 (2010)

Drazen Brdjanin is an Associate Professor at the Faculty of Electrical Engineering, Uni-
versity of Banja Luka (Bosnia and Herzegovina), where he heads the M-lab Research
Group. His research interests are mainly related to databases and model-driven software
development. He was participating in several R&D projects at national and international
level, and authoring a number of research papers and articles in the field of model-driven
development and database design.

Danijela Banjac is a Senior Teaching Assistant and PhD student at the Faculty of Elec-
trical Engineering, University of Banja Luka (Bosnia and Herzegovina). She is a member

688 Drazen Brdjanin, Danijela Banjac, Goran Banjac, and Slavko Maric

of M-lab Research Group. Her research interests include model-driven software develop-
ment, business process modelling, object-oriented information systems, and UML. She
has published several research papers and articles.

Goran Banjac is a Senior Teaching Assistant and PhD student at the Faculty of Electrical
Engineering, University of Banja Luka (Bosnia and Herzegovina). He is a member of M-
lab Research Group. His research interests include model-driven software development,
business process modelling, databases, and UML. He has published several research pa-
pers and articles.

Slavko Maric is a Full Professor at the Faculty of Electrical Engineering, University of
Banja Luka (Bosnia and Herzegovina), where he heads the Computer Science Depart-
ment. His current research interests include: information systems modeling, design and
development, databases, eGovernment systems, service oriented architecture and parallel
processing. He has published over 50 research papers and articles, and participated in a
number of research and development projects.

Received: October 10, 2018; Accepted: June 2, 2019.

